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Introduction: Linear System Solvers

General
Purpose

 Specialized

Direct sparse 
Solvers

Iterative 

A x = b
∆ u = f− + bc

Methods 
Preconditioned Krylov

Fast Poisson
Solvers 

Multigrid
Methods 
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A few observations

ä Problems are getting harder for Sparse Direct methods
(more 3-D models, much bigger problems,..)

ä Problems are also getting difficult for iterative methods Cause:
more complex models - away from Poisson

ä Researchers on both camps are learning each other’s tricks
to develop preconditioners.

ä Much of recent work on solvers has focussed on:

(1) Parallel implementation – scalable performance

(2) Improving Robustness, developing more general precondi-
tioners
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Background: Independent sets, ILUM, ARMS

Independent set orderings permute a matrix into the form(
B F
E C

)
where B is a diagonal matrix.

ä Unknowns associated with theB block form an independent
set (IS).

ä IS is maximal if it cannot be augmented by other nodes

ä Finding a maximal independent set is inexpensive
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Main observation: Reduced system obtained by eliminating
the unknowns associated with the IS, is still sparse since its
coefficient matrix is the Schur complement

S = C − EB−1F

ä Idea: apply IS set reduction recursively.
ä When reduced system small enough solve by any method
ä ILUM: ILU factorization based on this strategy. YS ’92-94.

• See work by [Botta-Wubbs ’96, ’97, YS’94, ’96, Leuze ’89,..]
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Group Independent Sets / Aggregates

Main goal: generalize independent sets to improve robust-
ness

Main idea: use “cliques”, or “aggregates”. No coupling be-
tween the aggregates.

No Coupling

ä Label nodes of independent sets first
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Algebraic Recursive Multilevel Solver (ARMS)

ä Typical shape of reordered
matrix:

PAP T =

(
B F
E C

)
=

ä Block factorize: E

C

F

B

(
B F
E C

)
=

(
L 0

EU−1 I

) (
U L−1F
0 S

)
ä S = C − EB−1F = Schur complement + dropping to
reduce fill

ä Next step: treat the Schur complement recursively
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Algebraic Recursive Multilevel Solver (ARMS)

Level l Factorization:(
Bl Fl
El Cl

)
≈
(

Ll 0
ElU

−1
l I

)(
I 0
0 Al+1

)(
Ul L−1

l Fl
0 I

)
ä L-solve∼ restriction; U-solve∼ prolongation.

ä Perform above block factorization recursively on Al+1

ä Blocks in Bl treated as sparse. Can be large or small.

ä Algorithm is fully recursive

ä Stability criterion in block independent sets algorithm
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Group Independent Set reordering

Separator
First Block 

Simple strategy: Level taversal until there are enough points
to form a block. Reverse ordering. Start new block from
non-visited node. Continue until all points are visited. Add
criterion for rejecting “not sufficiently diagonally dominant
rows.”
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Original matrix



Block size of 6
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Block size of 20
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Related ideas

ä See Y. Notay, Algebraic Multigrid and algebraic multilevel
techniques, a theoretical comparison, NLAA, 2005.

ä Some of these ideas are related to work by Axelsson and
co-workers [e.g., AMLI] – see Axelson’s book

ä Work by Bank & Wagner on MLILU quite similar to ARMS
– but uses AMG framework: [R. E. Bank and C. Wagner, Multi-
level ILU decomposition, Numer. Mat. (1999)]

ä Main difference with AMG framework: block ILU-type factor-
ization to obtain Coarse-level operator. + use of relaxation.

ä In AMG S = P TAP with P of size (nF + nC)× nC
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NONSYMMETRIC REORDERINGS



Enhancing robustness: One-sided permutations

ä Very useful techniques for matrices with extremely poor
structure. Not as helpful in other cases.

Previous work:

• Benzi, Haws, Tuma ’99 [compare various permutation algo-
rithms in context of ILU]

• Duff ’81 [Propose max. transversal algorithms. Basis of
many other methods. Also Hopcroft & Karp ’73, Duff ’88]

• Olchowsky and Neumaier ’96 maximize the product of diag-
onal entries→ LP problem

• Duff, Koster, ’99 [propose various permutation algorithms.
Also discuss preconditioners] Provide MC64
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Two-sided permutations with diagonal dominance

Idea: ARMS + exploit nonsymmetric permutations

ä No particular structure or assumptions for B block

ä Permute rows * and * columns of A. Use two permutations
P (rows) and Q (columns) to transform A into

PAQT =

(
B F
E C

)

P,Q is a pair of permutations (rows, columns) selected so
that the B block has the ‘most diagonally dominant’ rows
(after nonsym perm) and few nonzero elements (to reduce
fill-in).

ETH 03/17/2010 16



Multilevel framework

ä At the l-th level reorder matrix as shown above and then
carry out the block factorization ‘approximately’

PlAlQ
T
l =

(
Bl Fl
El Cl

)
≈
(

Ll 0

ElU
−1
l I

)
×
(
Ul L

−1
l Fl

0 Al+1

)
,

where

Bl ≈ LlUl
Al+1 ≈ Cl − (ElU

−1
l )(L−1

l Fl) .

ä As before the matrices ElU
−1
l , L−1

l Fl or their approxima-
tions

Gl ≈ ElU−1
l , Wl ≈ L−1

l Fl

need not be saved.

ETH 03/17/2010 17



Interpretation in terms of complete pivoting

Rationale: Critical to have an accurate and well-conditioned
B block [Bollhöfer, Bollhöfer-YS’04]

ä Case when B is of dimension 1 → a form of complete
pivoting ILU. Procedure∼ block complete pivoting ILU

Matching sets: defineB block. M is a set ofnM pairs (pi, qi)

where nM ≤ n with 1 ≤ pi, qi ≤ n for i = 1, . . . , nM and

pi 6= pj, for i 6= j qi 6= qj, for i 6= j

ä When nM = n → (full) permutation pair (P,Q). A partial
matching set can be easily completed into a full pair (P,Q) by
a greedy approach.
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Matching - preselection

Algorithm to find permutation consists of 3 phases.
(1) Preselection: to filter out poor rows (dd. criterion) and
sort the selected rows.
(2) Matching: scan candidate entries in order given by

preselection and accept them into the M set, or reject them.
(3) Complete the matching set: into a complete pair of

permutations (greedy algorithm)

ä Let j(i) = argmaxj|aij|.

ä Use the ratio γi =
|ai,j(i)|
‖ai,:‖1

as a measure of diag. domin. of
row i
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Matching: Greedy algorithm

ä Simple algorithm: scan pairs (ik, jk) in the given order.

ä If ik and jk not already assigned, assign them to M.
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MATLAB DEMO



Software

ä The matlab demo just shown available from my web-site.
Search for “matlab suite” in

http://www.cs.umn.edu/∼saad/software

ä ARMS-C [C-code] - available from ITSOL package..

ä Parallel version of ARMS available. pARMS3 released re-
cently

ä See also: ILUPACK – developed mainly by Matthias Boll-
hoefer and his team

http://www.tu-berlin.de/ilupack/.
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COARSENING



Divide and conquer and coarsening (work in progress)

ä Want to mix ideas from AMG with purely algebraic strategies
based on graph coarsening

First step: Coarsen. We use
matching: coalesce two nodes
into one ‘coarse’ node

i j

aij

par(i,j)

or

i

par(i)

Second step: Get graph (+ weights) for the coarse nodes -
Adj[par(i, j)] is:

{par(i, k) k ∈ Adj(i)}
⋃
{par(j, k) k ∈ Adj(j)}

Third step: Repeat
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Illustration of the coarsening step

i j

par(j)par(i)

k

l

par(l)

par(k)
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Example 1: A simple 16× 16 mesh (n = 256).
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nz = 1215

Laplacean matrix of size n=256 −− original pattern
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Matrix after 3 Levels of coarsening
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First idea: use ILU on the reordered matrix

ä For example: use ILUT

Illustration: Matrix Raj1 from the Florida collection

ä Size n = 263, 743.
Nnz = 1, 302, 464 nonzero
entries
ä Matrix is nearly singular –
poorly conditioned. Iterate to
reduce residual by 1010.
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Performance of ILUT w and w/out ordering 

ILUT+order(5 levels)
ILUT

ä Reordering appears to be quite good for ILU.
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Saving memory with Pruned ILU

ä Let A =

(
B F
E C

)
=

(
I 0

EB−1 I

)(
B F
0 S

)
;

ä S = C − EB−1F = Schur complement

Solve:(
I 0

EB−1 I

)(
B F
0 S

)(
x1

x2

)
= ..

1) w1 = B−1b1

2) w2 = b2 − E ∗ w1

3) x2 = S−1w2

4) w1 = b1 − F ∗ x2

5) x1 = B−1w1

ä Known result: LU factorization of S == trace of LU factoriza-
tion of A.

ä Idea: exploit recursivity for B-solves - keep only the block-
diagonals from ILU..
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From L U =

 B1 B−1
1 F1

E1B
−1
1 S1

B−1
2 F2

E2B
−1
2 S2



Keep only

 B1

S1

S2


ä Big savings in memory

ä Additional computational cost

ä Expensive for more than a few levels (2 or 3)..
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Example : A simple 16× 16 mesh (n = 256).
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Illustration: Back to Raj1 matrix from the Florida collection
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HELMHOLTZ



Application to the Helmholtz equation

ä Started from collaboration with Riyad Kechroud, Azzeddine
Soulaimani (ETS, Montreal), and Shiv Gowda: [Math. Comput.
Simul., vol. 65., pp 303–321 (2004)]

ä Problem is set in the open domain Ωe of Rd
∆u+ k2u = f in Ω

u = −uinc on Γ

or ∂u
∂n

= −∂uinc
∂n

on Γ

limr→∞ r
(d−1)/2

(
∂u
∂~n
− iku

)
= 0 Sommerfeld cond.

where: u the wave diffracted by Γ, f = source function = zero
outside domain
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ä Issue: non-reflective boundary conditions when making the
domain finite.

ä Artificial boundary Γart added – Need non-absorbing BCs.

ä For high frequencies, linear systems become very ‘indefi-
nite’ – [eigenvalues on both sides of the imaginary axis]

ä Not very good for iterative methods
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Application to the Helmholtz equation

Test Problem Soft obstacle = disk of radius r0 = 0.5m.
Incident plane wave with a wavelength λ; propagates along the
x-axis. 2nd order Bayliss-Turkel boundary conditions used on
Γart, located at a distance 2r0 from obstacle. Discretization:
isoparametric elements with 4 nodes. Analytic solution known.

Γ

Γ
art
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Use of complex shifts

ä Several papers promoted the use of complex shifts [or very
similar approaches] for Helmholtz

[1] X. Antoine – Private comm.

[2] Y.A. Erlangga, C.W. Oosterlee and C. Vuik, SIAM J. Sci.
Comput.,27, pp. 1471-1492, 2006

[3] M. B. van Gijzen, Y. A. Erlangga, and C. Vuik, SIAM J. Sci.
Comput., Vol. 29, pp. 1942-1958, 2007

[4] M. Magolu Monga Made, R. Beauwens, and G. Warzée,
Comm. in Numer. Meth. in Engin., 16(11) (2000), pp. 801-817.
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ä Illustration with an experiment: finite difference discretiza-
tion of−∆ on a 25× 20 grid.

ä Add a negative shift of−1 to resulting matrix.

ä Do an ILU factorization of A and plot eigs of L−1AU−1.

ä Used LUINC from matlab - no-pivoting and threshold = 0.1.

ETH 03/17/2010 37



ä Terrible spectrum:
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ä Now plot eigs of L−1AU−1 where L,U are inc. LU factors
of B = A+ 0.25 ∗ i

ä Much better!
Observed by many
[PDE viewpoint]

Idea:

Adapt technique to
ILU:
Add complex shifts
before ILU

−0.5 0 0.5 1 1.5 2 2.5 3
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−0.5
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0.5
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1.5

2

2.5

3
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Explanation

Question:
What if we do an exact
factorization [droptol = 0]?
ä Λ(L−1AU−1) =
Λ[(A+ αiI)−1A]

ä Λ =
{

λj
λj+iα

}
ä Located on a circle –
with a cluster at one.
ä Figure shows situation
on the same example
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Recent comparisons

** Joint work with Daniel Osei-Kuffuor

ä Test problem seen earlier. Mesh size 1/h = 160→
n = 28, 980, nnz = 260, 280

ä Wavenumber varied [until convergence fails]

ILUT with droptol = 0.02

k λ
h

No. iters Setup Time (s) Iter. Time (s) Fill Factor
2π 160 191 0.1 6.03 1.35
4π 80 214 0.1 6.86 1.37
8π 40 317 0.11 9.67 1.42
16π 20 ∗∗ ∗∗ ∗∗ ∗∗
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ILUT – with complex shifts – droptol = 0.02

k λ
h

No. iters Setup Time (s) Iter. Time (s) Fill Factor
2π 160 191 0.1 5.34 1.35
4π 80 211 0.1 5.90 1.36
8π 40 280 0.11 7.89 1.41
16π 20 273 0.11 7.90 1.60
32π 10 163 0.18 5.41 2.5
64π 5 107 0.33 4.25 3.84

ARMS-ddPQ
k λ

h
No. iters Setup Time (s) Iter. Time (s) Fill Factor

2π 160 180 0.68 9.20 2.07
4π 80 224 0.71 11.5 2.09
8π 40 261 0.54 11.8 2.17
16π 20 127 0.58 5.71 2.39
32π 10 187 0.69 8.61 3.15
64π 5 231 0.39 8.89 3.50
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DIAGONAL ESTIMATORS



Application: Computing Diag[Inv[A]] ∗∗

ä Many problems lead to the computation of Diag[Inv[A]] or
(easier) Trace[Inv[A]]

Examples:

ä In Density Functional Theory (DFT): charge density is noth-
ing but Diag[f(H)], where f = step function. Approximating
f by a rational function leads to evaluating Diag[Inv[A]]

ä In Stastistics: Trace[Inv[A]] is stochastically estimated
to get parameters in Cross-Validation techniques. [Huntchinson
’90]

** Joint work with J. Tang
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ä In Dynamic Mean Field Theory (DMFT), we look for the
diagonal of “Green’s function” to solve Dyson’s equation.. [see
J. Freericks 2005]

ä In uncertainty quantification, the diagonal of the inverse of a
covariance matrix is needed [Bekas, Curioni, Fedulova ’09]

ä Stochastic estimations of Trace(f(A)) extensively used by
quantum chemists to estimate Density of States1

1.Ref: H. Röder, R. N. Silver, D. A. Drabold, J. J. Dong, Phys.
Rev. B. 55, 15392 (1997)
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Stochastic Estimator

Notation:

•A = original matrix, B = A−1.

• δ(B) = diag(B) [matlab notation]

•D(B) = diagonal matrix with diagonal δ(B)

•� and �: Elementwise multiplication and
division of vectors

• {vj}: Sequence of s random vectors

Result: δ(B) ≈

 s∑
j=1

vj �Bvj

�
 s∑
j=1

vj � vj


Refs: C. Bekas , E. Kokiopoulou & YS (’05), Recent: C. Bekas,
A. Curioni, I. Fedulova ’09.
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ä Let Vs = [v1, v2, . . . , vs]. Then, alternative expression:

D(B) ≈ D(BVsV
>
s )D−1(VsV

>
s )

Question: When is this result exact?

Main Proposition

• Let Vs ∈ Rn×n with rows {vj,:}; and B ∈ Cn×n with
elements {bjk}

• Assume that: 〈vj,:, vk,:〉 = 0, ∀j 6= k, s.t. bjk 6= 0

Then:
D(B)=D(BVsV

>
s )D−1(VsV

>
s )

ä Approximation to bij exact when rows i and j of Vs are⊥
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Probing

Goal:
Find Vs such that (1) s is small and (2) Vs
satisfies Proposition (rows i & j orthgonoal for
any nonzero bij)

Difficulty: Can work only for sparse matrices but B =
A−1 is usually dense

ä B can sometimes be approximated by a sparse matrix.

ä Consider for some ε : (Bε)ij =

{
bij, |bij| > ε
0, |bij| ≤ ε

ä Bε will be sparse under certain conditions, e.g., when A is
diagonally dominant

ä In what follows we assume Bε is sparse and set B := Bε.

ä Pattern will be required by standard probing methods.
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Generic Probing Algorithm

ALGORITHM : 1 Probing
Input: A, s
Output: Matrix D (B)
Determine Vs := [v1, v2, . . . , vs]
for j ← 1 to s

Solve Axj = vj
end
Construct Xs := [x1, x2, . . . , xs]
Compute D (B) := D

(
XsV

>
s

)
D−1(VsV

>
s )

ä Note: rows of Vs are typically scaled to have unit 2-norm
=1., so D−1(VsV

>
s ) = I.
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Standard probing (e.g. to compute a Jacobian)

ä Several names for same method: “probing”; “CPR”, “Sparse
Jacobian estimators”,..

Basis of the method: can compute Jacobian if a coloring of
the columns is known so that no two columns in the same
color overlap.

All entries of same color
can be computed with
one mat-vec.
Example: For all blue

entries multiply B by the
blue vector on right.

1 3 16
1

1

(1)

(3)

 (12)

(15)

1

1

5 20

1

1

1

(5)

(13)

  (20)

12 13
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What about Diag(inv(A))?

ä Define vi - probing vector associated with color i:

[vi]k =

{
1 if color(k) == i
0 otherwise

ä Will satisfy requirement of Proposition.... but

ä ... this coloring is not what is needed! [It is an overkill]

Alternative:

ä Color the graph of B in the standard graph coloring algo-
rithm [Adjacency graph, not graph of column-overlaps]

Result: Graph coloring yields a valid set of probing
vectors for D(B).
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Proof:

ä Column vc: one for each
node i whose color is c, zero
elsewhere.

ä Row i of Vs: has a ’1’ in
column c, where c = color(i),
zero elsewhere.

1

1

0 0 0 0 0

0 0 0 0 0 0

0 i

j

i

j

color red color black

ä If bij 6= 0 then in matrix Vs:

• i-th row has a ’1’ in column color(i), ’0’ elsewhere.

• j-th row has a ’1’ in column color(j), ’0’ elsewhere.

ä The 2 rows are orthogonal.
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Example:

ä Two colors required for this graph→ two probing vectors

ä Standard method: 6 colors [graph of BTB]
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Next Issue: Guessing the pattern of B

ä Recall that we are dealing with B := Bε [‘pruned’ B]

ä Assume A diagonally dominant

ä Write A = D − E , with D = D(A). Then :

A = D(I − F ) with F ≡ D−1E →

A−1 ≈ (I + F + F 2 + · · ·+ F k)D−1︸ ︷︷ ︸
B(k)

ä When A is D.D. ‖F k‖ decreases rapidly.

ä Can approximate pattern of B by that of B(k) for some k.

ä Interpretation in terms of paths of length k in graph of A.
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Q: How to select k?

A: Inspect A−1ej for some j

ä Values of solution outside pattern of (Akej) should be small.

ä If during calculations we get larger than expected errors –
then redo with larger k, more colors, etc..

ä Can we salvage what was done? Question still open.
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Preliminary experiments

Problem Setup

• DMFT: Calculate the imaginary time Green’s function

• DMFT Parameters: Set of physical parameters is provided

• DMFT loop: At most 10 outer iterations, each consisting of
62 inner iterations

• Each inner iteration: Find D(B)
• Each inner iteration: Find D(B)
• Matrix: Based on a five-point stencil
with ajj = µ+ iω − V − s(j)

1 1

1

1

ajj

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Probing Setup • Probing tolerance: ε = 10−10

• GMRES tolerance: δ = 10−12
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Results

CPU times (sec)
for one inner itera-
tion of DMFT

n→ 212 412 612 812

LAPACK 0.5 26 282 > 1000
Lanczos 0.2 9.9 115 838
Probing 0.02 0.19 0.79 2.0

n = 21× 21
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Challenge: The indefinite case

ä The DMFT code deals with a separate case which uses a
“real axis” sampling..

ä Matrix A is no longer diagonally dominant – Far from it.

ä This is a much more challenging case.

ä Plan for now: solveAxj = ej FOR ALL j’s - with the ARMS
solver using ddPQ ordering.
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SPARSE MATRIX COMPUTATIONS ON GPUS



Sparse matrix computations with GPUs ∗∗

ä GPUs Currently a very popular approach to: inexpensive
supercomputing

ä Can buy∼ one Teraflop peak power for around $1,350.

Tesla C1060

** Joint work with Ruipeng Li
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Tesla:

* 240 cores per GPU
* 4 GB memory
* Peak rate: 930 Gfl [single]
* Clock rate: 1.3 Ghz
* ‘Compute Capability’: 1.3 [allows
double precision]

ä Fermi promises to be more impressive
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The CUDA environment: The big picture

ä A host (CPU) and an attached device (GPU)

Typical program:

1. Generate data on CPU
2. Allocate memory on GPU

cudaMalloc(...)
3. Send data Host→ GPU

cudaMemcpy(...)
4. Execute GPU ‘kernel’:
kernel <<<(...)>>>(..)
5. Copy data GPU→CPU

cudaMemcpy(...)
C P U

G
 P

 U
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Sparse Matvecs on the Tesla

ä Preliminary results are mixed [high programming cost, very
good performance for some calculations]

ä Performance of matvec [GLOPS] on a Tesla C1060

ä Matrices:
Matrix -name N NNZ
FEM/Cantilever 62,451 4,007,383
Boeing/pwtk 217,918 11,634,424

Single Precision Double Precision
Matrix CSR JAD DIA CSR JAD DIA

FEM/Cantilever 9.4 10.8 25.7 7.5 5.0 13.4
Boeing/pwtk 8.9 16.6 29.5 7.2 10.4 14.5
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ILU: Sparse Forward/Backward Sweeps

• Exploit Level-Scheduling.. [Topological sort]

• Poor performance relative to CPU

• Extremely poor when #levs is large

• In the worst case, #levs=n,≈ 2 Mflops

Matrix N
CPU GPU-Lev

Mflops #lev Mflops
Boeing/bcsstk36 23,052 627 4,457 43
FEM/Cantilever 62,451 653 2,397 168
COP/CASEYK 696,665 394 273 142
COP/CASEKU 208,340 373 272 115

GPU Sparse Triangular Solve with Level Scheduling
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Alternative: Polynomial Preconditioners

• M−1 = s(A), where s(t) is a polynomial of low degree

• Solve: s(A) ·Ax = s(A) · b

• s(A) need not be formed explicitly

• s(A) ·Av: Preconditioning Operation: a sequence of matrix-
by-vector product to exploit high performance Spmv kernel

• Inner product on space Pk (ω ≥ 0 is a weight on (α, β))

〈p, q〉ω =
∫ β
α p(λ)q(λ)ω (λ) dλ

• Seek polynomial sk−1 of degree≤ k − 1 which minimizes

‖1− λs(λ)‖ω
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L-S Polynomial Preconditioning

Tol=1.0e-6; MaxIts=1,000; *:MD reordering applied

Matrix
ITSOL-ILU(3) GPU-ILU(3) L-S Polyn
iter. sec. iter. sec. iter. sec. Deg

bcsstk36 FAILED 351∗ 10.58∗ 31 1.34 100
ct20stif 27 9.4 21∗ 2.22∗ 16 0.70 50

ship_003 27 25.8 27 21.1 10 2.90 100
msc23052 181 18.5 181 6.0 37 1.28 80
bcsstk17 46 1.8 46 2.8 22 0.55 120

ILU(3) & L-S Polynomial Preconditioning

ETH 03/17/2010 66



Preconditioner Time

• High level fill-in ILU preconditioner can be very expensive to
build

• L-S Polynomial preconditioner set-up time≈ very low

• Example: ILU(3) and L-S Poly with 20-step Lanczos proce-
dure (for estimating interval bounds).

Matrix N
ILU(3) LS-Poly
sec. sec.

Boeing/ct20stif 23,052 15.63 0.26

Preconditioner Construction Time
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Conclusion

ä General rule: ILU-based preconditioners not meant to re-
place tailored preconditioners. Can be very useful as parts of
other techniques.

ä Recent work on generalizing nonsymmetric permutations to
symmetric matrices [Duff-Pralet, 2006].

ä Complex shifting strategy quite useful even for real matrices

ä Diag(inv(A)) problem - fairly easy for D.D case. Very chal-
lenging in indefinite case: B is dense and ‘equimodular’

ä GPUs for irregular sparse matrix computations: Much re-
mains to be done both in hardware and in algorithms/software
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Software:

http://www.cs.umn.edu/∼saad/software

ä ARMS-C [C-code] - available from ITSOL package..

ä Parallel version of ARMS available. pARMS3 released re-
cently

ä See also: ILUPACK – developed mainly by Matthias Boll-
hoefer and his team

http://www.tu-berlin.de/ilupack/.
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