SLIM: Sparse Linear Methods for Top-N Recommender Systems

Xia Ning and George Karypis

Computer Science & Engineering
University of Minnesota, Minneapolis, MN
Email: {xning, karypis@cs.umn.edu}

December 14, 2011
Outline

1 Introduction
 - Top-N Recommender Systems
 - Definitions and Notations
 - The State-of-the-Art methods

2 Methods
 - Sparse Linear Methods for top-N Recommendation
 - Learning W for SLIM
 - SLIM with Feature Selection

3 Materials

4 Experimental Results
 - SLIM on Binary Data
 - Top-N Recommendation Performance
 - SLIM for Long-Tail Distribution
 - SLIM Regularization Effects
 - SLIM on Rating Data

5 Conclusions
Outline

1. Introduction
 - *Top-N* Recommender Systems
 - Definitions and Notations
 - The State-of-the-Art methods

2. Methods
 - Sparse Linear Methods for *top-N* Recommendation
 - Learning W for SLIM
 - SLIM with Feature Selection

3. Materials

4. Experimental Results
 - SLIM on Binary Data
 - *Top-N* Recommendation Performance
 - SLIM for Long-Tail Distribution
 - SLIM Regularization Effects
 - SLIM on Rating Data

5. Conclusions

Xia Ning and George Karypis — SLIM: Sparse Linear Methods for Top-N Recommender Systems
Top-N Recommender Systems

- Top-N recommendation
 - E-commerce: huge amounts of products
 - Recommend a short ranked list of items for users

- Top-N recommender systems
 - Neighborhood-based Collaborative Filtering (CF)
 - Item based [2]: fast to generate recommendations, low recommendation quality
 - Model-based methods [1, 3, 5]
 - Matrix Factorization (MF) models: slow to learn the models, high recommendation quality
 - SLIM: Sparse Linear Methods for Top-N Recommender Systems
 - Fast and high recommendation quality
Definitions and Notations

Table 1: Definitions and Notations

<table>
<thead>
<tr>
<th>Def</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_i)</td>
<td>user</td>
</tr>
<tr>
<td>(t_j)</td>
<td>item</td>
</tr>
<tr>
<td>(\mathcal{U})</td>
<td>all users (</td>
</tr>
<tr>
<td>(\mathcal{T})</td>
<td>all items (</td>
</tr>
<tr>
<td>(A)</td>
<td>user-item purchase/rating matrix, size (n \times m)</td>
</tr>
<tr>
<td>(W)</td>
<td>item-item similarity matrix/coefficient matrix</td>
</tr>
<tr>
<td>(a_i^\top)</td>
<td>The (i)-th row of (A), the purchase/rating history of (u_i) on (\mathcal{T})</td>
</tr>
<tr>
<td>(a_j)</td>
<td>The (j)-th column of (A), the purchase/rating history of (\mathcal{U}) on (t_j)</td>
</tr>
</tbody>
</table>

- Row vectors are represented by having the transpose superscript \(^\top\), otherwise by default they are column vectors.
- Use matrix/vector notations instead of user/item purchase/rating profiles.
The State-of-the-Art Methods

Item-based Collaborative Filtering (1)

- Item-based k-nearest-neighbor (itemkNN) CF
 - Identify a set of similar items
 - Item-item similarity:
 - Calculated from A
 - Cosine similarity measure

x_1 x_2 x_3 ... x_j ... x_{m-1} x_m

u_1 u_2 u_3 ...

u_i ...

u_{n-1} u_n

A

W

Xia Ning and George Karypis • SLIM: Sparse Linear Methods for Top-N Recommender Systems
The State-of-the-Art Methods

Item-based Collaborative Filtering (2)

- itemkNN recommendation
 - Recommend similar items to what the user has purchased
 \[
 \hat{a}_i^T = a_i^T \times W
 \]

- Fast: sparse item neighborhood
- Low quality: no knowledge is learned

Xia Ning and George Karypis • SLIM: Sparse Linear Methods for Top-N Recommender Systems
The State-of-the-Art Methods

Matrix Factorization (1)

- **Latent factor models**
 - **Factorize** \(A \) **into low-rank user factors** \((U)\) **and item factors** \((V^T)\)
 - \(U \) and \(V^T \) represent user and item characteristics in a common latent space
 - **Formulated as an optimization problem**

\[
\text{minimize}_{U,V^T} \frac{1}{2} \| A - UV^T \|_F^2 + \frac{\beta}{2} \| U \|_F^2 + \frac{\lambda}{2} \| V^T \|_F^2
\]
The State-of-the-Art Methods

Matrix Factorization (2)

\[
\begin{align*}
\mathbf{u}^T \mathbf{v} &= \mathbf{t}_1 \mathbf{l}_1 + \mathbf{t}_2 \mathbf{l}_2 + \cdots + \mathbf{t}_k \mathbf{l}_k \\
&= \mathbf{u}^* \mathbf{t}^1 \mathbf{t}^2 \cdots \mathbf{t}^j \cdots \mathbf{t}^{m-1} \mathbf{t}^m \times \mathbf{l}_1 \mathbf{l}_2 \mathbf{l}_3 \cdots \mathbf{l}_j \cdots \mathbf{l}_{m-1} \mathbf{l}_m
\end{align*}
\]

- **MF recommendation**
 - Prediction: dot product in the latent space
 \[
 \hat{a}_{ij} = U_i^T V_j
 \]
 - Slow: dense \(U\) and \(V^T\)
 - High quality: user tastes and item properties are learned

Xia Ning and George Karypis

*SLIM: Sparse Linear Methods for Top-N Recommender Systems
Outline

1. Introduction
 - Top-N Recommender Systems
 - Definitions and Notations
 - The State-of-the-Art methods

2. Methods
 - Sparse Linear Methods for top-N Recommendation
 - Learning W for SLIM
 - SLIM with Feature Selection

3. Materials

4. Experimental Results
 - SLIM on Binary Data
 - Top-N Recommendation Performance
 - SLIM for Long-Tail Distribution
 - SLIM Regularization Effects
 - SLIM on Rating Data

5. Conclusions
Motivations:
- recommendations generated fast
- high-quality recommendations
- “have my cake and eat it too”

Key ideas:
- retain the nature of itemkNN: sparse W
- optimize the recommendation performance: learn W from A
 - sparsity structures
 - coefficient values
Learning W for SLIM

- The optimization problem:

$$\begin{align*}
\text{minimize} & \quad \frac{1}{2} \| A - AW \|_F^2 + \frac{\beta}{2} \| W \|_F^2 + \lambda \| W \|_1 \\
\text{subject to} & \quad W \geq 0 \\
& \quad \text{diag}(W) = 0,
\end{align*}$$

(1)
Learning W for SLIM

- The optimization problem:

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2} \|A - AW\|_F^2 + \frac{\beta}{2} \|W\|_F^2 + \lambda \|W\|_1 \\
\text{subject to} & \quad W \geq 0 \\
& \quad \text{diag}(W) = 0,
\end{align*}
\]

- Computing W:
 - The columns of W are independent: easy to parallelize
 - The decoupled problems:

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2} \|a_j - Aw_j\|_2^2 + \frac{\beta}{2} \|w_j\|_2^2 + \lambda \|w_j\|_1 \\
\text{subject to} & \quad w_j \geq 0 \\
& \quad w_{j,i} = 0,
\end{align*}
\]
Reducing model learning time

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2} \|a_j - Aw_j\|_2^2 + \frac{\beta}{2} \|w_j\|_2^2 + \lambda \|w_j\|_1
\end{align*}
\]

- \text{fsSLIM: SLIM with feature selection}
 - Prescribe the potential non-zero structure of \(w_j\)
 - Select a subset of columns from \(A\)

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2} \|a_j - A'w_j\|_2^2 + \frac{\beta}{2} \|w_j\|_2^2 + \lambda \|w_j\|_1
\end{align*}
\]

Xia Ning and George Karypis • SLIM: Sparse Linear Methods for Top-N Recommender Systems
Outline

1. Introduction
 - Top-N Recommender Systems
 - Definitions and Notations
 - The State-of-the-Art methods

2. Methods
 - Sparse Linear Methods for top-N Recommendation
 - Learning W for SLIM
 - SLIM with Feature Selection

3. Materials

4. Experimental Results
 - SLIM on Binary Data
 - Top-N Recommendation Performance
 - SLIM for Long-Tail Distribution
 - SLIM Regularization Effects
 - SLIM on Rating Data

5. Conclusions

Xia Ning and George Karypis

SLIM: Sparse Linear Methods for Top-N Recommender Systems
Datasets, Evaluation Methodology and Metrics

Table 2: The Datasets Used in Evaluation

<table>
<thead>
<tr>
<th>dataset</th>
<th>#users</th>
<th>#items</th>
<th>#trns</th>
<th>rsize</th>
<th>csize</th>
<th>density</th>
<th>ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccard</td>
<td>42,067</td>
<td>18,004</td>
<td>308,420</td>
<td>7.33</td>
<td>17.13</td>
<td>0.04%</td>
<td>-</td>
</tr>
<tr>
<td>ctlg2</td>
<td>22,505</td>
<td>17,096</td>
<td>1,814,072</td>
<td>80.61</td>
<td>106.11</td>
<td>0.47%</td>
<td>-</td>
</tr>
<tr>
<td>ctlg3</td>
<td>58,565</td>
<td>37,841</td>
<td>453,219</td>
<td>7.74</td>
<td>11.98</td>
<td>0.02%</td>
<td>-</td>
</tr>
<tr>
<td>ecmrc</td>
<td>6,594</td>
<td>3,972</td>
<td>50,372</td>
<td>7.64</td>
<td>12.68</td>
<td>0.19%</td>
<td>-</td>
</tr>
<tr>
<td>BX</td>
<td>3,586</td>
<td>7,602</td>
<td>84,981</td>
<td>23.70</td>
<td>11.18</td>
<td>0.31%</td>
<td>1-10</td>
</tr>
<tr>
<td>ML10M</td>
<td>69,878</td>
<td>10,677</td>
<td>10,000,054</td>
<td>143.11</td>
<td>936.60</td>
<td>1.34%</td>
<td>1-10</td>
</tr>
<tr>
<td>Netflix</td>
<td>39,884</td>
<td>8,478</td>
<td>1,256,115</td>
<td>31.49</td>
<td>148.16</td>
<td>0.37%</td>
<td>1-5</td>
</tr>
<tr>
<td>Yahoo</td>
<td>85,325</td>
<td>55,371</td>
<td>3,973,104</td>
<td>46.56</td>
<td>71.75</td>
<td>0.08%</td>
<td>1-5</td>
</tr>
</tbody>
</table>

- Datasets: 8 real datasets of 2 categories
- Evaluation methodology: Leave-One-Out cross validation
- Evaluation metrics
 - Hit Rate: \(HR = \frac{\#hits}{\#users} \)
 - Average Reciprocal Hit-Rank (ARHR) \([2]\):
 \[
 ARHR = \frac{1}{\#users} \sum_{i=1}^{\#hits} \frac{1}{p_i}
 \]
Introduction

1. Top-N Recommender Systems
2. Definitions and Notations
3. The State-of-the-Art methods

Methods

1. Sparse Linear Methods for top-N Recommendation
2. Learning W for SLIM
3. SLIM with Feature Selection

Materials

Experimental Results

1. SLIM on Binary Data
 - Top-N Recommendation Performance
 - SLIM for Long-Tail Distribution
 - SLIM Regularization Effects
2. SLIM on Rating Data

Conclusions
SLIM on Binary Data

Top-N recommendation performance

Figure 1: HR comparison

Figure 2: ARHR comparison

Figure 3: learning time comparison

Figure 4: testing time comparison

Xia Ning and George Karypis • SLIM: Sparse Linear Methods for Top-N Recommender Systems
SLIM on Binary Data

SLIM for Long-Tail Distribution

Figure 5: Rating Distribution in ML10M

- SLIM outperforms the rest methods on the “long tail”.

Figure 6: HR in ML10M tail

Figure 7: ARHR in ML10M tail
SLIM on Binary Data

SLIM Recommendations for Different top-N

The performance difference between SLIM and the best of the other methods are higher for smaller values of N.

SLIM tends to rank most relevant items higher than the other methods.
SLIM on Binary Data

SLIM Regularization Effects

Figure 10: SLIM Regularization Effects on BX

\[
\text{minimize}_{W} \frac{1}{2} \|A - AW\|_F^2 + \frac{\beta}{2} \|W\|_F^2 + \lambda \|W\|_1
\]

- As greater ℓ_1-norm regularization (i.e., larger λ) is applied, lower recommendation time is achieved, indicating that the learned W is sparser.
- The best recommendation quality is achieved when both of the regularization parameters β and λ are non-zero.
- The recommendation quality changes smoothly as the regularization parameters β and λ change.
SLIM on Rating Data

Top-N recommendation performance

Figure 11: SLIM on Netflix

Evaluation metrics:

- per-rating Hit Rate: rHR

- All the -r methods produce higher hit rates on items with higher ratings.

- The -r methods outperform -b methods on high-rated items.

- SLIM-r consistently outperforms the other methods on items with higher ratings.
Outline

1 Introduction
 - Top-N Recommender Systems
 - Definitions and Notations
 - The State-of-the-Art methods

2 Methods
 - Sparse Linear Methods for top-N Recommendation
 - Learning W for SLIM
 - SLIM with Feature Selection

3 Materials

4 Experimental Results
 - SLIM on Binary Data
 - Top-N Recommendation Performance
 - SLIM for Long-Tail Distribution
 - SLIM Regularization Effects
 - SLIM on Rating Data

5 Conclusions
Conclusions

- **SLIM**: Sparse Linear Method for *top-N* recommendations
 - The recommendation score for a new item can be calculated as an aggregation of other items
 - A sparse aggregation coefficient matrix W is learned for SLIM to make the aggregation very fast
 - W is learned by solving an ℓ_1-norm and ℓ_2-norm regularized optimization problem such that sparsity is introduced into W
 - Fast and efficient
P. Cremonesi, Y. Koren, and R. Turrin.
Performance of recommender algorithms on top-n recommendation tasks.

M. Deshpande and G. Karypis.
Item-based top-n recommendation algorithms.

Collaborative filtering for implicit feedback datasets.

Bpr: Bayesian personalized ranking from implicit feedback.

V. Sindhwani, S. S. Bucak, J. Hu, and A. Mojsilovic.
One-class matrix completion with low-density factorizations.

R. Tibshirani.
Regression shrinkage and selection via the lasso.
Thank You!