
A tutorial on:
Iterative methods for Sparse Matrix Problems

Yousef Saad

University of Minnesota
Computer Science and Engineering

CRM Montreal - May 3, 2008

Outline

Part 1

• Sparse matrices and sparsity

• Basic iterative techniques

• Projection methods

• Krylov subspace methods

Part 2

• Preconditioned iterations

• Preconditioning techniques

Part 3

• Parallel implementations

• Multigrid methods

Part 4

• Eigenvalue problems

• Applications

CRM May 3, 2008 2

PROJECTION METHODS

One-dimensional projection processes

Steepest descent – Problem: Ax = b , with A SPD

ä Define: f(x) = 1
2
‖x− x∗‖2A = 1

2
(A(x− x∗), (x− x∗))

Note: 1. f(x) = 1
2
(Ax, x)− (b, x) + constant

2. ∇f(x) = Ax−b→ ‘descent’ direction = b−Ax ≡ r

Idea: take a step of the form xnew = x+αr which minimizes f(x).

Best α = (r, r)/(Ar, r).

Iteration:
r ← b−Ax,
α← (r, r)/(Ar, r)
x← x+ αr

ä Can show: convergence guaranteed if A is SPD.

CRM May 3, 2008 4

Residual norm steepest descent: Now A is arbitrary

ä Minimize instead: f(x) = 1
2
‖b−Ax‖22 in direction −∇f .

−∇f(x) = AT (b−Ax) = ATr.

Iteration:
r ← b−Ax, d = ATr
α← ‖d‖22/‖Ad‖22
x← x+ αd

ä Important Note: equivalent to usual steepest descent applied to

normal equations ATAx = ATb .

ä Converges under the condition that A is nonsingular.

ä But convergence can be very slow

CRM May 3, 2008 5

Minimal residual iteration: AssumeA is positive definite (A+AT

is SPD).

ä The objective function is still 1
2
‖b − Ax‖22, but the direction of

search is r = b−Ax instead of −∇f(x)

Iteration:
r ← b−Ax,
α← (Ar, r)/(Ar,Ar)
x← x+ αr

ä Each step minimizes f(x) = ‖b−Ax‖22 in direction r.

ä Converges under the condition that A+AT is SPD.

CRM May 3, 2008 6

ä Common feature of these techniques: xnew = x+ αd , where d

= a certain direction.

ä α is defined to optimize a certain quadratic function.

ä Equivalent to determining α by an orthogonality constraint.

Example

In MR:

x(α) = x+ αd, with d = b−Ax.

minα ‖b−Ax(α)‖2 reached iff b−Ax(α) ⊥ r

ä One-dimensional projection methods – can we generalize to m-

dimensional techniques?

CRM May 3, 2008 7

General Projection Methods

Initial Problem: b−Ax = 0

Given two subspaces K and L of RN define the approximate prob-

lem:

Find x̃ ∈ K such that b−Ax̃ ⊥ L

ä Leads to a small linear system (‘projected problems’) This is

a basic projection step. Typically: sequence of such steps are

applied

CRM May 3, 2008 8

ä With a nonzero initial guess x0, the approximate problem is

Find x̃ ∈ x0 +K such that b−Ax̃ ⊥ L

Write x̃ = x0 + δ and r0 = b−Ax0. Leads to a system for δ:

Find δ ∈ K such that r0 −Aδ ⊥ L

CRM May 3, 2008 9

Matrix representation:

Let
• V = [v1, . . . , vm] a basis of K &

•W = [w1, . . . , wm] a basis of L

Then letting x be the approximate solution x̃ = x0 + δ ≡ x0 + V y

where y is a vector of Rm, the Petrov-Galerkin condition yields,

W T (r0 −AV y) = 0

and therefore

x̃ = x0 + V [W TAV]−1W Tr0

Remark: In practice W TAV is known from algorithm and has a

simple structure [tridiagonal, Hessenberg,..]

CRM May 3, 2008 10

Prototype Projection Method

Until Convergence Do:

1. Select a pair of subspaces K, and L;

2. Choose bases V = [v1, . . . , vm] for K and W = [w1, . . . , wm]

for L.

3. Compute

r ← b−Ax,

y ← (W TAV)−1W Tr,

x← x+ V y.

CRM May 3, 2008 11

Two important particular cases.

1. L = AK . then ‖b−Ax̃‖2 = minz∈K ‖b−Az‖2
→ class of minimal residual methods: CR, GCR, ORTHOMIN,

GMRES, CGNR, ...

2. L = K → class of Galerkin or orthogonal projection methods.

When A is SPD then

‖x∗ − x̃‖A = min
z∈K
‖x∗ − z‖A.

CRM May 3, 2008 12

One-dimensional projection processes

K = span{d}
and

L = span{e}

Then x̃← x+αd and Petrov-Galerkin condition r−Aδ ⊥ e yields

α = (r,e)
(Ad,e)

(I) Steepest descent: K = span(r), L = K

(II) Residual norm steepest descent: K = span(ATr), L = AK

(III) Minimal residual iteration: K = span(r), L = AK

CRM May 3, 2008 13

Krylov Subspace Methods

Principle: Projection methods on Krylov subspaces:

Km(A, v1) = span{v1, Av1, · · · , Am−1v1}

• probably the most important class of iterative methods.

• many variants exist depending on the subspace L.

Simple properties of Km . Let µ = deg. of minimal polynomial of v

•Km = {p(A)v|p = polynomial of degree ≤ m− 1}

•Km = Kµ for all m ≥ µ. Moreover, Kµ is invariant under A.

• dim(Km) = m iff µ ≥ m.

CRM May 3, 2008 14

Arnoldi’s Algorithm

ä Goal: to compute an orthogonal basis of Km.

ä Input: Initial vector v1, with ‖v1‖2 = 1 and m.

For j = 1, ...,m do

• Compute w := Avj

• for i = 1, . . . , j, do

 hi,j := (w, vi)

w := w − hi,jvi

• hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

CRM May 3, 2008 15

Result of orthogonalization process

1. Vm = [v1, v2, ..., vm] orthonormal basis of Km.

2. AVm = Vm+1Hm

3. V T
mAVm = Hm ≡ Hm− last row.

Vm

@
@

@
@

@
@@

@
@

@
@

@
@@

O
Hm =

CRM May 3, 2008 16

Arnoldi’s Method (Lm = Km)

ä Petrov-Galerkin condition when Lm = Km, shows:

xm = x0 + VmH
−1
m V T

mr0

ä Select v1 = r0/‖r0‖2 ≡ r0/β in Arnoldi’s algorithm, then:

xm = x0 + βVmH
−1
m e1

Equivalent

algorithms:

* FOM [YS, 1981] (above formulation)

* Young and Jea’s ORTHORES [1982].

* Axelsson’s projection method [1981].

CRM May 3, 2008 17

Minimal residual methods (Lm = AKm)

ä When Lm = AKm, we let Wm ≡ AVm and obtain:

xm = x0 + Vm[W T
mAVm]−1W T

mr0

ä Use again v1 := r0/(β := ‖r0‖2) and: AVm = Vm+1H̄m

xm = x0 + Vm[H̄T
mH̄m]−1H̄T

mβe1 = x0 + Vmym

where ym minimizes ‖βe1 − H̄my‖2 over y ∈ Rm. Hence, (Gen-

eralized Minimal Residual method (GMRES) [Saad-Schultz, 1983]):

xm = x0 + Vmym where ym : miny ‖βe1 − H̄my‖2

Equivalent methods:
• Axelsson’s CGLS • Orthomin (1980)

• Orthodir • GCR
CRM May 3, 2008 18

Restarting and Truncating

Difficulty: As m increases, storage and work per step increase

fast.

First remedy: Restarting. Fix the dimension m of the subspace

ALGORITHM : 1 Restarted GMRES (resp. Arnoldi)

1. Start/Restart: Compute r0 = b−Ax0, and v1 = r0/(β := ‖r0‖2).

2. Arnoldi Process: generate H̄m and Vm.

3. Compute ym = H−1
m βe1 (FOM), or

ym = argmin‖βe1 − H̄my‖2 (GMRES)

4. xm = x0 + Vmym

5. If ‖rm‖2 ≤ ε‖r0‖2 stop else set x0 := xm and go to 1.

CRM May 3, 2008 19

Second remedy: Truncate the orthogonalization

The formula for vj+1 is replaced by

hj+1,jvj+1 = Avj −
j∑

i=j−k+1

hijvi

→ each vj is made orthogonal to the previous k vi’s.

→ xm still computed as xm = x0 + VmH
−1
m βe1.

→ It can be shown that this is again an oblique projection process.

ä IOM (Incomplete Orthogonalization Method) = replace or-

thogonalization in FOM, by the above truncated (or ‘incomplete’)

orthogonalization.

CRM May 3, 2008 20

The direct version of IOM [DIOM]:

Writing the LU decomposition of Hm as Hm = LmUm we get

xm = x0 + VmU−1
m L−1

m βe1 ≡ x0 + Pmzm

ä Structure of Lm, Um when k = 3

Lm =


1
x 1
x 1
x 1
x 1
x 1
x 1

 Um =


x x x
x x x
x x x
x x x
x x x
x x
x


pm = u−1

mm[vm −
∑m−1

i=m−k+1 uimpi] zm =

 zm−1

ζm


CRM May 3, 2008 21

Result: Can update xm at each step:

xm = xm−1 + ζmpm

Note: Several existing pairs of methods have a similar link: they

are based on the LU, or other, factorizations of the Hm matrix

ä CG-like formulation of IOM called DIOM [Saad, 1982]

ä ORTHORES(k) [Young & Jea ’82] equivalent to DIOM(k)

ä SYMMLQ [Paige and Saunders, ’77] uses LQ factorization ofHm.

ä Can add partial pivoting to LU factorization of Hm

CRM May 3, 2008 22

The Symmetric Case: Observation

Observe: When A is real symmetric then in Arnoldi’s method:

Hm = V T
mAVm

must be symmetric. Therefore

THEOREM. When Arnoldi’s algorithm is applied to a (real) sym-

metric matrix then the matrix Hm is symmetric tridiagonal.

In other words:

1) hij = 0 for |i− j| > 1

2) hj,j+1 = hj+1,j, j = 1, . . . ,m

CRM May 3, 2008 23

ä We can write

Hm =



α1 β2

β2 α2 β3

β3 α3 β4

. . .

. . .

βm αm


(1)

The vi’s satisfy a three-term recurrence [Lanczos Algorithm]:

βj+1vj+1 = Avj − αjvj − βjvj−1

→ simplified version of Arnoldi’s algorithm for sym. systems.

Symmetric matrix + Arnoldi→ Symmetric Lanczos

CRM May 3, 2008 24

The Lanczos algorithm

ALGORITHM : 2 Lanczos

1. Choose an initial vector v1 of norm unity.

Set β1 ≡ 0, v0 ≡ 0

2. For j = 1, 2, . . . ,m Do:

3. wj := Avj − βjvj−1

4. αj := (wj, vj)

5. wj := wj − αjvj
6. βj+1 := ‖wj‖2. If βj+1 = 0 then Stop

7. vj+1 := wj/βj+1

8. EndDo

CRM May 3, 2008 25

Lanczos algorithm for linear systems

ä Usual orthogonal projection method setting:

• Lm = Km = span{r0, Ar0, . . . , A
m−1r0}

• Basis Vm = [v1, . . . , vm] of Km generated by the Lanczos algo-

rithm

ä Three different possible implementations.

(1) Arnoldi-like; (2) Exploit tridigonal nature of Hm (DIOM); (3) Con-

jugate gradient.

.... following what was done for DIOM..

CRM May 3, 2008 26

The Conjugate Gradient Algorithm (A S.P.D.)

ä Note: the pi’s are A-orthogonal

ä The r′i’s are orthogonal.

ä And we have xm = xm−1 + ξmpm

So there must be an up-

date of the form:

1. pm = rm−1 + βmpm−1

2. xm = xm−1 + ξmpm

3. rm = rm−1 − ξmApm

CRM May 3, 2008 27

ALGORITHM : 3 Conjugate Gradient

Start: r0 := b−Ax0, p0 := r0.

Iterate: Until convergence do,

αj := (rj, rj)/(Apj, pj)

xj+1 := xj + αjpj

rj+1 := rj − αjApj
βj := (rj+1, rj+1)/(rj, rj)

pj+1 := rj+1 + βjpj

EndDo

ä rj = scaling × vj+1. The rj’s are orthogonal.

ä The pj’s are A-conjugate, i.e., (Api, pj) = 0 for i 6= j.

CRM May 3, 2008 28

METHODS BASED ON LANCZOS BIORTHOGONALIZATION

ALGORITHM : 4 Lanczos Bi-Orthogonalization

1. Choose two vectors v1, w1 such that (v1, w1) = 1.

2. Set β1 = δ1 ≡ 0, w0 = v0 ≡ 0

3. For j = 1, 2, . . . ,m Do:

4. αj = (Avj, wj)

5. v̂j+1 = Avj − αjvj − βjvj−1

6. ŵj+1 = ATwj − αjwj − δjwj−1

7. δj+1 = |(v̂j+1, ŵj+1)|1/2. If δj+1 = 0 Stop

8. βj+1 = (v̂j+1, ŵj+1)/δj+1

9. wj+1 = ŵj+1/βj+1

10. vj+1 = v̂j+1/δj+1

11. EndDo

CRM May 3, 2008 30

ä Extension of the symmetric Lanczos algorithm

ä Builds a pair of biorthogonal bases for the two subspaces

Km(A, v1) and Km(AT , w1)

ä Different ways to choose δj+1, βj+1 in lines 7 and 8.

Let

Tm =



α1 β2

δ2 α2 β3

. . .

δm−1 αm−1 βm

δm αm


.

ä vi ∈ Km(A, v1) and wj ∈ Km(AT , w1).

If the algorithm does not break down before step m, then the

vectors vi, i = 1, . . . ,m, and wj, j = 1, . . . ,m, are biortho-

gonal, i.e.,

(vj, wi) = δij 1 ≤ i, j ≤ m .

Moreover, {vi}i=1,2,...,m is a basis of Km(A, v1) and {wi}i=1,2,...,m

is a basis of Km(AT , w1) and

AVm = VmTm + δm+1vm+1e
T
m,

ATWm = WmT
T
m + βm+1wm+1e

T
m,

W T
mAVm = Tm .

The Lanczos Algorithm for Linear Systems

ALGORITHM : 5 Lanczos Alg. for Linear Systems

1. Compute r0 = b−Ax0 and β := ‖r0‖2
2. Run m steps of the nonsymmetric Lanczos Algorithm i.e.,

3. Start with v1 := r0/β, and any w1 such that

(v1, w1) = 1

4. Generate the pair of Lanczos vectors v1, . . . , vm,

and w1, . . . , wm

5. and the tridiagonal matrix Tm from Algorithm ??.

6. Compute ym = T−1
m (βe1) and xm := x0 + Vmym.

ä BCG can be derived from the Lanczos Algorithm similarly to CG

CRM May 3, 2008 33

ALGORITHM : 6 BiConjugate Gradient (BCG)

1. Compute r0 := b−Ax0.

2. Choose r∗0 such that (r0, r
∗
0) 6= 0;

Set p0 := r0, p∗0 := r∗0

3. For j = 0, 1, . . ., until convergence Do:,

4. αj := (rj, r
∗
j)/(Apj, p

∗
j)

5. xj+1 := xj + αjpj

6. rj+1 := rj − αjApj
7. r∗j+1 := r∗j − αjATp∗j

8. βj := (rj+1, r
∗
j+1)/(rj, r

∗
j)

9. pj+1 := rj+1 + βjpj

10. p∗j+1 := r∗j+1 + βjp
∗
j

11. EndDo

CRM May 3, 2008 34

Quasi-Minimal Residual Algorithm

ä Recall relation from the lanczos algorithm: AVm = Vm+1T̄m with

T̄m = (m+ 1)×m tridiagonal matrix T̄m =

 Tm

δm+1e
T
m

 .

ä Let v1 ≡ βr0 and x = x0 + Vmy. Residual norm ‖b − Ax‖2
equals

‖r0 −AVmy‖2 = ‖βv1 − Vm+1T̄my‖2 = ‖Vm+1

(
βe1 − T̄my

)
‖2

ä Column-vectors of Vm+1 are not ⊥ (6= GMRES).

ä But: reasonable idea to minimize the function J(y) ≡ ‖βe1 − T̄my‖2

ä Quasi-Minimal Residual Algorithm (Freund, 1990).

CRM May 3, 2008 35

Transpose-Free Variants

ä BCG and QMR require a matrix-by-vector product with A and

AT at each step. The products withAT do not contribute directly

to xm. ä They allow to determine the scalars (αj and βj in BCG).

ä QUESTION: is it possible to bypass the use of AT?

ä Motivation: in nonlinear equations, A is often not available

explicitly but via the Frechet derivative:

J(uk)v =
F (uk + εv)− F (uk)

ε
.

CRM May 3, 2008 36

Conjugate Gradient Squared

* Clever variant of BCG which avoids using AT [Sonneveld, 1984].

In BCG:

ri = ρi(A)r0

where ρi = polynomial of degree i.

In CGS:

ri = ρ2
i (A)r0

ä Define :

rj = φj(A)r0,

pj = πj(A)r0,

r∗j = φj(A
T)r∗0,

p∗j = πj(A
T)r∗0

Scalar αj in BCG is given by

αj =
(φj(A)r0, φj(A

T)r∗0)

(Aπj(A)r0, πj(AT)r∗0)
=

(φ2
j(A)r0, r

∗
0)

(Aπ2
j(A)r0, r

∗
0)

ä Possible to get a recursion for the φ2
j(A)r0 and π2

j(A)r0?

φj+1(t) = φj(t)− αjtπj(t),

πj+1(t) = φj+1(t) + βjπj(t)

ä Square these equalities

φ2
j+1(t) = φ2

j(t)− 2αjtπj(t)φj(t) + α2
jt

2π2
j(t),

π2
j+1(t) = φ2

j+1(t) + 2βjφj+1(t)πj(t) + β2
jπj(t)

2.

ä Problem: ...

.. Cross terms

CRM May 3, 2008 38

Solution: Let φj+1(t)πj(t), be a third member of the recurrence.

For πj(t)φj(t), note:

φj(t)πj(t) = φj(t) (φj(t) + βj−1πj−1(t))

= φ2
j(t) + βj−1φj(t)πj−1(t).

Result:

φ2
j+1 = φ2

j − αjt
(
2φ2

j + 2βj−1φjπj−1 − αjt π2
j

)
φj+1πj = φ2

j + βj−1φjπj−1 − αjt π2
j

π2
j+1 = φ2

j+1 + 2βjφj+1πj + β2
jπ

2
j .

Define:

rj = φ2
j(A)r0, pj = π2

j(A)r0, qj = φj+1(A)πj(A)r0

CRM May 3, 2008 39

Recurrences become:

rj+1 = rj − αjA (2rj + 2βj−1qj−1 − αjA pj) ,

qj = rj + βj−1qj−1 − αjA pj,

pj+1 = rj+1 + 2βjqj + β2
jpj.

Define auxiliary vector dj = 2rj + 2βj−1qj−1 − αjApj

ä Sequence of operations to compute the approximate solution,

starting with r0 := b−Ax0, p0 := r0, q0 := 0, β0 := 0.

1. αj = (rj, r
∗
0)/(Apj, r

∗
0)

2. dj = 2rj +2βj−1qj−1−αjApj

3. qj = rj + βj−1qj−1 − αjApj

4. xj+1 = xj + αjdj

5. rj+1 = rj − αjAdj

6. βj = (rj+1, r
∗
0)/(rj, r

∗
0)

7. pj+1 = rj+1 + βj(2qj + βjpj).

CRM May 3, 2008 40

ä one more auxiliary vector, uj = rj + βj−1qj−1. So

dj = uj + qj,

qj = uj − αjApj,

pj+1 = uj+1 + βj(qj + βjpj),

ä vector dj is no longer needed.

CRM May 3, 2008 41

ALGORITHM : 7 Conjugate Gradient Squared

1. Compute r0 := b−Ax0; r∗0 arbitrary.

2. Set p0 := u0 := r0.

3. For j = 0, 1, 2 . . . , until convergence Do:

4. αj = (rj, r
∗
0)/(Apj, r

∗
0)

5. qj = uj − αjApj
6. xj+1 = xj + αj(uj + qj)

7. rj+1 = rj − αjA(uj + qj)

8. βj = (rj+1, r
∗
0)/(rj, r

∗
0)

9. uj+1 = rj+1 + βjqj

10. pj+1 = uj+1 + βj(qj + βjpj)

11. EndDo

CRM May 3, 2008 42

ä Note: no matrix-by-vector products with AT but two matrix-by-

vector products with A, at each step.

Vector: ←→ Polynomial in BCG :

qi ←→ r̄i(t)p̄i−1(t)

ui ←→ p̄2
i (t)

ri ←→ r̄2
i (t)

where r̄i(t) = residual polynomial at step i for BCG, .i.e., ri = r̄i(A)r0,

and p̄i(t) = conjugate direction polynomial at step i, i.e., pi = p̄i(A)r0.

CRM May 3, 2008 43

BCGSTAB (van der Vorst, 1992)

ä In CGS: residual polynomial of BCG is squared. ä bad behavior

in case of irregular convergence.

ä Bi-Conjugate Gradient Stabilized (BCGSTAB) = a variation of

CGS which avoids this difficulty. ä Derivation similar to CGS.

ä Residuals in BCGSTAB are of the form,

r′j = ψj(A)φj(A)r0

in which, φj(t) = BCG residual polynomial, and ..

ä .. ψj(t) = a new polynomial defined recursively as

ψj+1(t) = (1− ωjt)ψj(t)

ωi chosen to ‘smooth’ convergence [steepest descent step]

ALGORITHM : 8 BCGSTAB

1. Compute r0 := b−Ax0; r∗0 arbitrary;

2. p0 := r0.

3. For j = 0, 1, . . . , until convergence Do:

4. αj := (rj, r
∗
0)/(Apj, r

∗
0)

5. sj := rj − αjApj
6. ωj := (Asj, sj)/(Asj, Asj)

7. xj+1 := xj + αjpj + ωjsj

8. rj+1 := sj − ωjAsj
9. βj :=

(rj+1,r
∗
0)

(rj,r
∗
0)
× αj

ωj

10. pj+1 := rj+1 + βj(pj − ωjApj)

11. EndDo

CRM May 3, 2008 45

PRECONDITIONING

Preconditioning – Basic principles

Basic idea is to use the Krylov subspace method on a modified

system such as

M−1Ax = M−1b.

• The matrix M−1A need not be formed explicitly; only need to

solve Mw = v whenever needed.

• Consequence: fundamental requirement is that it should be easy

to compute M−1v for an arbitrary vector v.

CRM May 3, 2008 47

Left, Right, and Split preconditioning

Left preconditioning: M−1Ax = M−1b

Right preconditioning: AM−1u = b, with x = M−1u

Split preconditioning: M−1
L AM−1

R u = M−1
L b, with x = M−1

R u

[Assume M is factored: M = MLMR.]

CRM May 3, 2008 48

Preconditioned CG (PCG)

ä Assume: A and M are both SPD.

ä Applying CG directly to M−1Ax = M−1b or AM−1u = b

won’t work because coefficient matrices are not symmetric.

ä Alternative: when M = LLT use split preconditioner option

ä Second alternative: Observe that M−1A is self-adjoint wrt M

inner product:

(M−1Ax, y)M = (Ax, y) = (x,Ay) = (x,M−1Ay)M

CRM May 3, 2008 49

Preconditioned CG (PCG)

ALGORITHM : 9 Preconditioned Conjugate Gradient

1. Compute r0 := b−Ax0, z0 = M−1r0, and p0 := z0

2. For j = 0, 1, . . ., until convergence Do:

3. αj := (rj, zj)/(Apj, pj)

4. xj+1 := xj + αjpj

5. rj+1 := rj − αjApj
6. zj+1 := M−1rj+1

7. βj := (rj+1, zj+1)/(rj, zj)

8. pj+1 := zj+1 + βjpj

9. EndDo

CRM May 3, 2008 50

Note M−1A is also self-adjoint with respect to (., .)A:

(M−1Ax, y)A = (AM−1Ax, y) = (x,AM−1Ay) = (x,M−1Ay)A

ä Can obtain a similar algorithm

ä Assume that M = Cholesky product M = LLT .

Then, another possibility: Split preconditioning option, which ap-

plies CG to the system

L−1AL−Tu = L−1b, with x = LTu

ä Notation: Â = L−1AL−T . All quantities related to the precondi-

tioned system are indicated by .̂

CRM May 3, 2008 51

ALGORITHM : 10 CG with Split Preconditioner

1. Compute r0 := b−Ax0; r̂0 = L−1r0; and p0 := L−T r̂0.

2. For j = 0, 1, . . ., until convergence Do:

3. αj := (r̂j, r̂j)/(Apj, pj)

4. xj+1 := xj + αjpj

5. r̂j+1 := r̂j − αjL−1Apj

6. βj := (r̂j+1, r̂j+1)/(r̂j, r̂j)

7. pj+1 := L−T r̂j+1 + βjpj

8. EndDo

ä The xj’s produced by the above algorithm and PCG are identical

(if same initial guess is used).

CRM May 3, 2008 52

Flexible accelerators

Question: What can we do in case M is defined only approxi-

mately? i.e., if it can vary from one step to the other.?

Applications:

ä Iterative techniques as preconditioners: Block-SOR, SSOR, Multi-

grid, etc..

ä Chaotic relaxation type preconditioners (e.g., in a parallel com-

puting environment)

ä Mixing Preconditioners – mixing coarse mesh / fine mesh pre-

conditioners.

CRM May 3, 2008 53

ALGORITHM : 11 GMRES – No preconditioning

1. Start: Choose x0 and a dimension m of the Krylov subspaces.
2. Arnoldi process:

• Compute r0 = b−Ax0, β = ‖r0‖2 and v1 = r0/β.
• For j = 1, ...,m do

– Compute w := Avj

– for i = 1, . . . , j, do
{
hi,j := (w, vi)
w := w − hi,jvi

}
;

– hj+1,1 = ‖w‖2; vj+1 = w
hj+1,1

• Define Vm := [v1,, vm] and H̄m = {hi,j}.

3. Form the approximate solution: Compute xm = x0 + Vmym where
ym = argminy‖βe1 − H̄my‖2 and e1 = [1, 0, . . . , 0]T .

4. Restart: If satisfied stop, else set x0← xm and goto 2.

CRM May 3, 2008 54

ALGORITHM : 12 GMRES – (right) Preconditioning

1. Start: Choose x0 and a dimension m
2. Arnoldi process:

• Compute r0 = b−Ax0, β = ‖r0‖2 and v1 = r0/β.
• For j = 1, ...,m do

– Compute zj := M−1vj
– Compute w := Azj

– for i = 1, . . . , j, do :
{
hi,j := (w, vi)
w := w − hi,jvi

}
– hj+1,1 = ‖w‖2; vj+1 = w/hj+1,1

• Define Vm := [v1,, vm] and H̄m = {hi,j}.

3. Form the approximate solution: xm = x0 +M−1Vmym where ym =

argminy‖βe1 − H̄my‖2 and e1 = [1, 0, . . . , 0]T .
4. Restart: If satisfied stop, else set x0← xm and goto 2.

ALGORITHM : 13 GMRES – variable preconditioner
1. Start: Choose x0 and a dimension m of the Krylov subspaces.
2. Arnoldi process:

• Compute r0 = b−Ax0, β = ‖r0‖2 and v1 = r0/β.
• For j = 1, ...,m do

– Compute zj := M−1
j vj ; Compute w := Azj;

– for i = 1, . . . , j, do:
{
hi,j := (w, vi)
w := w − hi,jvi

}
;

– hj+1,1 = ‖w‖2; vj+1 = w/hj+1,1

• Define Zm := [z1,, zm] and H̄m = {hi,j}.
3. Form the approximate solution: Compute xm = x0 + Zmym where
ym = argminy‖βe1 − H̄my‖2 and e1 = [1, 0, . . . , 0]T .

4. Restart: If satisfied stop, else set x0← xm and goto 2.

CRM May 3, 2008 56

Properties

• xm minimizes b−Axm over Span{Zm}.

• If Azj = vj (i.e., if preconditioning is ‘exact’ at step j) then

approximation xj is exact.

• If Mj is constant then method is ≡ to Right-Preconditioned GM-

RES.

Additional Costs:

• Arithmetic: none.

• Memory: Must save the additional set of vectors {zj}j=1,...m

Advantage: Flexibility
CRM May 3, 2008 57

Standard preconditioners

• Simplest preconditioner: M = Diag(A) ä poor convergence.

• Next to simplest: SSOR M = (D − ωE)D−1(D − ωF)

• Still simple but often more efficient: ILU(0).

• ILU(p) – ILU with level of fill p – more complex.

• Class of ILU preconditioners with threshold

• Class of approximate inverse preconditioners

• Class of Multilevel ILU preconditioners: Multigrid, Algebraic Multi-

grid, M-level ILU, ..

CRM May 3, 2008 58

An observation. Introduction to Preconditioning

ä Take a look back at basic relaxation methods: Jacobi, Gauss-

Seidel, SOR, SSOR, ...

ä These are iterations of the form x(k+1) = Mx(k) + f where M is

of the form M = I − P−1A . For example for SSOR,

PSSOR = (D − ωE)D−1(D − ωF)

CRM May 3, 2008 59

ä SSOR attempts to solve the equivalent system

P−1Ax = P−1b

where P ≡ PSSOR by the fixed point iteration

x(k+1) = (I − P−1A)︸ ︷︷ ︸
M

x(k)+P−1b instead of x(k+1) = (I−A)x(k)+b

In other words:

Relaxation Scheme ⇐⇒ Preconditioned Fixed Point Iteration

CRM May 3, 2008 60

The SOR/SSOR preconditioner

D

−F

−E

ä SOR preconditioning

MSOR = (D − ωE)

ä SSOR preconditioning

MSSOR = (D − ωE)D−1(D − ωF)

ä MSSOR = LU , L = lower unit matrix, U = upper triangular. One

solve with MSSOR ≈ same cost as a MAT-VEC.

CRM May 3, 2008 61

ä k-step SOR (resp. SSOR) preconditioning:

k steps of SOR (resp. SSOR)

ä Questions: Best ω? For preconditioning can take ω = 1

M = (D − E)D−1(D − F)

Observe: M = LU +R with R = ED−1F .

ä Best k? k = 1 is rarely the best. Substantial difference in

performance.

Iteration times versus

k for SOR(k) precon-

ditioned GMRES

CRM May 3, 2008 63

ILU(0) and IC(0) preconditioners

ä Notation: NZ(X) = {(i, j) |Xi,j 6= 0}

ä Formal definition of ILU(0):

A = LU +R
NZ(L)

⋃
NZ(U) = NZ(A)

rij = 0 for (i, j) ∈ NZ(A)

ä This does not define ILU(0) in a unique way.

Constructive definition: Compute the LU factorization of A but

drop any fill-in in L and U outside of Struct(A).

ä ILU factorizations are often based on i, k, j version of GE.

CRM May 3, 2008 64

What is the IKJ version of GE?

Different computational patterns for gaussian elimination

KJI,KJI IJK

IKJ JKI

CRM May 3, 2008 66

ALGORITHM : 14 Gaussian Elimination – IKJ Variant

1. For i = 2, . . . , n Do:

2. For k = 1, . . . , i− 1 Do:

3. aik := aik/akk

4. For j = k + 1, . . . , n Do:

5. aij := aij − aik ∗ akj
6. EndDo

7. EndDo

8. EndDo

CRM May 3, 2008 67

Not accessed

Accessed but not

Accessed and
modified

modified

CRM May 3, 2008 68

ILU(0) – zero-fill ILU

ALGORITHM : 15 ILU(0)

For i = 1, . . . , N Do:

For k = 1, . . . , i− 1 and if (i, k) ∈ NZ(A) Do:

Compute aik := aik/akj

For j = k + 1, . . . and if (i, j) ∈ NZ(A), Do:

compute aij := aij − aikak,j.

EndFor

EndFor

ä WhenA is SPD then the ILU factorization = Incomplete Cholesky

factorization – IC(0). Meijerink and Van der Vorst [1977].

CRM May 3, 2008 69

Typical eigenvalue distribution of preconditioned matrix

CRM May 3, 2008 70

Pattern of ILU(0) for 5-point matrix

CRM May 3, 2008 71

Stencils and ILU factorization

Stencils of A and the L and U parts of A:

CRM May 3, 2008 72

Higher order ILU factorization

ä Higher accuracy incomplete Cholesky: for regularly structured

problems, IC(p) allows p additional diagonals in L.

ä Can be generalized to irregular sparse matrices using the notion

of level of fill-in [Watts III, 1979]

• Initially Levij =

 0 for aij 6= 0

∞ for aij == 0

• At a given step i of Gaussian elimination:

Levkj = min{Levkj;Levki + Levij + 1}

CRM May 3, 2008 73

ä ILU(p) Strategy = drop anything with level of fill-in exceeding p.

* Increasing level of fill-in usually results in more accurate ILU

and...

* ...typically in fewer steps and fewer arithmetic operations.

CRM May 3, 2008 74

ILU(1)

CRM May 3, 2008 75

ALGORITHM : 16 ILU(p)

For i = 2, N Do

For each k = 1, . . . , i− 1 and if aij 6= 0 do

Compute aik := aik/ajj

Compute ai,∗ := ai,∗ − aikak,∗.

Update the levels of ai,∗

Replace any element in row i with lev(aij) > p by zero.

EndFor

EndFor

ä The algorithm can be split into a symbolic and a numerical

phase. Level-of-fill ä in Symbolic phase

CRM May 3, 2008 76

ILU with threshold – generic algorithms

ILU(p) factorizations are based on structure only and not numer-

ical values ä potential problems for non M-matrices.

ä One remedy: ILU with threshold – (generic name ILUT.)

Two broad approaches:

First approach [derived from direct solvers]: use any (direct) sparse

solver and incorporate a dropping strategy. [Munksgaard (?), Os-

terby & Zlatev, Sameh & Zlatev[90], D. Young, & al. (Boeing) etc...]

CRM May 3, 2008 77

Second approach : [derived from ‘iterative solvers’ viewpoint]

1. use a (row or colum) version of the (i, k, j) version of GE;

2. apply a drop strategy for the elment lik as it is computed;

3. perform the linear combinations to get ai∗. Use full row expan-

sion of ai∗;

4. apply a drop strategy to fill-ins.

CRM May 3, 2008 78

ILU with threshold: ILUT(k, ε)

• Do the i, k, j version of Gaussian Elimination (GE).

• During each i-th step in GE, discard any pivot or fill-in whose

value is below ε‖rowi(A)‖.

• Once the i-th row of L + U , (L-part + U-part) is computed retain

only the k largest elements in both parts.

ä Advantages: controlled fill-in. Smaller memory overhead.

ä Easy to implement –

ä Can be made quite inexpensive.

CRM May 3, 2008 79

