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PROJECTION METHODS



One-dimensional projection processes

Steepest descent – Problem: Ax = b , with A SPD

ä Define: f(x) = 1
2
‖x− x∗‖2A = 1

2
(A(x− x∗), (x− x∗))

Note: 1. f(x) = 1
2
(Ax, x)− (b, x) + constant

2. ∇f(x) = Ax−b→ ‘descent’ direction = b−Ax ≡ r

Idea: take a step of the form xnew = x+αr which minimizes f(x).

Best α = (r, r)/(Ar, r).

Iteration:
r ← b−Ax,
α← (r, r)/(Ar, r)
x← x+ αr

ä Can show: convergence guaranteed if A is SPD.
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Residual norm steepest descent: Now A is arbitrary

ä Minimize instead: f(x) = 1
2
‖b−Ax‖22 in direction −∇f .

−∇f(x) = AT (b−Ax) = ATr.

Iteration:
r ← b−Ax, d = ATr
α← ‖d‖22/‖Ad‖22
x← x+ αd

ä Important Note: equivalent to usual steepest descent applied to

normal equations ATAx = ATb .

ä Converges under the condition that A is nonsingular.

ä But convergence can be very slow
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Minimal residual iteration: AssumeA is positive definite (A+AT

is SPD).

ä The objective function is still 1
2
‖b − Ax‖22, but the direction of

search is r = b−Ax instead of −∇f(x)

Iteration:
r ← b−Ax,
α← (Ar, r)/(Ar,Ar)
x← x+ αr

ä Each step minimizes f(x) = ‖b−Ax‖22 in direction r.

ä Converges under the condition that A+AT is SPD.
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ä Common feature of these techniques: xnew = x+ αd , where d

= a certain direction.

ä α is defined to optimize a certain quadratic function.

ä Equivalent to determining α by an orthogonality constraint.

Example

In MR:

x(α) = x+ αd, with d = b−Ax.

minα ‖b−Ax(α)‖2 reached iff b−Ax(α) ⊥ r

ä One-dimensional projection methods – can we generalize to m-

dimensional techniques?
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General Projection Methods

Initial Problem: b−Ax = 0

Given two subspaces K and L of RN define the approximate prob-

lem:

Find x̃ ∈ K such that b−Ax̃ ⊥ L

ä Leads to a small linear system (‘projected problems’) This is

a basic projection step. Typically: sequence of such steps are

applied
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ä With a nonzero initial guess x0, the approximate problem is

Find x̃ ∈ x0 +K such that b−Ax̃ ⊥ L

Write x̃ = x0 + δ and r0 = b−Ax0. Leads to a system for δ:

Find δ ∈ K such that r0 −Aδ ⊥ L
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Matrix representation:

Let
• V = [v1, . . . , vm] a basis of K &

•W = [w1, . . . , wm] a basis of L

Then letting x be the approximate solution x̃ = x0 + δ ≡ x0 + V y

where y is a vector of Rm, the Petrov-Galerkin condition yields,

W T (r0 −AV y) = 0

and therefore

x̃ = x0 + V [W TAV ]−1W Tr0

Remark: In practice W TAV is known from algorithm and has a

simple structure [tridiagonal, Hessenberg,..]
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Prototype Projection Method

Until Convergence Do:

1. Select a pair of subspaces K, and L;

2. Choose bases V = [v1, . . . , vm] for K and W = [w1, . . . , wm]

for L.

3. Compute

r ← b−Ax,

y ← (W TAV )−1W Tr,

x← x+ V y.
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Two important particular cases.

1. L = AK . then ‖b−Ax̃‖2 = minz∈K ‖b−Az‖2
→ class of minimal residual methods: CR, GCR, ORTHOMIN,

GMRES, CGNR, ...

2. L = K → class of Galerkin or orthogonal projection methods.

When A is SPD then

‖x∗ − x̃‖A = min
z∈K
‖x∗ − z‖A.
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One-dimensional projection processes

K = span{d}
and

L = span{e}

Then x̃← x+αd and Petrov-Galerkin condition r−Aδ ⊥ e yields

α = (r,e)
(Ad,e)

(I) Steepest descent: K = span(r), L = K

(II) Residual norm steepest descent: K = span(ATr), L = AK

(III) Minimal residual iteration: K = span(r), L = AK
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Krylov Subspace Methods

Principle: Projection methods on Krylov subspaces:

Km(A, v1) = span{v1, Av1, · · · , Am−1v1}

• probably the most important class of iterative methods.

• many variants exist depending on the subspace L.

Simple properties of Km . Let µ = deg. of minimal polynomial of v

•Km = {p(A)v|p = polynomial of degree ≤ m− 1}

•Km = Kµ for all m ≥ µ. Moreover, Kµ is invariant under A.

• dim(Km) = m iff µ ≥ m.
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Arnoldi’s Algorithm

ä Goal: to compute an orthogonal basis of Km.

ä Input: Initial vector v1, with ‖v1‖2 = 1 and m.

For j = 1, ...,m do

• Compute w := Avj

• for i = 1, . . . , j, do

 hi,j := (w, vi)

w := w − hi,jvi

• hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j
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Result of orthogonalization process

1. Vm = [v1, v2, ..., vm] orthonormal basis of Km.

2. AVm = Vm+1Hm

3. V T
mAVm = Hm ≡ Hm− last row.

Vm

@
@

@
@

@
@@

@
@

@
@

@
@@

O
Hm =
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Arnoldi’s Method (Lm = Km)

ä Petrov-Galerkin condition when Lm = Km, shows:

xm = x0 + VmH
−1
m V T

mr0

ä Select v1 = r0/‖r0‖2 ≡ r0/β in Arnoldi’s algorithm, then:

xm = x0 + βVmH
−1
m e1

Equivalent

algorithms:

* FOM [YS, 1981] (above formulation)

* Young and Jea’s ORTHORES [1982].

* Axelsson’s projection method [1981].
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Minimal residual methods (Lm = AKm)

ä When Lm = AKm, we let Wm ≡ AVm and obtain:

xm = x0 + Vm[W T
mAVm]−1W T

mr0

ä Use again v1 := r0/(β := ‖r0‖2) and: AVm = Vm+1H̄m

xm = x0 + Vm[H̄T
mH̄m]−1H̄T

mβe1 = x0 + Vmym

where ym minimizes ‖βe1 − H̄my‖2 over y ∈ Rm. Hence, (Gen-

eralized Minimal Residual method (GMRES) [Saad-Schultz, 1983]):

xm = x0 + Vmym where ym : miny ‖βe1 − H̄my‖2

Equivalent methods:
• Axelsson’s CGLS • Orthomin (1980)

• Orthodir • GCR
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Restarting and Truncating

Difficulty: As m increases, storage and work per step increase

fast.

First remedy: Restarting. Fix the dimension m of the subspace

ALGORITHM : 1 Restarted GMRES (resp. Arnoldi)

1. Start/Restart: Compute r0 = b−Ax0, and v1 = r0/(β := ‖r0‖2).

2. Arnoldi Process: generate H̄m and Vm.

3. Compute ym = H−1
m βe1 (FOM), or

ym = argmin‖βe1 − H̄my‖2 (GMRES)

4. xm = x0 + Vmym

5. If ‖rm‖2 ≤ ε‖r0‖2 stop else set x0 := xm and go to 1.
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Second remedy: Truncate the orthogonalization

The formula for vj+1 is replaced by

hj+1,jvj+1 = Avj −
j∑

i=j−k+1

hijvi

→ each vj is made orthogonal to the previous k vi’s.

→ xm still computed as xm = x0 + VmH
−1
m βe1.

→ It can be shown that this is again an oblique projection process.

ä IOM (Incomplete Orthogonalization Method) = replace or-

thogonalization in FOM, by the above truncated (or ‘incomplete’)

orthogonalization.
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The direct version of IOM [DIOM]:

Writing the LU decomposition of Hm as Hm = LmUm we get

xm = x0 + VmU−1
m L−1

m βe1 ≡ x0 + Pmzm

ä Structure of Lm, Um when k = 3

Lm =


1
x 1
x 1
x 1
x 1
x 1
x 1

 Um =


x x x
x x x
x x x
x x x
x x x
x x
x


pm = u−1

mm[vm −
∑m−1

i=m−k+1 uimpi] zm =

 zm−1

ζm


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Result: Can update xm at each step:

xm = xm−1 + ζmpm

Note: Several existing pairs of methods have a similar link: they

are based on the LU, or other, factorizations of the Hm matrix

ä CG-like formulation of IOM called DIOM [Saad, 1982]

ä ORTHORES(k) [Young & Jea ’82] equivalent to DIOM(k)

ä SYMMLQ [Paige and Saunders, ’77] uses LQ factorization ofHm.

ä Can add partial pivoting to LU factorization of Hm
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The Symmetric Case: Observation

Observe: When A is real symmetric then in Arnoldi’s method:

Hm = V T
mAVm

must be symmetric. Therefore

THEOREM. When Arnoldi’s algorithm is applied to a (real) sym-

metric matrix then the matrix Hm is symmetric tridiagonal.

In other words:

1) hij = 0 for |i− j| > 1

2) hj,j+1 = hj+1,j, j = 1, . . . ,m
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ä We can write

Hm =



α1 β2

β2 α2 β3

β3 α3 β4

. . .

. . .

βm αm


(1)

The vi’s satisfy a three-term recurrence [Lanczos Algorithm]:

βj+1vj+1 = Avj − αjvj − βjvj−1

→ simplified version of Arnoldi’s algorithm for sym. systems.

Symmetric matrix + Arnoldi→ Symmetric Lanczos
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The Lanczos algorithm

ALGORITHM : 2 Lanczos

1. Choose an initial vector v1 of norm unity.

Set β1 ≡ 0, v0 ≡ 0

2. For j = 1, 2, . . . ,m Do:

3. wj := Avj − βjvj−1

4. αj := (wj, vj)

5. wj := wj − αjvj
6. βj+1 := ‖wj‖2. If βj+1 = 0 then Stop

7. vj+1 := wj/βj+1

8. EndDo
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Lanczos algorithm for linear systems

ä Usual orthogonal projection method setting:

• Lm = Km = span{r0, Ar0, . . . , A
m−1r0}

• Basis Vm = [v1, . . . , vm] of Km generated by the Lanczos algo-

rithm

ä Three different possible implementations.

(1) Arnoldi-like; (2) Exploit tridigonal nature of Hm (DIOM); (3) Con-

jugate gradient.

.... following what was done for DIOM..
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The Conjugate Gradient Algorithm (A S.P.D.)

ä Note: the pi’s are A-orthogonal

ä The r′i’s are orthogonal.

ä And we have xm = xm−1 + ξmpm

So there must be an up-

date of the form:

1. pm = rm−1 + βmpm−1

2. xm = xm−1 + ξmpm

3. rm = rm−1 − ξmApm
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ALGORITHM : 3 Conjugate Gradient

Start: r0 := b−Ax0, p0 := r0.

Iterate: Until convergence do,

αj := (rj, rj)/(Apj, pj)

xj+1 := xj + αjpj

rj+1 := rj − αjApj
βj := (rj+1, rj+1)/(rj, rj)

pj+1 := rj+1 + βjpj

EndDo

ä rj = scaling × vj+1. The rj’s are orthogonal.

ä The pj’s are A-conjugate, i.e., (Api, pj) = 0 for i 6= j.
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METHODS BASED ON LANCZOS BIORTHOGONALIZATION



ALGORITHM : 4 Lanczos Bi-Orthogonalization

1. Choose two vectors v1, w1 such that (v1, w1) = 1.

2. Set β1 = δ1 ≡ 0, w0 = v0 ≡ 0

3. For j = 1, 2, . . . ,m Do:

4. αj = (Avj, wj)

5. v̂j+1 = Avj − αjvj − βjvj−1

6. ŵj+1 = ATwj − αjwj − δjwj−1

7. δj+1 = |(v̂j+1, ŵj+1)|1/2. If δj+1 = 0 Stop

8. βj+1 = (v̂j+1, ŵj+1)/δj+1

9. wj+1 = ŵj+1/βj+1

10. vj+1 = v̂j+1/δj+1

11. EndDo
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ä Extension of the symmetric Lanczos algorithm

ä Builds a pair of biorthogonal bases for the two subspaces

Km(A, v1) and Km(AT , w1)

ä Different ways to choose δj+1, βj+1 in lines 7 and 8.

Let

Tm =



α1 β2

δ2 α2 β3

. . .

δm−1 αm−1 βm

δm αm


.

ä vi ∈ Km(A, v1) and wj ∈ Km(AT , w1).



If the algorithm does not break down before step m, then the

vectors vi, i = 1, . . . ,m, and wj, j = 1, . . . ,m, are biortho-

gonal, i.e.,

(vj, wi) = δij 1 ≤ i, j ≤ m .

Moreover, {vi}i=1,2,...,m is a basis of Km(A, v1) and {wi}i=1,2,...,m

is a basis of Km(AT , w1) and

AVm = VmTm + δm+1vm+1e
T
m,

ATWm = WmT
T
m + βm+1wm+1e

T
m,

W T
mAVm = Tm .



The Lanczos Algorithm for Linear Systems

ALGORITHM : 5 Lanczos Alg. for Linear Systems

1. Compute r0 = b−Ax0 and β := ‖r0‖2
2. Run m steps of the nonsymmetric Lanczos Algorithm i.e.,

3. Start with v1 := r0/β, and any w1 such that

(v1, w1) = 1

4. Generate the pair of Lanczos vectors v1, . . . , vm,

and w1, . . . , wm

5. and the tridiagonal matrix Tm from Algorithm ??.

6. Compute ym = T−1
m (βe1) and xm := x0 + Vmym.

ä BCG can be derived from the Lanczos Algorithm similarly to CG
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ALGORITHM : 6 BiConjugate Gradient (BCG)

1. Compute r0 := b−Ax0.

2. Choose r∗0 such that (r0, r
∗
0) 6= 0;

Set p0 := r0, p∗0 := r∗0

3. For j = 0, 1, . . ., until convergence Do:,

4. αj := (rj, r
∗
j)/(Apj, p

∗
j)

5. xj+1 := xj + αjpj

6. rj+1 := rj − αjApj
7. r∗j+1 := r∗j − αjATp∗j

8. βj := (rj+1, r
∗
j+1)/(rj, r

∗
j)

9. pj+1 := rj+1 + βjpj

10. p∗j+1 := r∗j+1 + βjp
∗
j

11. EndDo
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Quasi-Minimal Residual Algorithm

ä Recall relation from the lanczos algorithm: AVm = Vm+1T̄m with

T̄m = (m+ 1)×m tridiagonal matrix T̄m =

 Tm

δm+1e
T
m

 .

ä Let v1 ≡ βr0 and x = x0 + Vmy. Residual norm ‖b − Ax‖2
equals

‖r0 −AVmy‖2 = ‖βv1 − Vm+1T̄my‖2 = ‖Vm+1

(
βe1 − T̄my

)
‖2

ä Column-vectors of Vm+1 are not ⊥ (6= GMRES).

ä But: reasonable idea to minimize the function J(y) ≡ ‖βe1 − T̄my‖2

ä Quasi-Minimal Residual Algorithm (Freund, 1990).
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Transpose-Free Variants

ä BCG and QMR require a matrix-by-vector product with A and

AT at each step. The products withAT do not contribute directly

to xm. ä They allow to determine the scalars (αj and βj in BCG).

ä QUESTION: is it possible to bypass the use of AT?

ä Motivation: in nonlinear equations, A is often not available

explicitly but via the Frechet derivative:

J(uk)v =
F (uk + εv)− F (uk)

ε
.
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Conjugate Gradient Squared

* Clever variant of BCG which avoids using AT [Sonneveld, 1984].

In BCG:

ri = ρi(A)r0

where ρi = polynomial of degree i.

In CGS:

ri = ρ2
i (A)r0

ä Define :

rj = φj(A)r0,

pj = πj(A)r0,



r∗j = φj(A
T )r∗0,

p∗j = πj(A
T )r∗0

Scalar αj in BCG is given by

αj =
(φj(A)r0, φj(A

T )r∗0)

(Aπj(A)r0, πj(AT )r∗0)
=

(φ2
j(A)r0, r

∗
0)

(Aπ2
j(A)r0, r

∗
0)

ä Possible to get a recursion for the φ2
j(A)r0 and π2

j(A)r0?

φj+1(t) = φj(t)− αjtπj(t),

πj+1(t) = φj+1(t) + βjπj(t)

ä Square these equalities

φ2
j+1(t) = φ2

j(t)− 2αjtπj(t)φj(t) + α2
jt

2π2
j(t),

π2
j+1(t) = φ2

j+1(t) + 2βjφj+1(t)πj(t) + β2
jπj(t)

2.

ä Problem: ...

.. Cross terms
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Solution: Let φj+1(t)πj(t), be a third member of the recurrence.

For πj(t)φj(t), note:

φj(t)πj(t) = φj(t) (φj(t) + βj−1πj−1(t))

= φ2
j(t) + βj−1φj(t)πj−1(t).

Result:

φ2
j+1 = φ2

j − αjt
(
2φ2

j + 2βj−1φjπj−1 − αjt π2
j

)
φj+1πj = φ2

j + βj−1φjπj−1 − αjt π2
j

π2
j+1 = φ2

j+1 + 2βjφj+1πj + β2
jπ

2
j .

Define:

rj = φ2
j(A)r0, pj = π2

j(A)r0, qj = φj+1(A)πj(A)r0
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Recurrences become:

rj+1 = rj − αjA (2rj + 2βj−1qj−1 − αjA pj) ,

qj = rj + βj−1qj−1 − αjA pj,

pj+1 = rj+1 + 2βjqj + β2
jpj.

Define auxiliary vector dj = 2rj + 2βj−1qj−1 − αjApj

ä Sequence of operations to compute the approximate solution,

starting with r0 := b−Ax0, p0 := r0, q0 := 0, β0 := 0.

1. αj = (rj, r
∗
0)/(Apj, r

∗
0)

2. dj = 2rj +2βj−1qj−1−αjApj

3. qj = rj + βj−1qj−1 − αjApj

4. xj+1 = xj + αjdj

5. rj+1 = rj − αjAdj

6. βj = (rj+1, r
∗
0)/(rj, r

∗
0)

7. pj+1 = rj+1 + βj(2qj + βjpj).
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ä one more auxiliary vector, uj = rj + βj−1qj−1. So

dj = uj + qj,

qj = uj − αjApj,

pj+1 = uj+1 + βj(qj + βjpj),

ä vector dj is no longer needed.
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ALGORITHM : 7 Conjugate Gradient Squared

1. Compute r0 := b−Ax0; r∗0 arbitrary.

2. Set p0 := u0 := r0.

3. For j = 0, 1, 2 . . . , until convergence Do:

4. αj = (rj, r
∗
0)/(Apj, r

∗
0)

5. qj = uj − αjApj
6. xj+1 = xj + αj(uj + qj)

7. rj+1 = rj − αjA(uj + qj)

8. βj = (rj+1, r
∗
0)/(rj, r

∗
0)

9. uj+1 = rj+1 + βjqj

10. pj+1 = uj+1 + βj(qj + βjpj)

11. EndDo
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ä Note: no matrix-by-vector products with AT but two matrix-by-

vector products with A, at each step.

Vector: ←→ Polynomial in BCG :

qi ←→ r̄i(t)p̄i−1(t)

ui ←→ p̄2
i (t)

ri ←→ r̄2
i (t)

where r̄i(t) = residual polynomial at step i for BCG, .i.e., ri = r̄i(A)r0,

and p̄i(t) = conjugate direction polynomial at step i, i.e., pi = p̄i(A)r0.
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BCGSTAB (van der Vorst, 1992)

ä In CGS: residual polynomial of BCG is squared. ä bad behavior

in case of irregular convergence.

ä Bi-Conjugate Gradient Stabilized (BCGSTAB) = a variation of

CGS which avoids this difficulty. ä Derivation similar to CGS.

ä Residuals in BCGSTAB are of the form,

r′j = ψj(A)φj(A)r0

in which, φj(t) = BCG residual polynomial, and ..

ä .. ψj(t) = a new polynomial defined recursively as

ψj+1(t) = (1− ωjt)ψj(t)

ωi chosen to ‘smooth’ convergence [steepest descent step]



ALGORITHM : 8 BCGSTAB

1. Compute r0 := b−Ax0; r∗0 arbitrary;

2. p0 := r0.

3. For j = 0, 1, . . . , until convergence Do:

4. αj := (rj, r
∗
0)/(Apj, r

∗
0)

5. sj := rj − αjApj
6. ωj := (Asj, sj)/(Asj, Asj)

7. xj+1 := xj + αjpj + ωjsj

8. rj+1 := sj − ωjAsj
9. βj :=

(rj+1,r
∗
0)

(rj,r
∗
0)
× αj

ωj

10. pj+1 := rj+1 + βj(pj − ωjApj)

11. EndDo
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PRECONDITIONING



Preconditioning – Basic principles

Basic idea is to use the Krylov subspace method on a modified

system such as

M−1Ax = M−1b.

• The matrix M−1A need not be formed explicitly; only need to

solve Mw = v whenever needed.

• Consequence: fundamental requirement is that it should be easy

to compute M−1v for an arbitrary vector v.
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Left, Right, and Split preconditioning

Left preconditioning: M−1Ax = M−1b

Right preconditioning: AM−1u = b, with x = M−1u

Split preconditioning: M−1
L AM−1

R u = M−1
L b, with x = M−1

R u

[Assume M is factored: M = MLMR. ]
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Preconditioned CG (PCG)

ä Assume: A and M are both SPD.

ä Applying CG directly to M−1Ax = M−1b or AM−1u = b

won’t work because coefficient matrices are not symmetric.

ä Alternative: when M = LLT use split preconditioner option

ä Second alternative: Observe that M−1A is self-adjoint wrt M

inner product:

(M−1Ax, y)M = (Ax, y) = (x,Ay) = (x,M−1Ay)M
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Preconditioned CG (PCG)

ALGORITHM : 9 Preconditioned Conjugate Gradient

1. Compute r0 := b−Ax0, z0 = M−1r0, and p0 := z0

2. For j = 0, 1, . . ., until convergence Do:

3. αj := (rj, zj)/(Apj, pj)

4. xj+1 := xj + αjpj

5. rj+1 := rj − αjApj
6. zj+1 := M−1rj+1

7. βj := (rj+1, zj+1)/(rj, zj)

8. pj+1 := zj+1 + βjpj

9. EndDo
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Note M−1A is also self-adjoint with respect to (., .)A:

(M−1Ax, y)A = (AM−1Ax, y) = (x,AM−1Ay) = (x,M−1Ay)A

ä Can obtain a similar algorithm

ä Assume that M = Cholesky product M = LLT .

Then, another possibility: Split preconditioning option, which ap-

plies CG to the system

L−1AL−Tu = L−1b, with x = LTu

ä Notation: Â = L−1AL−T . All quantities related to the precondi-

tioned system are indicated by .̂
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ALGORITHM : 10 CG with Split Preconditioner

1. Compute r0 := b−Ax0; r̂0 = L−1r0; and p0 := L−T r̂0.

2. For j = 0, 1, . . ., until convergence Do:

3. αj := (r̂j, r̂j)/(Apj, pj)

4. xj+1 := xj + αjpj

5. r̂j+1 := r̂j − αjL−1Apj

6. βj := (r̂j+1, r̂j+1)/(r̂j, r̂j)

7. pj+1 := L−T r̂j+1 + βjpj

8. EndDo

ä The xj’s produced by the above algorithm and PCG are identical

(if same initial guess is used).
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Flexible accelerators

Question: What can we do in case M is defined only approxi-

mately? i.e., if it can vary from one step to the other.?

Applications:

ä Iterative techniques as preconditioners: Block-SOR, SSOR, Multi-

grid, etc..

ä Chaotic relaxation type preconditioners (e.g., in a parallel com-

puting environment)

ä Mixing Preconditioners – mixing coarse mesh / fine mesh pre-

conditioners.
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ALGORITHM : 11 GMRES – No preconditioning

1. Start: Choose x0 and a dimension m of the Krylov subspaces.
2. Arnoldi process:

• Compute r0 = b−Ax0, β = ‖r0‖2 and v1 = r0/β.
• For j = 1, ...,m do

– Compute w := Avj

– for i = 1, . . . , j, do
{
hi,j := (w, vi)
w := w − hi,jvi

}
;

– hj+1,1 = ‖w‖2; vj+1 = w
hj+1,1

• Define Vm := [v1, ...., vm] and H̄m = {hi,j}.

3. Form the approximate solution: Compute xm = x0 + Vmym where
ym = argminy‖βe1 − H̄my‖2 and e1 = [1, 0, . . . , 0]T .

4. Restart: If satisfied stop, else set x0← xm and goto 2.
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ALGORITHM : 12 GMRES – (right) Preconditioning

1. Start: Choose x0 and a dimension m
2. Arnoldi process:

• Compute r0 = b−Ax0, β = ‖r0‖2 and v1 = r0/β.
• For j = 1, ...,m do

– Compute zj := M−1vj
– Compute w := Azj

– for i = 1, . . . , j, do :
{
hi,j := (w, vi)
w := w − hi,jvi

}
– hj+1,1 = ‖w‖2; vj+1 = w/hj+1,1

• Define Vm := [v1, ...., vm] and H̄m = {hi,j}.

3. Form the approximate solution: xm = x0 +M−1Vmym where ym =

argminy‖βe1 − H̄my‖2 and e1 = [1, 0, . . . , 0]T .
4. Restart: If satisfied stop, else set x0← xm and goto 2.



ALGORITHM : 13 GMRES – variable preconditioner
1. Start: Choose x0 and a dimension m of the Krylov subspaces.
2. Arnoldi process:

• Compute r0 = b−Ax0, β = ‖r0‖2 and v1 = r0/β.
• For j = 1, ...,m do

– Compute zj := M−1
j vj ; Compute w := Azj;

– for i = 1, . . . , j, do:
{
hi,j := (w, vi)
w := w − hi,jvi

}
;

– hj+1,1 = ‖w‖2; vj+1 = w/hj+1,1

• Define Zm := [z1, ...., zm] and H̄m = {hi,j}.
3. Form the approximate solution: Compute xm = x0 + Zmym where
ym = argminy‖βe1 − H̄my‖2 and e1 = [1, 0, . . . , 0]T .

4. Restart: If satisfied stop, else set x0← xm and goto 2.
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Properties

• xm minimizes b−Axm over Span{Zm}.

• If Azj = vj (i.e., if preconditioning is ‘exact’ at step j) then

approximation xj is exact.

• If Mj is constant then method is ≡ to Right-Preconditioned GM-

RES.

Additional Costs:

• Arithmetic: none.

• Memory: Must save the additional set of vectors {zj}j=1,...m

Advantage: Flexibility
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Standard preconditioners

• Simplest preconditioner: M = Diag(A) ä poor convergence.

• Next to simplest: SSOR M = (D − ωE)D−1(D − ωF )

• Still simple but often more efficient: ILU(0).

• ILU(p) – ILU with level of fill p – more complex.

• Class of ILU preconditioners with threshold

• Class of approximate inverse preconditioners

• Class of Multilevel ILU preconditioners: Multigrid, Algebraic Multi-

grid, M-level ILU, ..

CRM May 3, 2008 58



An observation. Introduction to Preconditioning

ä Take a look back at basic relaxation methods: Jacobi, Gauss-

Seidel, SOR, SSOR, ...

ä These are iterations of the form x(k+1) = Mx(k) + f where M is

of the form M = I − P−1A . For example for SSOR,

PSSOR = (D − ωE)D−1(D − ωF )
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ä SSOR attempts to solve the equivalent system

P−1Ax = P−1b

where P ≡ PSSOR by the fixed point iteration

x(k+1) = (I − P−1A)︸ ︷︷ ︸
M

x(k)+P−1b instead of x(k+1) = (I−A)x(k)+b

In other words:

Relaxation Scheme ⇐⇒ Preconditioned Fixed Point Iteration
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The SOR/SSOR preconditioner

D

−F

−E

ä SOR preconditioning

MSOR = (D − ωE)

ä SSOR preconditioning

MSSOR = (D − ωE)D−1(D − ωF )

ä MSSOR = LU , L = lower unit matrix, U = upper triangular. One

solve with MSSOR ≈ same cost as a MAT-VEC.
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ä k-step SOR (resp. SSOR) preconditioning:

k steps of SOR (resp. SSOR)

ä Questions: Best ω? For preconditioning can take ω = 1

M = (D − E)D−1(D − F )

Observe: M = LU +R with R = ED−1F .

ä Best k? k = 1 is rarely the best. Substantial difference in

performance.



Iteration times versus

k for SOR(k) precon-

ditioned GMRES
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ILU(0) and IC(0) preconditioners

ä Notation: NZ(X) = {(i, j) |Xi,j 6= 0}

ä Formal definition of ILU(0):

A = LU +R
NZ(L)

⋃
NZ(U) = NZ(A)

rij = 0 for (i, j) ∈ NZ(A)

ä This does not define ILU(0) in a unique way.

Constructive definition: Compute the LU factorization of A but

drop any fill-in in L and U outside of Struct(A).

ä ILU factorizations are often based on i, k, j version of GE.
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What is the IKJ version of GE?

Different computational patterns for gaussian elimination

KJI,KJI IJK



IKJ JKI
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ALGORITHM : 14 Gaussian Elimination – IKJ Variant

1. For i = 2, . . . , n Do:

2. For k = 1, . . . , i− 1 Do:

3. aik := aik/akk

4. For j = k + 1, . . . , n Do:

5. aij := aij − aik ∗ akj
6. EndDo

7. EndDo

8. EndDo
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Not accessed 

Accessed but not

Accessed and 
modified 

modified 
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ILU(0) – zero-fill ILU

ALGORITHM : 15 ILU(0)

For i = 1, . . . , N Do:

For k = 1, . . . , i− 1 and if (i, k) ∈ NZ(A) Do:

Compute aik := aik/akj

For j = k + 1, . . . and if (i, j) ∈ NZ(A), Do:

compute aij := aij − aikak,j.

EndFor

EndFor

ä WhenA is SPD then the ILU factorization = Incomplete Cholesky

factorization – IC(0). Meijerink and Van der Vorst [1977].
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Typical eigenvalue distribution of preconditioned matrix
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Pattern of ILU(0) for 5-point matrix
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Stencils and ILU factorization

Stencils of A and the L and U parts of A:
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Higher order ILU factorization

ä Higher accuracy incomplete Cholesky: for regularly structured

problems, IC(p) allows p additional diagonals in L.

ä Can be generalized to irregular sparse matrices using the notion

of level of fill-in [Watts III, 1979]

• Initially Levij =

 0 for aij 6= 0

∞ for aij == 0

• At a given step i of Gaussian elimination:

Levkj = min{Levkj;Levki + Levij + 1}
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ä ILU(p) Strategy = drop anything with level of fill-in exceeding p.

* Increasing level of fill-in usually results in more accurate ILU

and...

* ...typically in fewer steps and fewer arithmetic operations.
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ILU(1)
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ALGORITHM : 16 ILU(p)

For i = 2, N Do

For each k = 1, . . . , i− 1 and if aij 6= 0 do

Compute aik := aik/ajj

Compute ai,∗ := ai,∗ − aikak,∗.

Update the levels of ai,∗

Replace any element in row i with lev(aij) > p by zero.

EndFor

EndFor

ä The algorithm can be split into a symbolic and a numerical

phase. Level-of-fill ä in Symbolic phase
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ILU with threshold – generic algorithms

ILU(p) factorizations are based on structure only and not numer-

ical values ä potential problems for non M-matrices.

ä One remedy: ILU with threshold – (generic name ILUT.)

Two broad approaches:

First approach [derived from direct solvers]: use any (direct) sparse

solver and incorporate a dropping strategy. [Munksgaard (?), Os-

terby & Zlatev, Sameh & Zlatev[90], D. Young, & al. (Boeing) etc...]
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Second approach : [derived from ‘iterative solvers’ viewpoint]

1. use a (row or colum) version of the (i, k, j) version of GE;

2. apply a drop strategy for the elment lik as it is computed;

3. perform the linear combinations to get ai∗. Use full row expan-

sion of ai∗;

4. apply a drop strategy to fill-ins.
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ILU with threshold: ILUT(k, ε)

• Do the i, k, j version of Gaussian Elimination (GE).

• During each i-th step in GE, discard any pivot or fill-in whose

value is below ε‖rowi(A)‖.

• Once the i-th row of L + U , (L-part + U-part) is computed retain

only the k largest elements in both parts.

ä Advantages: controlled fill-in. Smaller memory overhead.

ä Easy to implement –

ä Can be made quite inexpensive.

CRM May 3, 2008 79


