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Introduction: Linear System Solvers

Direct sparse Iterative Methods
Solvers Preconditioned Krylov
/ T General
Ax = b Purpose
-A u=f +bc
/ \ ¢ Specialized
Fast Poisson Multigrid
Solvers Methods
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A few observations

» Problems are getting harder for Sparse Direct methods
(more 3-D models, much bigger problems,..)

» Problems are also getting difficult for iterative methods Cause:
more complex models - away from Poisson

» Researchers on both camps are learning each other’s tricks
to develop preconditioners.

» Much of recent work on solvers has focussed on:
(1) Parallel implementation — scalable performance

(2) Improving Robustness, developing more general precondi-
tioners
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Background: Independent sets, ILUM, ARMS

Independent set orderings permute a matrix into the form
(& ¢)
E C
where B is a diagonal matrix.

» Unknowns associated with the B block form an independent
set (IS).

» |S is maximal if it cannot be augmented by other nodes

» Finding a maximal independent set is inexpensive

ETH 03/17/2010 4




Main observation: Reduced system obtained by eliminating
the unknowns associated with the IS, is still sparse since its
coefficient matrix is the Schur complement

S=C—-EB'F

» |dea: apply IS set reduction recursively.
» When reduced system small enough solve by any method
» |LUM: ILU factorization based on this strategy. YS '92-94.

e See work by [Botta-Wubbs 96, '97, YS'94, '96, Leuze '89,..]
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Group Independent Sets / Aggregates

Main goal: generalize independent sets to improve robust-
ness

Main idea: use “cliques”, or “aggregates”. No coupling be-
tween the aggregates.

N
@ . . No Coupling
//

» Label nodes of independent sets first
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Algebraic Recursive Multilevel Solver (ARMS)

» Typical shape of reordered
matrix:

r (B F ~ B—=
PAP" = ( E C =

» Block factorize:

(2 ¢)= (oo 7) (0 "s")

» S = C — EB'F = Schur complement + dropping to
reduce fill

» Next step: treat the Schur complement recursively
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Algebraic Recursive Multilevel Solver (ARMS)

Level l Factorization:

B, F Ly O0\/I o0 U L 'F
(El C,) ~ (ElUl_l I) (0 Al+1> ( 0 I )
» L-solve ~ restriction; U-solve ~ prolongation.
» Perform above block factorization recursively on A;. 4
» Blocks in B, treated as sparse. Can be large or small.

» Algorithm is fully recursive

» Stability criterion in block independent sets algorithm

ETH 03/17/2010 8




Group Independent Set reordering

Separator

First Block

Simple strategy: Level taversal until there are enough points
to form a block. Reverse ordering. Start new block from
non-visited node. Continue until all points are visited. Add
criterion for rejecting “not sufficiently diagonally dominant
rows.”
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Block size of 6
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Block size of 20

e ———
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Related ideas

» See Y. Notay, Algebraic Multigrid and algebraic multilevel
techniques, a theoretical comparison, NLAA, 2005.

» Some of these ideas are related to work by Axelsson and
co-workers [e.g., AMLI] — see Axelson’s book

» Work by Bank & Wagner on MLILU quite similar to ARMS
— but uses AMG framework: [R. E. Bank and C. Wagner, Multi-
level ILU decomposition, Numer. Mat. (1999)]

» Main difference with AMG framework: block ILU-type factor-
ization to obtain Coarse-level operator. + use of relaxation.

» InAMG S = PT AP with P of size (nr + n¢c) X nc
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Enhancing robustness: One-sided permutations

» \Very useful techniques for matrices with extremely poor
structure. Not as helpful in other cases.

Previous work:

e Benzi, Haws, Tuma 99 [compare various permutation algo-
rithms in context of ILU]

e Duff ‘81 [Propose max. transversal algorithms. Basis of
many other methods. Also Hopcroft & Karp 73, Duff '88]

e Olchowsky and Neumaier '96 maximize the product of diag-
onal entries — LP problem

e Duff, Koster, ‘99 [propose various permutation algorithms.
Also discuss preconditioners] Provide MC64
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Two-sided permutations with diagonal dominance

ldea: | ARMS + exploit nonsymmetric permutations

» No particular structure or assumptions for B block

» Permute rows * and * columns of A. Use two permutations
P (rows) and @ (columns) to transform A into

B F
PAQT:(E C)

P, Q is a pair of permutations (rows, columns) selected so
that the B block has the ‘most diagonally dominant’ rows

(after nonsym perm) and few nonzero elements (to reduce
fill-in).
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Multilevel framework

» At the [-th level reorder matrix as shown above and then
carry out the block factorization ‘approximately’

T __ B, F; ~ L 0 U, Ll_lﬂ
BAlQl B (El Cl ~ ElUl_l 1 X 0 Al-|-1 ’

B
A

L,U;
Ci — (BU; ) (Li'F) .

~/
~/
~/
~/

» As before the matrices E;U; ", L; " F; or their approxima-
tions

Gi~EU ', W ==L;'F
need not be saved.
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Interpretation in terms of complete pivoting

Rationale: | Critical to have an accurate and well-conditioned
B block [Bollhofer, Bollhofer-YS'04]

» (Case when B is of dimension 1 — a form of complete
pivoting ILU. Procedure ~ block complete pivoting [LU

Matching sets: |define B block. M is a set of iy, pairs (p;, q;)
where ny < nwithl < p;,q;, < nfore =1,...,ny and

pi 7 pj, forv # 3  q; # gj, fore # j
» When ny; = n — (full) permutation pair (P, Q). A partial
matching set can be easily completed into a full pair (P, Q) by

a greedy approach.
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Matching - preselection

Algorithm to find permutation consists of 3 phases.

(1) | Preselection: |to filter out poor rows (dd. criterion) and
sort the selected rows.
(2) | Matching: | scan candidate entries in order given by

preselection and accept them into the M set, or reject them.
(3) | Complete the matching set: | iInto a complete pair of

permutations (greedy algorithm)

» Let j(i) = argmax;|a;;]|.

» Usetheratio ~; = 'HaG—J(”’l' as a measure of diag. domin. of
row 2

ETH 03/17/2010



Matching: Greedy algorithm

» Simple algorithm: scan pairs (zx, jx) in the given order.

m N
B @ | m
@ "
=@
*********** T =6
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******** B O |
fffffffff s
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Matrix after preselection

» If 2, and g not already assigned, assign them to M.
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@
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Matrix after Matching perm.

ETH 03/17/2010

20







» The matlab demo just shown available from my web-site.
Search for “matlab suite” in

http://www.cs.umn.edu/~saad/software

» ARMS-C [C-code] - available from ITSOL package..

» Parallel version of ARMS available. pARMSS3 released re-
cently

» See also: ILUPACK — developed mainly by Matthias Boll-
hoefer and his team

http://www.tu-berlin.de/ilupack/.
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Divide and conquer and coarsening (work in progress)

» Want to mix ideas from AMG with purely algebraic strategies

based on graph coarsening

First step: Coarsen. We use
matching: coalesce two nodes
iInto one ‘coarse’ node

par(ij)

par(i)

?

Second step: Get graph (+ weights) for the coarse nodes -

Adj[par(z,7)] is:

{par(i, k) k € Adj(i)} U{par(s, k) k € Adj(5)}

Third step: Repeat

ETH 03/17/2010
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Illustration of the coarsening step

par(k)

|
|
|
I
I
I

w
e y '

/]
/
I

i
par(i) "\ par()
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Example 1: A simple 16 X 16 mesh (n = 256).
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Matrix after 3 Levels of coarsening
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First idea: use ILU on the reordered matrix

» For example: use ILUT

lllustration: Matrix Raj1 from the Florida collection

10° —¢

>» Size n = 263,743. |
Nnz = 1,302,464 nonzero “ %
entries

Residual norms

» Matrix is nearly singular —
poorly conditioned. lterate to

reduce residual by 101,

[N
o
N

Performance of ILUT w and w/out ordering

——LUT

- o -|ILUT+order(5 levels)|

FF=1.263

FF=1.24

0

I
20

I I I
40 100 120

60 80
GMRES(50) iterations

» Reordering appears to be quite good for ILU.
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Saving memory with Pruned ILU

B F I o0\/B F\
> LetA_(E C>_<EB—1 I)(O S)’

» S = C — EB'F = Schur complement

’
Solve: 2
I 0 B F r1\ |3
EB™' I 0 S ry ) 4

» Known result: LU factorization of S == trace of LU factoriza-
tion of A.

2=S 1w2

» |dea: exploit recursivity for B-solves - keep only the block-
diagonals from |LU..

ETH 03/17/2010 28




—1
F.
From LU= | E1B;' S, By F:
E,B; "’ S,
B _
Keep only S1
S2

» Big savings in memory
» Additional computational cost

» Expensive for more than a few levels (2 or 3)..
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Example : A simple 16 X 16 mesh (n = 256).
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lllustration: Back to Raj1 matrix from the Florida collection
Performance of ILUT + Mslu

-« -|LUT+order|
—— [LUT '
=0~ Mslu(5lev)
=v=Mslu(4lev)

‘.----

Residual norms

0 20 40 60 80 100 120 140

GMRES(50) iterations
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Application to the Helmholtz equation

» Started from collaboration with Riyad Kechroud, Azzeddine
Soulaimani (ETS, Montreal), and Shiv Gowda: [Math. Comput.
Simul., vol. 65., pp 303—-321 (2004)]

» Problem is set in the open domain €2, of R¢

f Au+ku= f in Q

U = —Ujpe ON I

4 or % = —% on T
L limy oo r(47D/2 (2L — jku) = 0 Sommerfeld cond.

where: u the wave diffracted by I', f = source function = zero
outside domain
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» |Issue: non-reflective boundary conditions when making the
domain finite.

» Artificial boundary I',,.; added — Need non-absorbing BCs.

» For high frequencies, linear systems become very ‘indefi-
nite’ — [eigenvalues on both sides of the imaginary axis]

» Not very good for iterative methods
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Application to the Helmholtz equation

Test Problem Soft obstacle = disk of radius r¢ = 0.5m.
Incident plane wave with a wavelength \; propagates along the
x-axis. 2nd order Bayliss-Turkel boundary conditions used on
I',:, located at a distance 27, from obstacle. Discretization:
Isoparametric elements with 4 nodes. Analytic solution known.

an
/

Lo

JANVA
VARV
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Use of complex shifts

» Several papers promoted the use of complex shifts [or very
similar approaches] for Helmholtz

[1] X. Antoine — Private comm.

[2] Y.A. Erlangga, C.W. Oosterlee and C. Vuik, SIAM J. Sci.
Comput.,27, pp. 1471-1492, 2006

[3] M. B. van Gijzen, Y. A. Erlangga, and C. Vuik, SIAM J. Sci.
Comput., Vol. 29, pp. 1942-1958, 2007

[4] M. Magolu Monga Made, R. Beauwens, and G. Warzée,
Comm. in Numer. Meth. in Engin., 16(11) (2000), pp. 801-817.
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» lllustration with an experiment: finite difference discretiza-
tion of —A on a 25 x 20 grid.

» Add a negative shift of —1 to resulting matrix.
» Do an ILU factorization of A and plot eigs of L=tAU 1.
» Used LUINC from matlab - no-pivoting and threshold = 0.1.
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» Terrible spectrum:

15 T T T T T T

10

-10

-15 ! ! ! ! ! !
-12 -10 -8 -6 -4 -2 0
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» Now plot eigs of L=AU ~! where L, U are inc. LU factors
of B=A+ 0.25 %1

»  Much better! 235
Observed by many |
PDE viewpoint]

Idea: I . + +

Adapt technique to .|
ILU:

Add complex shifts
before ILU
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Question:
What if we do an exact
factorization [droptol = 0]?
» A(LT'AUTY) =
A[(A 4+ ail)1A]
» A = {Aj):z'a
» Located on a circle —
with a cluster at one.
» Figure shows situation

on the same example

041

03

_03 -

_04 -

-0.5

L= =

o+
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Recent comparisons

** Joint work with Daniel Osei-Kuffuor

» Test problem seen earlier. Mesh size 1/h = 160 —
n = 28,980, nnz = 260, 280

» Wavenumber varied [until convergence fails]

ILUT with droptol = 0.02
k % No. iters Setup Time (s) Iter. Time (s) | Fill Factor
27w 1160 191 0.1 6.03 1.35
47 | 80 214 0.1 6.86 1.37
8w | 40 317 0.11 9.67 1.42
16T 20 % % % % % % %
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ILUT — with complex shifts — droptol = 0.02

A

k | No. iters Setup Time (s) Iter. Time (s) Fill Factor
27w 160 191 0.1 5.34 1.35
47 | 80 211 0.1 5.90 1.36
8w | 40 280 0.11 7.89 1.41
167 20 273 0.11 7.90 1.60
327 10 163 0.18 5.41 2.5
64w 5 107 0.33 4.25 3.84

ARMS-ddPQ

k % No. iters Setup Time (s) Iter. Time (s) | Fill Factor
27 (160 180 0.68 9.20 2.07
47 | 80 224 0.71 11.5 2.09
8w | 40 261 0.54 11.8 2.17
167 | 20 127 0.58 5.71 2.39
327 10 187 0.69 8.61 3.15
647 5 231 0.39 8.89 3.50
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Application: Computing Diag[Inv[A]] **

» Many problems lead to the computation of Diag[Inv[A]] or
(easier) Trace[lnv[Al]]

Examples: |

» In Density Functional Theory (DFT): charge density is noth-
ing but Diag[f(H)], where f = step function. Approximating
f by a rational function leads to evaluating Diag[Inv[A]]

» In Stastistics: Trace[Inv|A]] is stochastically estimated
to get parameters in Cross-Validation techniques. [Huntchinson
'90]

** Joint work with J. Tang
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» |In Dynamic Mean Field Theory (DMFT), we look for the
diagonal of “Green’s function” to solve Dyson’s equation.. [see
J. Freericks 2005]

» |n uncertainty quantification, the diagonal of the inverse of a
covariance matrix is needed [Bekas, Curioni, Fedulova '09]

» Stochastic estimations of Trace(f(A)) extensively used by
quantum chemists to estimate Density of States?

1.Ref: H. Roder, R. N. Silver, D. A. Drabold, J. J. Dong, Phys.
Rev. B. 55, 15392 (1997)
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Stochastic Estimator

e A = original matrix, B = A~
¢ §(B) = diag(B) [matlab notation]
Notation: I e D(B) = diagonal matrix with diagonal 6 (B)

e (® and @: Elementwise multiplication and
division of vectors

e {v;}: Sequence of s random vectors

Result: I 0(B) = i:vj ©® Bv;| © zs:’vj © v,
_j:l -

7=1

Refs: C. Bekas , E. Kokiopoulou & YS ('05), Recent: C. Bekas,
A. Curioni, |. Fedulova ’09.
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» Let Vy = [vy,vq,...,vs]. Then, alternative expression:

D(B) = D(BV.V," ) D~ H(V;V,")

Question: | When is this result exact?

Main Proposition |

oelet V, € R™ "™ with rows {v,.}; and B € C"*™ with
elements {b;}

e Assume that: (v,,., vg,.) = 0,Vj # k,s.t. bjr # 0
Then:

|

D(B)=D(BV.V, ) D (V,V,")

» Approximation to b;; exact when rows ¢z and j of Vs are L
ETH 03/17/2010



Find V; such that (1) s is small and (2) V;
Goal: satisfies Proposition (rows ¢ & 3 orthgonoal for
any nonzero b;;)

Difficulty: | Can work only for sparse matrices but B =

A~1is usually dense
» B can sometimes be approximated by a sparse matrix.
bij, |bij| > €
0, [by| < e

» B, will be sparse under certain conditions, e.g., when A is
diagonally dominant

» Consider for some € : (Be)i; = {

» In what follows we assume B, is sparse and set B := B..

» Pattern will be required by standard probing methods.
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Generic Probing Algorithm

ALGORITHM : 1. Probing

Input: A, s
Output: Matrix D (B)
Determine V := vy, V2, ..., Vg]

for; «— 1tos
Solve ACBJ' = U,
end
Construct X := [x1, T2y .. . 5 L]
Compute D (B) := D (X,V,") D~1(V,V,")

» Note: rows of V; are typically scaled to have unit 2-norm
=1,s0 DY (V,V.') = 1.
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Standard probing (e.g. to compute a Jacobian)

» Several names for same method: “probing”; “CPR”, “Sparse
Jacobian estimators’,..

Basis of the method: can compute Jacobian if a coloring of
the columns is known so that no two columns in the same
color overlap.

1 35 12 13 16 20

All entries of same color o o . 1o
. [
can be computed with . . e 5
one mat-vec. .
Example: For all blue ° . . . oo
entries multiply B by the o Ll a3
. 1
blue vector on right. °. . "
® 1| 0
e o
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What about Diag(inv(A))?

» Define v; - probing vector associated with color z:
0], = 1 if color(k) == 1
Yilk = ] 0 otherwise

»  Will satisfy requirement of Proposition.... but

» ... this coloring is not what is needed! [lt is an overkill]

Alternative: |

» Color the graph of B in the standard graph coloring algo-
rithm [Adjacency graph, not graph of column-overlaps]

-1 Graph coloring yields a valid set of probing
M vectors for D(B).
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colorred color black
] ]

Proof: | x

» Column v.: one for each
node ¢ whose color is ¢, zero
elsewhere. |

» Row 2 of Vi: has a 1’ in
column ¢, where c = color (i), ;@ e
zero elsewhere.

v
|

. >|0:1:0:0:0:0:0]

» |f b;; # 0 then in matrix V;:
e i-th row has a’1’ in column color(z), '0’ elsewhere.
e j-throw has a’1’ in column color(j), 0’ elsewhere.

» The 2 rows are orthogonal.
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Example:

» Two colors required for this graph — two probing vectors
» Standard method: 6 colors [graph of B' B]
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Next Issue: Guessing the pattern of B

» Recall that we are dealing with B := B, [‘pruned’ B]

» Assume A diagonally dominant
» Write A=D — E ,with D =D(A). Then:
A=DI—-F) with F=D'E —

A'=(I+F+F*+...+ F)D"
B

» When A is D.D. || F*|| decreases rapidly.
» Can approximate pattern of B by that of B(*) for some k.
>

Interpretation in terms of paths of length &k in graph of A.

ETH 03/17/2010 54




Q: How to select k?
A: Inspect A~'e; for some j
» Values of solution outside pattern of (A*e;) should be small.

» |f during calculations we get larger than expected errors —
then redo with larger k, more colors, etc..

» (Can we salvage what was done? Question still open.
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Preliminary experiments

Problem Setup

e DMFT: Calculate the imaginary time Green’s function
e DMFT Parameters: Set of physical parameters is provided

e DMFT loop: At most 10 outer iterations, each consisting of
62 inner iterations

1
e Each inner iteration: Find D(B) ®
e Each inner iteration: Find D(B) oo o1
e Matrix: Based on a five-point stencil a
witha;; = p + itw — V — s(j) ®

1

e Probing tolerance: e = 10~
e GMRES tolerance: § = 10!
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212 412 61% 812

[} n é
or one nner tora,  -APACK
_ - Lanczos
tion of DMFT Probing
n =21 x 21
25 : : : :
' —— Path length, k
!| ‘‘‘‘‘ # Probing \_/ectors
20 K ——# GMRES iterations

0 10 20 30 40 50
DMFT inner iteration

60 70

0.5 26 282 > 1000
0.2 99 115 838
0.02 0.19 0.79 2.0
n = 81 X 81
20 ‘ | | |
] — Path length, k
LR R # Probing vectors
15 I: — # GMRES iterations ]

0 10 20 30 40 50 60 70
DMFT inner iteration

Statistics for two mesh sizes
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Challenge: The indefinite case

» The DMFT code deals with a separate case which uses a
“real axis” sampling..

» Matrix A is no longer diagonally dominant — Far from it.
» This is a much more challenging case.

» Plan for now: solve Az; = e; FOR ALL j’s - with the ARMS
solver using ddPQ ordering.
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Sparse matrix computations with GPUs **

» GPUs Currently a very popular approach to: inexpensive
supercomputing

» Can buy ~ one Teraflop peak power for around $1,350.

Dimensions

Tesla C1060 |

** Joint work with Ruipeng Li
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Tesla:

HHH | 240 cores per GPU

EJDE{HEEID HHEREEAS *4 GB memaory
HEEEEEE

_ * Peak rate: 930 Gfl [single]
240 COI'BS * Clock rate: 1.3 Ghz

* ‘Compute Capability’: 1.3 [allows
double precision]

» Fermi promises to be more impressive
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The CUDA environment: The big picture

» A host (CPU) and an attached device (GPU)

Typical program: |

1. Generate data on CPU

2. Allocate memory on GPU
cudaMalloc (.. .)

3. Send data Host — GPU
cudaMemcpy (.. .)

4. Execute GPU ‘kernel’:

kernel << (...)>>>(..)

GPU

- >
- |
- >

5. Copy data GPU —CPU

t
+

'

A
o
U

0O | =< >

cudaMemcpy (.. .) p

ETH 03/17/2010
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Sparse Matvecs on the Tesla

» Preliminary results are mixed [high programming cost, very
good performance for some calculations]

» Performance of matvec [GLOPS] on a Tesla C1060

Matrix -name N NNZ
» Matrices: FEM/Cantilever| 62,451 4,007,383
Boeing/pwtk 217,918 11,634,424
Single Precision Double Precision
Matrix CSR JAD DIA |CSR/JAD DIA
FEM/Cantilever| 9.4 [10.8| 25.7 | 7.5 | 5.0 134
Boeing/pwtk | 8.9 (16.6) 29.5 | 7.2 [10.4 145
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ILU: Sparse Forward/Backward Sweeps

e Exploit Level-Scheduling.. [Topological sort]

e Poor performance relative to CPU

e Extremely poor when #levs is large

e In the worst case, #levs=n, =~ 2 Mftlops

Matrix N CPU GPU-Lev
Mflops #lev Mflops

Boeing/bcsstk36| 23,052 | 627 4,457 43
FEM/Cantilever | 62,451 | 653 2,397 168
COP/CASEYK 696,665 394 @ 273 @ 142
COP/CASEKU |208,340| 373 | 272 | 115

GPU Sparse Triangular Solve with Level Scheduling

ETH 03/17/2010
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Alternative: Polynomial Preconditioners

o M~ = s(A), where s(t) is a polynomial of low degree
e Solve: s(A) - Ax = s(A)-b
e s(A) need not be formed explicitly

e s(A)- Av: Preconditioning Operation: a sequence of matrix-
by-vector product to exploit high performance Spmv kernel

e Inner product on space Py (w > 0is a weight on (a, 3))

Dy ), = [P p(AN)g(N)w (A) dA

e Seek polynomial s;_; of degree < k — 1 which minimizes

1T = As(A) ],
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L-S Polynomial Preconditioning

Tol=1.0e-6; Maxlts=1,000; *:MD reordering applied

. [ITSOL-ILU(3) GPU-ILU(3) L-S Polyn
Matrix : :

iter.  sec. iter. | sec. |iter.| sec. Deg
bcsstk36 FAILED 351* 10.58%* 31| 1.34 100
ct20stif | 27 9.4 21* | 2.22* | 16 0.70| 50
ship 003 | 27 | 25.8 27 21.1 | 10 2.90| 100
msc23052 181 18.5 | 181 6.0 37 1.28 80
bcsstk17 | 46 1.8 46 2.8 | 22 0.55 120

ILU(3) & L-S Polynomial Preconditioning
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Preconditioner Time

e High level fill-in ILU preconditioner can be very expensive to
build

e L-S Polynomial preconditioner set-up time = very low

e Example: ILU(3) and L-S Poly with 20-step Lanczos proce-
dure (for estimating interval bounds).

ILU(3) LS-Poly
Sec. | Sec.
Boeing/ct20stif | 23,052| 15.63 | 0.26

Preconditioner Construction Time

Matrix N
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Conclusion

» (General rule: ILU-based preconditioners not meant to re-
place tailored preconditioners. Can be very useful as parts of
other techniques.

» Recent work on generalizing nonsymmetric permutations to
symmetric matrices [Duff-Pralet, 2006].

» Complex shifting strategy quite useful even for real matrices

» Diag(inv(A)) problem - fairly easy for D.D case. Very chal-
lenging in indefinite case: B is dense and ‘equimodular’

» GPUs for irregular sparse matrix computations: Much re-
mains to be done both in hardware and in algorithms/software
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Software: |

http://www.cs.umn.edu/~saad/software

» ARMS-C [C-code] - available from ITSOL package..

» Parallel version of ARMS available. pARMSS3 released re-
cently

» See also: ILUPACK — developed mainly by Matthias Boll-
hoefer and his team

http://www.tu-berlin.de/ilupack/.

ETH 03/17/2010



