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Motivation: DMFT

‘Dynamic Mean Field Theory’ - quantum mechanical studies of
highly correlated particles

» Equation to be solved (repeatedly) is Dyson’s equation

Gw)=[(w+mI -V -3(w)+T]"

e w (frequency) and p (chemical potential) are real
e V =trap potential = real diagonal
e X (w) == local self-energy - a complex diagonal

e T'is the hopping matrix (sparse real).
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» Interested only in diagonal of G(w) — in addition, equation
must be solved self-consistently and ...

» ... must do this for many w’s

» Related approach: Non Equilibrium Green’s Function (NEGF)
approach used to model nanoscale transistors.

» Many new applications of diagonal of inverse [and related
problems.]

» A few examples to follow
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Introduction: A few examples

Problem 1: Compute Tr[inv[A]] the trace of the inverse.

» Arises in cross validation :

(I — A(9))gll2
Tr (I — A(0))
D == blurring operator and L is the regularization operator

with A(0) = I-D(D'D+oLL") 'D7',

» |n [Huntchinson ’90] Tr[Inv[A]] is stochastically estimated

» Many authors addressed this problem.
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Problem 2: Compute Tr [ f (A)], f a certain function
Arises in many applications in Physics. Example:

» Stochastic estimations of Tr ( f(A)) extensively used by quan-
tum chemists to estimate Density of States, see

[Ref: H. Roder, R. N. Silver, D. A. Drabold, J. J. Dong, Phys.
Rev. B. 55, 15382 (1997)]
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Problem 3: Compute diag[inv(A)] the diagonal of the inverse

» Arises in Dynamic Mean Field Theory [DMFT, motivation for
this work].

In DMFT, we seek the diagonal of a “Green’s function” which
solves (self-consistently) Dyson’s equation. [see J. Freericks
20035]

» Related approach: Non Equilibrium Green’s Function (NEGF)
approach used to model nanoscale transistors.

» |n uncertainty quantification, the diagonal of the inverse of a
covariance matrix is needed [Bekas, Curioni, Fedulova ’09]
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Problem 4: Compute diag[ f (A)] ; f = a certain function.

» Arises in any density matrix approach in qguantum modeling
- for example Density Functional Theory.

» Here, f = Fermi-Dirac operator:

£(6) 1 Note: when T' — 0
€) =

e— then f becomes a ste

Lre(zh) o ;

Note: if f is approximated by a rational function then diag[f(A)]
~ a lin. combinaiton of terms like diag[(A — o;I) ']

» Linear-Scaling methods based on approximating f(H ) and
Diag(f(H)) — avoid ‘diagonalization’ of H
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Methods based on the sparse L U factorization

» Basic reference:

K. Takahashi, J. Fagan, and M.-S. Chin, Formation of a sparse
bus impedance matrix and its application to short circuit study,
in Proc. of the Eighth Inst. PICA Conf., Minneapolis, MN, IEEE,
Power Engineering Soc., 1973, pp. 63-69.

» Described in [Duff, Erisman, Reid, p. 273] -
» Algorithm used by Erisman and Tinney [Num. Math. 1975]

Sparse Days 06/15/2010 8




» Mainidea. If A = LDU and B = A~!then
B=U"'D'+B(I-L); B=D"L'+(I-U)B.

» Not all entries are needed to compute selected entries of B

» For example: Consider lower part, 2 > 7; use first equation:

bij = (B(I — L))ij = — Y baly
k>j

» Need entries b;, of row 2 where Ly; # 0, k > 3.

» “Entries of B belonging to the pattern of (L,U)? can be
extracted without computing any other entries outside the pat-
tern.”
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» More recently exploited in a different form in

L. Lin, C. Yang, J. Meza, J. Lu, L. Ying, W. E Sellnv — An
algorithm for selected inversion of a sparse symmetric matrix,
Tech. Report, Princeton Univ.

» An algorithm based on a form of nested dissection is de-
scribed in Li, Ahmed, Glimeck, Darve [2008]

» A close relative to this technique is represented in

L. Lin, J. Lu, L.Ying, R. Car, W. E Fast algorithm for extracting
the diagonal of the inverse matrix with application to the elec-
tronic structure analysis of metallic systems Comm. Math. Sci,
2009.

» Difficulty: 3-D problems.
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Stochastic Estimator

e A = original matrix, B = A~
¢ §(B) = diag(B) [matlab notation]
Notation: I e D(B) = diagonal matrix with diagonal 6 (B)

e (® and @: Elementwise multiplication and
division of vectors

e {v;}: Sequence of s random vectors

Result: I 0(B) = i:vj ©® Bv;| © zs:’vj © v,
_j:l -

7=1

Refs: C. Bekas , E. Kokiopoulou & YS ('05), Recent: C. Bekas,
A. Curioni, |. Fedulova ’09.
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» Let Vy = [vy,vq,...,vs]. Then, alternative expression:

D(B) = D(BV.V," ) D~ H(V;V,")

Question: | When is this result exact?

Main Proposition |

oelet V, € R™? with rows {v,.}; and B € C™*™ with
elements {b;}

e Assume that: (v,,., vg,.) = 0,Vj # k,s.t. bjr # 0
Then:

|

D(B)=D(BV.V, ) D (V,V,")

» Approximation to b;; exact when rows ¢z and j of Vs are L
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Ideas from information theory: Hadamard matrices

» (Consider the matrix V' — want the rows to be as ‘orthogonal
as possible among each other’, i.e., want to minimize

L =VVTF

T
E,, .= of Epgr = max |VV?';

\/n(n — 1) i7#]

» Problems that arise in coding: find code book [rows of V' =
code words] to minimize ’cross-correlation amplitude’

» Welch bounds:

. S n — s . S n — S
e = (n —1)s e = (n —1)s

» Result: 9 a sequence of s vectors v, with binary entries
which achieve the first Welch bound iff s = 2 or s = 4k.
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» Hadamard matrices are a special class: n X m matrices
with entries =1 and such that HH " = nlI.

1 1 1 1

1 1 1 -1 1 -1

Examples : [1_1] and 11 -1 —1
'1-1-1 1

» Achieve both Welch bounds

» (Can build larger Hadamard matrices recursively:

Given two Hadamard matrices H; and H>, the Kro-
necker product H; ® H- is a Hadamard matrix.

» Too expensive to use the whole matrix of size n

» (Can use V, = matrix of s first columns of H,,

Sparse Days 06/15/2010



20 20+

401

40

60 60

8o} 8ol

100

100

120 120

0 20 40 60 80 100 120 0 20 40 60 80 100 120

Pattern of V,V.', for s = 32 and s = 64.
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A Lanczos approach

» @Given a Hermitian matrix A - generate Lanczos vectors via:

Bi+1qi+1 = Aq; — @iq; — Biqi—1
o, Bi+1 selected s.t. ||giy1]|l2 = 1and qi+1 L qiy @it1 L gi—q
» Result:

AQm — Qme + /Bm—l-lqm-l—ler,—qrq,?

» Whenm = nthen A = Q,T,Q, and A~! = Q,T.'Q..

» Form < n use the approximation: A~! = Q,,,T-'Q —

D(A™Y) = D[Q.T.'Q ]
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ALGORITHM : 1. diaglnv via Lanczos

Forj =1,2,--+,Do:
Bj+1qj+1 = Aq; — a;q; — B;q;—1 [Lanczos step]
Dj = gq; — NjPj—1
0j := o — Bjny

dj := dj_1 + 22 [Update of diag(inv(A))]
, __ Bt ’
MNj+1 = =5
EndDo

» d; (a vector) will converge to the diagonal of A1
» Limitation: Often requires all n steps to converge

» One advantage: Lanczos is shift invariant — so can use this
for many w’s

» Potential: Use as a direct method - exploiting sparsity
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Using a sparse V : Probing

Find V; such that (1) s is small and (2) V;
Goal: satisfies Proposition (rows ¢ & 3 orthgonoal for
any nonzero b;;)

Difficulty: | Can work only for sparse matrices but B =

A~1is usually dense
» B can sometimes be approximated by a sparse matrix.
bij, |bij| > €
0, [by| < e

» B, will be sparse under certain conditions, e.g., when A is
diagonally dominant

» Consider for some € : (Be)i; = {

» In what follows we assume B, is sparse and set B := B..

» Pattern will be required by standard probing methods.
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Generic Probing Algorithm

ALGORITHM : 2. Probing

Input: A, s
Output: Matrix D (B)
Determine V := vy, V2, ..., Vg]

for; «— 1tos
Solve ACBJ' = U,
end
Construct X := [x1, T2y .. . 5 L]
Compute D (B) := D (X,V,") D~1(V,V,")

» Note: rows of V; are typically scaled to have unit 2-norm
=1,s0 DY (V,V.') = 1.
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Standard probing (e.g. to compute a Jacobian)

» Several names for same method: “probing”; “CPR”, “Sparse
Jacobian estimators’,..

Basis of the method: can compute Jacobian if a coloring of
the columns is known so that no two columns of the same
color overlap.

1 35 12 13 16 20

All entries of same color | ° . o
. o
can be computed with | . PO
one matvec. .
Example: For all blue ® o . . s
entries multiply B by the . Ll a3
. [ ) Y 1| as
blue vector on right. . .
° 1| o
o o
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What about Diag(inv(A))?

» Define v; - probing vector associated with color z:
0], = 1 if color(k) == 1
Yilk = ] 0 otherwise
» Standard probing satisfies requirement of Proposition but...

» ... this coloring is not what is needed! [lt is an overkill]

Alternative: |

» Color the graph of B in the standard graph coloring algo-
rithm [Adjacency graph, not graph of column-overlaps]

-1 Graph coloring yields a valid set of probing
M vectors for D(B).
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colorred color black
] ]

Proof: | x

» Column v.: one for each
node ¢ whose color is ¢, zero
elsewhere. |

» Row 2 of Vi: has a 1’ in
column ¢, where c = color (i), ;@ e
zero elsewhere.

v
|

. >|0:1:0:0:0:0:0]

» |f b;; # 0 then in matrix V;:
e i¢-th row has a’1’ in column color(z), '0’ elsewhere.
e j-throw has a’1’ in column color(j), 0’ elsewhere.

» The 2 rows are orthogonal.
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Example:

» Two colors required for this graph — two probing vectors
» Standard method: 6 colors [graph of B' B]
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Next Issue: Guessing the pattern of B

» Recall that we are dealing with B := B, [‘pruned’ B]

» Assume A diagonally dominant

» Write A=D — E ,with D =D(A). Then:

A=DI—-F) wth F=D'E —

A'l'=(I+F+F+-.-+ F D"
Bk

\/

When A is D.D. || F*|| decreases rapidly.

\/

Can approximate pattern of B by that of B*) for some k.

\/

Interpretation in terms of paths of length k& in graph of A.
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Q: How to select k?
A: Inspect A~'e; for some j
» Values of solution outside pattern of (A*e;) should be small.

» |f during calculations we get larger than expected errors —
then redo with larger k, more colors, etc..

» (Can we salvage what was done? Question still open.
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Preliminary experiments

Problem Setup

e DMFT: Calculate the imaginary time Green’s function
e DMFT Parameters: Set of physical parameters is provided

e DMFT loop: At most 10 outer iterations, each consisting of
62 inner iterations

1
e Each inner iteration: Find D(B) S

e Each inner iteration: Find D(B) P S
e Matrix: Based on a five-point stencil -j
with a;; = p + iw — V — s(j) o

1

e Probing tolerance: e = 101V

Probing Setu
g P e GMRES tolerance: 6 = 1012
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CPU times (sec)
for one inner itera-
tion of DMFT.

A few statistics for
case n = 81

n — 21% 41% 61% 812
LAPACK 0.5 26 282 > 1000
Lanczos 0.2 9.9 115 838
Probing 0.02 0.19 0.79 2.0
20 , . . .
_ | — Path length, k
' == # Probing vectors
! ——# GMRES iterations
sy T :
Bt

20 30 40 50 60 70
DMFT inner iteration
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Challenge: The indefinite case

» The DMFT code deals with a separate case which uses a
“real axis” sampling..

» Matrix A is no longer diagonally dominant — Far from it.
» This is a much more challenging case.

» One option: solve Axz; = e; FOR ALL j’s - with the ARMS
solver using ddPQ ordering + exploit multiple right-hand sides

» More appealing: DD-type approaches
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Divided & Conquer approach

Let A == a 5-point matrix (2-D problem) split roughly in two:

(A - \

—I A, —I
—I A, —1I

—T A —1

—-IA,  —1I
where { A} = tridiag. Write:

A1 Aqo Aqq A2
A —_— —_— .
(Azl A22> ( A22> + <A21 )

with A11 e C™*™ and A22 & C(n—m)x(n—m),
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» (Observation:

A — A+ ELEY B E\E{ E\E]
o Az + EsE] ErE{ E:E; )"
where E4, E- are (relatively) small rank matrices:

1
El . — c (Canw, Ez . — c C(n—m)an,
1

Of the form

o~ T _ (Ch _ (Ea
A=C— EE", C’._< o) E=(g

» |dea: Use Sherman-Morrisson formula.
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A'=ct+uGc'Uu?, with:
U=C'EcC™ G=1, —E'U € C"*",

D(A™1) can be found from

DA™ = (D(Cl_ ) D(Cz_l))—l—D(UG‘lUT).

A&

N
recursion

ClUl — Ela
CQUQ = F,

> G:G=1,, — E'U = I,, — ETU, — ETU,

» U :solve CU = E, or { Solve iteratively
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Domain Decomposition approach

Domain decomposition with

p = 3 subdomains

Zoom into Subdomain 2

i

Under usual ordering [interior points then interface points]:

-

B
(B

\F B -

F
o

BF

FT C}

B F
FT C

)



Example of matrix A \ =
based on a DDM or-
dering with p = 4 sub- \
domains. (n = 252) \ <

600 | N | S N

Inverse of A [Assuming both B and S nonsingular]
A-1 (B—l + B l'FS-'FTB-1 —B—1F5—1>
— _S—lFTB—l S—l
S=C—-F'B'F



D(A™Y) = (

DB Y)Y +D(BFS'F'B1)

p(s)

» Note: each diagonal block decouples from others:

Inverse of A in z-
th block (domain)

(A Ny = D(le-_l) + D(H;S™'H})
H; = B''F,

» Note: only nonzero columns of F; are those related to

interface vertices.

» Approach similar to Divide and Conquer but not recursive..
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DMFT experiment |

Times (in seconds) for direct inversion (INV), divide-and-conquer
(D&C), and domain decomposition (DD) methods.

/1 INV D&C DD
21 3 A1
51 12 1.4 .7
81 88 7.1 3.2

» p = 4 subd. for DD
» Various sizes - 2-D problems
» Times: seconds in matlab

» NOTE: work still in progress
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Conclusion

» Diag(inv(A)) problem: easy for Diag. Dominant case. Very
challenging in (highly) indefinite case.

» Dom. Dec. methods can be a bridge between the two cases
»  Approach [specifically for DMFT problem] :

e Use direct methods in strongly Diag. Dom. case

e Use DD-type methods in nearly Diag. Dom. case

e Use direct methods in all other cases [until we find better
means :-) |
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