A tutorial on:
Iterative methods for Sparse Matrix Problems

Yousef Saad

University of Minnesota
Computer Science and Engineering

CRM Montreal - May 3, 2008

Part 1 | Part 2 I

e Sparse matrices and sparsity e Preconditioned iterations

e Basic iterative techniques e Preconditioning techniques
e Projection methods

e Krylov subspace methods

Part 3 | Part 4 I

e Parallel implementations e Eigenvalue problems

e Multigrid methods e Applications

One-dimensional projection processes

Steepest descent I— Problem: Ax = b, with A SPD

> Define: f(z) = i||z — z*||} = 2(A(z — z*), (z — z*))

Note: 1. f(z) = 3(Az,z) — (b,) + constant

2. Vf(x) = Axz—b — ‘descent’ direction=b—Ax = r
Idea: take a step of the form z,,.,, = « + ar which minimizes f(x).
Besta = (r,7)/(Ar,).

r«—b— Ax,
lteration: | « — (r,7)/(Ar,7)
r «— T+ ar

» Can show: convergence guaranteed if A is SPD.

Residual norm steepest descent: | Now A is arbitrary

» Minimize instead: f(x) = 1||b — Az||3 in direction —V .

—Vf(zx) = AT (b — Ax) = ATr.

r«—b— Azx,d = Alr
lteration: | o — ||d||3/||Ad]|3
xr «— x + od

» Important Note: equivalent to usual steepest descent applied to

normal equations AT Ax = ATb.
» Converges under the condition that A is nonsingular.

» But convergence can be very slow

Minimal residual iteration: IAssume A is positive definite (A+ AT

is SPD).

> The objective function is still 1||b — Ax||3, but the direction of

searchisr = b — Ax instead of —V f(x)

r«—b— Ax,

lteration: | o — (Ar,r)/(Ar, Ar)
r «— x+ ar

» Each step minimizes f(z) = ||b — Ax||5 in direction r.

» Converges under the condition that A + A” is SPD.

» Common feature of these techniques: z,,., = © + ad , where d

= a certain direction.
» « Is defined to optimize a certain quadratic function.

» Equivalent to determining a by an orthogonality constraint.
In MR:

Example |x(a) =z + ad,withd =b — Ax.

min, ||b — Azxz(a)||2 reached iff b — Ax(a) L r

» One-dimensional projection methods — can we generalize to m-

dimensional techniques?

General Projection Methods

Initial Problem: b— Ax =0

Given two subspaces K and L of R define the approximate prob-

lem:

Findx € Ksuchthatb — Ax L L

» Leads to a small linear system (‘projected problems’) This is
a basic projection step. Typically: sequence of such steps are

applied

» With a nonzero initial guess x,, the approximate problem is
Find z€xg+ K suchthat b — Ax L L

Write £ = ¢y + 6 and 7o = b — Ax,. Leads to a system for §:
Findé € Ksuchthatry — Ad L L

Matrix representation:

oV = [vy,...,v,,] abasis of K &

Let
oW = [wy,...,w,,] a basis of L

Then letting = be the approximate solution x = o+ 6 = ¢y + Vy

where y is a vector of R™, the Petrov-Galerkin condition yields,
Wh(rg — AVy) =0

and therefore
& =x0+ VIWTAV]'WTr,

Remark: In practice WT AV is known from algorithm and has a

simple structure [tridiagonal, Hessenberg,..]

Prototype Projection Method

Until Convergence Do:

1. Select a pair of subspaces K, and L;

2. Choose bases V = [vy,...,v,] for K and W = [wy, ..., wy,,]
for L.
3. Compute
r—b— Ax,

y — (WHAV) "W,

x —x+ Vy.

Two important particular cases.

1. L = AK . then ||b — ACE”Q — minzeK ”b — AZ||2
— class of minimal residual methods: CR, GCR, ORTHOMIN,
GMRES, CGNR, ...

2. L = K — class of Galerkin or orthogonal projection methods.
When A is SPD then

|x* — Z||4 = min ||* — z|| 4.
zeK

One-dimensional projection processes

K = span{d}
and
L = span{e}

Then x — x + ad and Petrov-Galerkin condition » — A L e yields

_ (re)
o= (Ad,e)

(I) Steepest descent: K = span(r), L = K
() Residual norm steepest descent: K = span(Alr), L = AK

(1I1) Minimal residual iteration: K = span(r), L = AK

Krylov Subspace Methods

Principle: | Projection methods on Krylov subspaces:

i

Km(A, ’U1) — Span{fvl, A’Ul, cee Am_l’Ul}

e probably the most important class of iterative methods.

e many variants exist depending on the subspace L.

Simple properties of K,,, . Let u = deg. of minimal polynomial of v

e K., = {p(A)v|p = polynomial of degree < m — 1}
e K,, = K, for all m > u. Moreover, K, is invariant under A.

e dim(K,,) = miff u > m.

Arnoldi’s Algorithm

» Goal: to compute an orthogonal basis of K,,.

» Input: Initial vector v,, with ||v,||2 = 1 and m.

Forj =1,....,mdo
e Compute w := Av;

hi':: w, U;
efori=1,...,7,do g = (w, i)

w = w — hi,jvi

® hji1; = [|lwl]zand v = w/hji1,

Result of orthogonalization process

1. V,,, = [v1, vo, ..., v;,] Orthonormal basis of K,,.
2. AVm — m—|—1ﬁm

3. viAv,, = H,, = H,,— last row.

oo

Arnoldi’s Method (L., = K.,)

» Petrov-Galerkin condition when L,, = K,,,, shows:
T, = To + VmH;anrfro

» Select v; = r¢/||1ro||]2 = 70/8 in Arnoldi’s algorithm, then:
T = To + BV H te

Equivalent *FOM [YS, 1981] (above formulation)
algorithms: * Young and Jea’s ORTHORES [1982].

* Axelsson’s projection method [1981].

Minimal residual methods (L,, = AK,)

» WhenlL, = AK,,, weletW,,

= AV, and obtain:

Ty = Lo + Vm[Wg;AVm]_lwg;rO

» Use again vy := r¢/(8 := ||ro

T = To + Vm[IrIZ%I:Im:

|2) and: AVm — m—l—l-H_m

_1-[:[;1,;1661 = xo + VinUm

where y,, minimizes ||3e; — H,,yl||. over y € R™. Hence, (Gen-

eralized Minimal Residual method (GMRES) [Saad-Schultz, 1983]):

Ty = o + Viuym Where

Equivalent methods:
e Orthodir

Ym : miny, ||Be; — I_{my||2

e Axelsson’s CGLS e Orthomin (1980)

e GCR

Restarting and Truncating

Difficulty: As m iIincreases, storage and work per step increase

fast.

First remedy: Restarting. Fix the dimension m of the subspace

ALGORITHM : 1. Restarted GMRES (resp. Arnoldi)

1.
2.
3.

Start/Restart: Compute ro = b — Axy, and vy = ro/ (8 := ||70]|2)-
Arnoldi Process: generate H,,, and V,,.
Compute vy, = H_'(Be, (FOM), or
Ym = argminl||Be, — H,,y||. (GMRES)
T = To + VinYUm

If |72 < €l||rol||2 Stop else set xy := «x.,,, and go to 1.

Second remedy: Truncate the orthogonalization

The formula for v, , is replaced by

j
hjt1,vi41 = Avi—) hijv;
i—j—k+1

— each v; is made orthogonal to the previous & v;’s.
— @, still computed as x,,, = x¢ + V,, H_'3e;.

— It can be shown that this is again an oblique projection process.

» |OM (Incomplete Orthogonalization Method) = replace or-

thogonalization in FOM, by the above truncated (or ‘incomplete’)
orthogonalization.

The direct version of IOM [DIOM|:

Writing the LU decomposition of H,, as H,, = L,,U,,, we get
T = o+ VUL L-1Ber = xo+ Prnzm

» Structure of L,,,,U,,, when k = 3

x 1 r T T
L,, = xr 1 U, = r T T
x 1 r T T
1
S
— m—1 Zm—1
DPm = um}n ['Um — Zi:m—k+1 uimpi] Zm = C

Result: Can update x,,, at each step:

Lm — Lm—1 _I_ Cmpm

Note: I Several existing pairs of methods have a similar link: they
are based on the LU, or other, factorizations of the H,,, matrix

» CG-like formulation of IOM called DIOM [Saad, 1982]
» ORTHORES(k) [Young & Jea ’82] equivalent to DIOM(Kk)
» SYMMLQ [Paige and Saunders, '77] uses LQ factorization of H,,,.

» Can add partial pivoting to LU factorization of H,,

The Symmetric Case: Observation

Observe: When A is real symmetric then in Arnoldi’s method:
H, =V'AvV,

must be symmetric. Therefore

THEOREM. When Arnoldi’s algorithm is applied to a (real) sym-

metric matrix then the matrix H,, is symmetric tridiagonal.

In other words:
1)hij=O for |”L—]| > 1

2) hjjv1 = hjt15, 3=1,...,m

» We can write

(041 B2 \

B2 a2 (O3
B3 a3 B4

\ B)

The v;’s satisfy a three-term recurrence [Lanczos Algorithm]:

Bit1vj+1 = Avj — ajvj — Bvj

— simplified version of Arnoldi’s algorithm for sym. systems.

Symmetric matrix + Arnoldi — Symmetric Lanczos

(1)

The Lanczos algorithm

ALGORITHM : 2. Lanczos

1.

© N O O A DN

Choose an initial vector v, of norm unity.
Set,Bl =0,v9=0

Forj; =1,2,...,m Do:
W, = A’Uj — ijvj_l
a; = (wj, vj)

W, = W; — ;U5

Bii1 := ||wj||2- IfBj;1 = O then Stop

Vjt1 = w;i/Bj+

EndDo

Lanczos algorithm for linear systems

» Usual orthogonal projection method setting:

o L, = K,, = span{ry, Arg,..., A" 1y}

e Basis V,,, = [vy,...,v,,] of K,, generated by the Lanczos algo-

rithm

» Three different possible implementations.

(1) Arnoldi-like; (2) Exploit tridigonal nature of H,,, (DIOM); (3) Con-

jugate gradient.

.... following what was done for DIOM..

The Conjugate Gradient Algorithm (A S.P.D.)

» Note: the p;’s are A-orthogonal
» The r!’s are orthogonal.

» And we have z,,, = z,,_1 + &EnPm

1. DPm — T'm-1 + IBmpm—l
So there must be an up-
2. X, = Ty1 + EmPm
date of the form:

3. rm =— Tm—-1 — gmApm

ALGORITHM : 3. Conjugate Gradient

Start: rg := b — Axgy, py := 19-
Iterate: Until convergence do,
aj = (r5,71;)/(APj, ;)

Tjt1 = T; + Q;Pj

Tjl 1= Tj — 0 Ap;

Bj 1= (741, 7541) /(75, 7;)

Pj+1 i= Tj41 + B;p;
EndDo

» r; = scaling X v;;1. The r;’s are orthogonal.

» The p,’s are A-conjugate, i.e., (Ap;,p;) = 0 for 7 # j.

ALGORITHM : 4. Lanczos Bi-Orthogonalization

1. Choose two vectors v, w, such that (v,, w,) = 1.
2. SetpB;1 =61=0,wo=v9=0
Forj =1,2,...,m Do:
= (Avj, w;)
Ujt1 = Avj — a;v; — By
Wi = Alw; — ojw; — w5
djt1 = |(Bj41, Wj41)|"/?. I §;11 = O Stop
Bj+1 = (D41, Wjt1) /0511
wjt1 = Wit1/Bj+1
10. vt = 0j41/0541
11. EndDo

© O N O O R~

» Extension of the symmetric Lanczos algorithm
» Builds a pair of biorthogonal bases for the two subspaces

Km(A,v1) and IK,,(AT, w;)

» Different ways to choose 4,1, 3,11 in lines 7 and 8.

Let

/041 Bo \

02 O 53

Om—1 Qm—1 PBm
\ b can)

» v; € Kn(A,v1) and w; € IC,, (AT, wy).

If the algorithm does not break down before step m, then the
vectors v;,¢ = 1,...,m, and w;,5 = 1,...,m, are biortho-
gonal, i.e.,

(’Uj,’wi) :5ij 1 S ’i,] S m .
Moreover, {v;}i—1.2,..m is a basis of IC,,,(A, v1) and {w; }i=1.2....m

is a basis of KC,,,(AT, w,) and

AV, = Vi T + i 1Vm el
ATW,, = W, TL + Bri1wm el
WAV, =T, .

The Lanczos Algorithm for Linear Systems

ALGORITHM : 5. Lanczos Alg. for Linear Systems

1.
2.
3.

6.

Computero = b — Axy and 3 := ||ro]|2
Run m steps of the nonsymmetric Lanczos Algorithm i.e.,
Start with v, := r¢/3, and any w, such that
(v, wy) =1
Generate the pair of Lanczos vectors v, ..., v,
and wq,...,w,,
and the tridiagonal matrix T,,, from Algorithm ??.

Compute y,,, = T '(Be1) and x,,, := x¢ + VinYm.

» BCG can be derived from the Lanczos Algorithm similarly to CG

ALGORITHM : 6. BiConjugate Gradient (BCQG)

1. Compute ry := b — Axy.
2. Choose r; such that (ro,r;) # 0;

Set py := 1o, pj, := T

Bj = (Tj+1,75,1) /(T4 75)

Pj+1 = Tjt1 + BiD;

3. Forj =0,1,...,until convergence Do:,
4. «:= (r;,77)/(Apj,P})

5. Tjt1 1= Tj + O;P;

6. Tjt1 = T; — O AD;

7. Ti =T — ajATp;’f

8.

9.

10. pj., =i+ Bip;
11. EndDo

Quasi-Minimal Residual Algorithm

» Recall relation from the lanczos algorithm: AV,, = V,,,T,, with

— _ Tm
T,, = (m + 1) x m tridiagonal matrix T;,, =

T

» Letwv, = Brgand x = xy + V,,,y- Residual norm ||b — Ax]||;
equals

170 — AViayllz = [|1Bv1 — Vi1 Tmyllz = [Vg1 (Ber — Tray) |2

» Column-vectors of V,,, ., are not L (# GMRES).
> But: reasonable idea to minimize the function J(y) = ||Be; — T,,.y||2

» Quasi-Minimal Residual Algorithm (Freund, 1990).

Transpose-Free Variants

» BCG and QMR require a matrix-by-vector product with A and
AT at each step. The products with AT do not contribute directly
to z,,. » They allow to determine the scalars (o; and 3, in BCG).
» QUESTION: is it possible to bypass the use of AT?

» Motivation: in nonlinear equations, A is often not available

explicitly but via the Frechet derivative:
F(ug + ev) — F(uyg)

€

J(uk)v =

Conjugate Gradient Squared

* Clever variant of BCG which avoids using A’ [Sonneveld, 1984].

In BCG:
r; = pi(A)ro

where p; = polynomial of degree .

In CGS:
r; = p;(A)ro

» Define:
r; = (bj(A)rO?

pj = mj(A)ro,

T; — ¢j (AT)rga

p; = m;(A")rg

Scalar o; in BCG is given by

(W), ,(AT)ry) _ (@5(A)roe,)
T (Amj(A)rg, mi(AT)r) (AmE(A)ro, 1)

> Possible to get a recursion for the ¢7(A)ro and 77(A)ry?

djr1(t) = ¢i(t) — ajtm;(t), » Square these equalities
mi41(t) = @j41(t) + Bjm;(t)

P2, (1) = @2(t) — 2atm;(t)p;(t) + ot m2(¢), > Problem: ...

. Cross terms
72 (8) = @2, (8) 4 2851 (8)7;(t) + Bim;(t)%.

Solution: Let ¢,.:(t)m;(t), be a third member of the recurrence.
For m;(t)®;(t), note:

;i ()mi(t) = @;(t) (d;(t) + Bj—1mi—1(t))
= ¢;(t) + Bj—19;(t)mj—1(t).

Result:

¢ = & — ajt (2¢§ +2Bj1¢5mj—1 — ajt 71']2)
bjm; = ¢F + Bi1¢mi1 — a;t T

2 _ 2 2_2
i1 = ®jpq T+ 28i@575 + B

Define:
rj = ¢5(A)ro, pj=7;(A)ro, i = Pjr1(A)m;j(A)ro

Recurrences become:

riy1 = 1; — ;A (2r; + 2Bj_19;-1 — ;A pj),
q; = rj+ Bj-19j-1 — ;A pj,
Dj+1 = Tjr1 + 20859 + /8]2'173'-
Define auxiliary vector d; = 2r; + 23;_1q;_1 — a; Ap;

» Sequence of operations to compute the approximate solution,

Starting with ro := b — Ax, Po := Toy qo := 0, /80 = 0.

1. o = (r4,75)/ (Apjs T5) . Tjt1 = 1j — a;jAd,
2. dj — 2’I°j —|— Zﬁj_lqj_l — ajApj 6. Bj — (’I"j_|_1, ’I"S)/(Tj, ’I"S)

3.q; =7+ Bj_19j—1 — o; Ap; 7.pjt1 = 11+ Bj(2q; + B;p;)-

4. Ljt1 = Ly -+ ajdj

» one more auxiliary vector, u; = r; 4+ 3;_1q;_1.

d;

U, ‘|‘Qj9

q;j = u; — ajApj,
Pi+1 = ujt1 + Bi(a; + Bip;),

» vector d; is no longer needed.

So

ALGORITHM : 7. Conjugate Gradient Squared

1. Compute ry := b — Ax,; r; arbitrary.
2. Setpg:= ug:= ro.
Forj; = 0,1,2..., until convergence Do:
aj = (r5,15)/(Apj, g)
q; = uj — ojAp;
Tjt1 = x; + o(u; + gj)
riq1 =1 — ajA(u; + g;)
Bj = (rj+1,75)/(rj,75)
Ujr1 = Tjt1 + B54;
10. pj+1 = uj1 + Bi(q; + B;p;))
11. EndDo

© O N O O K~

» Note: no matrix-by-vector products with A7 but two matrix-by-

vector products with A, at each step.

Vector: —— Polynomial in BCG :
q; > Ti(t)Di—1(t)
u; > p;(t)

r; > 7 (t)

where 7;(t) = residual polynomial at step : for BCG, .i.e., r; = 7;(A)ry,

and p;(t) = conjugate direction polynomial at step ¢, i.e., p; = p;(A)ro.

BCGSTAB (van der Vorst, 1992)

» In CGS: residual polynomial of BCG is squared. » bad behavior

in case of irregular convergence.

» Bi-Conjugate Gradient Stabilized (BCGSTAB) = a variation of
CGS which avoids this difficulty. » Derivation similar to CGS.

» Residuals in BCGSTAB are of the form,
r; = 9;i(A)p;i(A)ro

in which, ¢;(t) = BCG residual polynomial, and ..

> .. ¢;(t) = a new polynomial defined recursively as

Pi+1(t) = (1 — w;it);(t)

w; chosen to ‘'smooth’ convergence [steepest descent step]

ALGORITHM : 8. BCGSTAB

1. Compute r(:= b — Ax,; r; arbitrary;
2. po:= Ty

3. Forj =0,1,..., until convergence Do:
4. o= (rj,ry)/(Apj, T7)

Sj = 1T; — 0 Ap;

wj := (Asj, s;)/(As;, As;)
Tjt1 = Tj + OPj + W;S;

Tjt1 = S — w;jASs;

© O N O O

L (rj+1,r(")<) o
ﬁj = — - X =
(r],ro) w;

10. pj1:=rj+ Bi(pj — wjApj)
11. EndDo

Preconditioning — Basic principles

Basic idea I is to use the Krylov subspace method on a modified

system such as

M~1Ax = M~ 'b.

e The matrix M~1A need not be formed explicitly; only need to

solve Mw = v whenever needed.

e Consequence: fundamental requirement is that it should be easy

to compute M ~1v for an arbitrary vector v.

Left, Right, and Split preconditioning

Left preconditioning: M~1Ax = M~1b

Right preconditioning: AM ~'u = b, with z = M ~1u

Split preconditioning: M; 'AMy"'u = M; 'b, with x = M;'u

[Assume M is factored: M = M;Mg.]

Preconditioned CG (PCG)

» Assume: A and M are both SPD.

» Applying CG directlyto M 1Az = M~ 'bor AM~lu=0b

won’t work because coefficient matrices are not symmetric.
» Alternative: when M = LLT use split preconditioner option

» Second alternative: Observe that M ' A is self-adjoint wrt M

inner product:

(M_lAwa y)M — (A:B,y) — (waAy) — (waM_lAy)M

Preconditioned CG (PCG)

ALGORITHM : 9. Preconditioned Conjugate Gradient

Compute ry := b — Axy, zo = M 1ry, and p, := z
Forj; = 0,1,..., until convergence Do:

aj = (75, 25) / (APj, ;)

Tjt1 i= Tj + O;P;

Tjy1 = Tj — ;Ap;

Zj41 = M_lrj+1

Bj = (Tj+15 Zj+1) /(755 Z5)

Pj+1 = Zjt1 + Bp;
EndDo

© ® N O O A W DM =

Note M ! A is also self-adjoint with respect to (., .) 4:

(M_lA:c, y)A — (AM_lAaj,y) — (waAM_lAy) — (waM_lAy)A

» Can obtain a similar algorithm
» Assume that M = Cholesky product M = LLT.

Then, another possibility: Split preconditioning option, which ap-
plies CG to the system
L'ALTu = L~ 'b, with z = LTu

» Notation: A = L~*AL-T. All quantities related to the precondi-

tioned system are indicated by ".

ALGORITHM : 10. CG with Split Preconditioner
Compute ro:=b— Axg; 79 = L™ T(), and Po :— L_TA

1

2. Forj =0,1,..., until convergence Do:
3 = (7, 7;)/(Apj, p;)

4 w1 i= x5+ oyp;

5. Fjy1 = 7; — a; L7 Ap;

6. Bj:= (Fjy1,Tjr1)/(F), 7))

7. pjq1i= L0 + Bp;

8. EndDo

» The x;’s produced by the above algorithm and PCG are identical

(if same initial guess is used).

Flexible accelerators

Question: I What can we do in case M is defined only approxi-
mately? i.e., if it can vary from one step to the other.?

Applications: |

> lterative techniques as preconditioners: Block-SOR, SSOR, Multi-

grid, etc..

» Chaotic relaxation type preconditioners (e.g., in a parallel com-

puting environment)

» Mixing Preconditioners — mixing coarse mesh / fine mesh pre-

conditioners.

ALGORITHM : 11. GMRES — No preconditioning

1. Start: Choose x, and a dimension m of the Krylov subspaces.
2. Arnoldi process:

® Compute ro = b — Axy, /6 — ||’I"0||2 and v, = 7“0/,3.
eForj=1,...,mdo

— Compute w := Av;

—fori=1,...,7, do{h"’j = (w, vi) } ;

w .= w — hi,jvi
w

—hjt11 = [|wll2;v541 = hji1,1

e Define V,, := [vq,,v,,] and H,, = {hi;}-

3. Form the approximate solution: Compute| x,, = x¢ + V,,y.. | Where
Ym = argmin,||Be; — Hnyl2 and e; = [1,0,...,0]".

4. Restart: If satisfied stop, else set xy, <— x,, and goto 2.

ALGORITHM : 12. GMRES - (right) Preconditioning

1. Start: Choose xy and a dimension m
2. Arnoldi process:

° Compute o = b — Axy, ,8 = ||’I"0||2 and v, = ’I"()/,B.
eForj =1,....,mdo
— Compute z; := M 1v,
- Compute w := Az;
_fori=1,...,5,do: { Z;’g:'—w(”‘f’;z_ﬁvi }
—hjt11 = [[w]l23 041 = w/hji1a
e Define V,,, := [vy,....,v,] and H,, = {h; ;}.

3. Form the approximate solution: |x,, = ©¢c + M~ 'V,,y,,, | wherey,,, =
argmin,||Be; — Hpy||2 and e, = [1,0,...,0]".
4. Restart: If satisfied stop, else set x, — x,,, and goto 2.

ALGORITHM : 13. GMRES - variable preconditioner

1. Start: Choose x, and a dimension m of the Krylov subspaces.
2. Arnoldi process:
e Computerg = b — Axg, 3 = ||rol|2 and vy = /(.
eForj=1,....,mdo
- Compute z; := M 'v; ; Compute w := Az;;

-fori=1,...,7,do: { hijj = (w, v;) };

w = w — h; v;
—hji11 = |lwll2svin = w/hjia
e Define Z,, := [z,, zn] @and H,,, = {h; ;}.
3. Form the approximate solution: Compute| x,, = xo + Z,,y.. | Where
Ym = argmin, ||Be; — Hyy|2 ande; = [1,0,...,0] .
4. Restart: If satisfied stop, else set xy, — x,, and goto 2.

e x,, minimizes b — Ax,, over Span{Z,,}.

olf Az, = wv; (i.e., if preconditioning is ‘exact’ at step j) then

approximation z; is exact.

o If M is constant then method is = to Right-Preconditioned GM-
RES.

Additional Costs: I

e Arithmetic: none.

e Memory: Must save the additional set of vectors {z;},—1, .m

Advantage: |Flexibility

Standard preconditioners

e Simplest preconditioner: M = Diag(A) » poor convergence.
e Next to simplest: SSOR M = (D — wE)D (D — wF)

e Still simple but often more efficient: ILU(0).

e ILU(p) — ILU with level of fill p — more complex.

e Class of ILU preconditioners with threshold

e Class of approximate inverse preconditioners

e Class of Multilevel ILU preconditioners: Multigrid, Algebraic Multi-
grid, M-level ILU, ..

An observation. Introduction to Preconditioning

» Take a look back at basic relaxation methods: Jacobi, Gauss-
Seidel, SOR, SSOR, ...

» These are iterations of the form «**1) = Mz*) + f where M is
of the form M =1 — P~ A . For example for SSOR,
Pssor = (D — QJE)D_l(D — wF)

» SSOR attempts to solve the equivalent system
P 1Az =P '
where P = Pssor by the fixed point iteration

2*) = (1 — P7'A) 2™+ P~'b instead of z* V) = (I-A)z®+b
M

In other words:

Relaxation Scheme <«—> Preconditioned Fixed Point Iteration

The SOR/SSOR preconditioner

» SOR preconditioning

—F

MSOR == (D — wE)

» SSOR preconditioning

Mssop = (D — wE)D_l(D — wF)

» Mgsor = LU, L = lower unit matrix, U = upper triangular. One

solve with Mssor = same cost as a MAT-VEC.

» k-step SOR (resp. SSOR) preconditioning:
k steps of SOR (resp. SSOR)

» Questions: Best w? For preconditioning can take w = 1
M = (D - E)D Y(D — F)

Observe: M = LU + Rwith R = ED'F.

» Best k? k = 1 is rarely the best. Substantial difference in

performance.

lteration times versus
k for SOR(k) precon-
ditioned GMRES

2.0 |

15 1 |

1.0 |

0.50 J

\
\

GMRES(10)

‘. GMRES(20) -~~~

~

VVVVVVVVVVVVVVVVVVVVVVVV

Number of SOR steps

ILU(0) and IC(0) preconditioners

» | Notation: I NZ(X)={(,3)| Xi; # 0}

» Formal definition of ILU(0):

A=LU+ R
NZ(L)|UNZ(U) = NZ(A)
r;; = 0 for (’L,]) € NZ(A)

» This does not define ILU (0) in a unique way.

Constructive definition: Compute the LU factorization of A but

drop any fill-in in L and U outside of Struct(A).

» |LU factorizations are often based on <, k, 5 version of GE.

What is the IK] version of GE?

Different computational patterns for gaussian elimination

KJLKJI IJK

IKJ JKI

. . . CRM May 3, 2008 |66

ALGORITHM : 14 . G@Gaussian Elimination — IKJ Variant

1.
2.

© N O & A

Fori = 2,...,n Do:
Fork =1,...,2 — 1 Do:
Qi 1= Qir/ gk
For; =k+1,...,n Do:
A;j = Q5 — Qjf * AL
EndDo
EndDo
EndDo

Accessed but not
modified

Accessed and
- modified

paaiaiieie s Bl Not accessed

. . . CRM May 3, 2008 |68|

ILU(0) - zero-fill ILU

ALGORITHM : 15. ILU(0)
For: =1,...,N Do:
Fork=1,...,v —1andif(i,k) € NZ(A) Do:

Compute a;i := a;i/a;
Forj =k+1,...andif(i,5) € NZ(A), Do:
compute a;; := a;; — a;ray ;.
EndFor
EndFor

» When A is SPD then the ILU factorization = Incomplete Cholesky
factorization — IC(0). Meijerink and Van der Vorst [1977].

Typical eigenvalue distribution of preconditioned matrix

Pattern of ILU(0) for 5-point matrix

L U

Stencils and ILU factorization

Stencils of A and the L and U parts of A:

Stencil of A Stencil of L Stencil of U

8

. Fill-ins

Higher order ILU factorization

» Higher accuracy incomplete Cholesky: for regularly structured

problems, IC(p) allows p additional diagonals in L.

» Can be generalized to irregular sparse matrices using the notion
of level of fill-in [Watts lll, 1979]

0 for a;; #0
o Initially Lev;; = i 7

oo for a;; ==
e At a given step : of Gaussian elimination:

Levy; = min{Levy;; Levy; + Lev;; + 1}

» |ILU(p) Strategy = drop anything with level of fill-in exceeding p.

* Increasing level of fill-in usually results in more accurate ILU

and...

* ...typically in fewer steps and fewer arithmetic operations.

ILU(I)

U1
LU,

L,
Augmented A

ALGORITHM : 16. ILU(p)
Fori =2, N Do

Foreachk =1,...,2 —1andifa;; # 0 do
Compute a;i, := a;i/a;;
Compute a; . := a; . — Q;raf, -
Update the levels of a; .
Replace any element in row i with lev(a;;) > p by zero.
EndFor
EndFor

» The algorithm can be split into a symbolic and a numerical

phase. Level-of-fill > in Symbolic phase

ILU with threshold — generic algorithms

ILU(p) factorizations are based on structure only and not nhumer-

ical values » potential problems for non M-matrices.

» One remedy: ILU with threshold — (generic name ILUT.)

Two broad approaches: |

First approach [derived from direct solvers]: use any (direct) sparse

solver and incorporate a dropping strategy. [Munksgaard (?), Os-
terby & Zlatev, Sameh & Zlatev[90], D. Young, & al. (Boeing) etc...]

Second approach : [derived from ‘iterative solvers’ viewpoint]

1. use a (row or colum) version of the (z, k, 5) version of GE;
2. apply a drop strategy for the elment [, as it is computed;

3. perform the linear combinations to get a;.. Use full row expan-

sion of a;.;

4. apply a drop strategy to fill-ins.

ILU with threshold: ILUT (k, €)

e Do the i, k, 5 version of Gaussian Elimination (GE).

e During each i-th step in GE, discard any pivot or fill-in whose

value is below €||row;(A)||.

e Once the :-th row of L + U, (L-part + U-part) is computed retain

only the k largest elements in both parts.

» Advantages: controlled fill-in. Smaller memory overhead.
» Easy to implement —

» Can be made quite inexpensive.

