
Managing App Testing Device Clouds: Issues and Opportunities
Mattia Fazzini

University of Minnesota
Minneapolis, MN, USA
mfazzini@umn.edu

Alessandro Orso
Georgia Institute of Technology

Atlanta, GA, USA
orso@cc.gatech.edu

ABSTRACT
Because creating and maintaining an in-house test lab is expensive
and time-consuming, companies and app developers often use de-
vice clouds to test their apps. Because quality-assurance activities
depend on such device clouds, it is important to understand possible
issues related to their use. To this end, in this paper we present a
preliminary study that investigates issues and highlights research
opportunities in the context of managing and maintaining device
clouds. In the study, we analyzed over 12 million test executions on
110 devices. We found that the management software of the cloud
infrastructure we considered affected some test executions, and
almost all the cloud devices had at least one security-related issue.

ACM Reference Format:
Mattia Fazzini and Alessandro Orso. 2020. Managing App Testing Device
Clouds: Issues and Opportunities. In 35th IEEE/ACM International Conference
on Automated Software Engineering (ASE ’20), September 21–25, 2020, Virtual
Event, Australia. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3324884.3418909

1 INTRODUCTION
Thorough in-house testing of Android apps has been particularly
challenging for companies and developers, due to the fragmentation
of the Android ecosystem [6, 11, 12, 14, 16, 18, 19, 21, 26, 34–36, 40].
Because of the extremely large number of devices and versions of
the Android operating system running in the field, companies and
developers are required to check that their apps behave as expected
on a large set of devices. However, creating and maintaining an
in-house test lab with a large set of devices is expensive, difficult,
and ultimately impractical [7].

To support companies and developers, many organizations [1, 9,
13, 25, 29, 30] built publicly accessible device clouds that developers
can use to thoroughly test their apps. Specifically, developers can
use these cloud devices to run tests on multiple devices, monitor
test execution progress, and retrieve text execution artifacts.

Understanding possible issues with device-cloud infrastructure
is extremely important, as these issues might affect the quality as-
surance processes that rely on such infrastructure. In this spirit, we
performed a preliminary study that aims to investigate issues, as
well as highlight research opportunities, in the context of manag-
ing and maintaining cloud-based app-testing infrastructure. In the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3418909

Table 1: Android versions, devices, and tests in our study.
Android Version # Devices CTS Version Tag # Modules # Tests
Jelly Bean 4.2 2 4.2.2_r1 50 17268
Jelly Bean 4.3 5 4.3_r2.2-cts 57 18013
KitKat 4.4 38 cts-4.4_r4 73 24039
Lollipop 5.0 11 cts-5.0_r9 93 33929
Lollipop 5.1 6 cts-5.1_r28 96 34207
Marshmallow 6.0 15 cts-6.0_r32 114 37613
Nougat 7.0 7 cts-7.0_r32 124 43494
Nougat 7.1 2 cts-7.1_r28 133 43598
Oreo 8.0.0 11 cts-8.0_r20 195 59459
Oreo 8.1.0 4 cts-8.1_r16 210 60383
Pie 9 9 cts-9.0_r9 289 84182

study, we ran the set of tests from Google’s Android Compatibility
Test Suite [8] on the devices in the AWS Device Farm [1] and used
the tests to identify issues in this device cloud. After analyzing
more than 12 million test executions on 110 devices, we found
that (1) the cloud management software used to run and update
devices can interfere with test executions and (2) devices tend to
have security-related issues that could be exploited by attackers.

2 METHODOLOGY
As mentioned above, we investigated possible issues with device
clouds by executing the set of tests in Google’s Compatibility Test
Suite (CTS) [8] on devices hosted in the AWS Device Farm (DF) [1].

Google’s CTS provides a mechanism for checking whether a
device’s Android operating system (OS) exhibits standard behavior;
devices that pass all CTS tests are considered Android compatible.
This helps ensure that app developers can rely on a consistent execu-
tion environment despite the various OS customizations performed
by device vendors [6, 34, 35].

We selected DF as our cloud testing environment because (i)
is a popular environment for mobile app testing [13, 29, 30], (ii)
offers access to the machine driving the test suite execution (which
is necessary to run the CTS tests), and (iii) has a wide variety of
devices running different versions of the Android OS.

In our study, we considered devices certified as Android com-
patible and checked whether they passed all the CTS tests also in
the cloud testing environment. Because these devices passed all
CTS tests when the tests were run locally, test failures on the cloud
devices would likely indicate issues in the cloud infrastructure.

Table 1 shows relevant information for the devices we considered
and their corresponding Android OS versions. For each version of
the Android OS (Android Version), the table shows the number of
devices running that version (# Devices), the CTS version used (CTS
Version Tag),1 the number of test modules (# Modules), where a test
module contains tests that exercises a specific functionality,2 and
the overall number of tests.
1For each OS version, we used the latest release of the CTS available for that version.
2We disregarded some test modules because they either required a specific device
configuration that we could not set programmatically, or their execution time exceeded
the time limit enforced by the DF.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Mattia Fazzini and Alessandro Orso
Ga

la
xy

 T
ab

 3
 L

ite
 7

.0
 W

iF
i

G
Fl

ex
 A

TT

Ne
xu

s 7
 -

2n
d

Ge
n

W
iF

i
Ga

la
xy

 S
3

Ve
riz

on
Ga

la
xy

 S
3

T-
M

ob
ile

Ga
la

xy
 S

3
AT

T
Ga

la
xy

 S
3

LT
E

T-
M

ob
ile

Ga
la

xy
 T

ab
 3

 7
.0

 T
-M

ob
ile

Ga
la

xy
 S

5
AT

T
DR

OI
D

Ul
tra

 V
er

izo
n

On
e

M
8

AT
T

M
ot

o
G

AT
T

Su
ns

et
 2

G2
 T

-M
ob

ile
Ga

la
xy

 S
4

AT
T

Ga
la

xy
 N

ot
e

4
AT

T
Ga

la
xy

 G
ra

nd
 P

rim
e

Du
os

Ga
la

xy
 S

5
Ve

riz
on

Ga
la

xy
 N

ot
e

3
Ve

riz
on

Ga
la

xy
 N

ot
e

4
Ve

riz
on

Ga
la

xy
 N

ot
e

3
AT

T
Ga

la
xy

 G
ra

nd
 N

eo
 P

lu
s

Ne
xu

s 4
 4

-4
-3

Ga
la

xy
 G

ra
nd

 2
Ga

la
xy

 E
7

Op
tim

us
 L

70
 M

et
ro

PC
S

Ga
la

xy
 S

4
Ve

riz
on

Ga
la

xy
 S

4
M

in
i

G
Pa

d
7.

0
AT

T
Ga

la
xy

 S
5

T-
M

ob
ile

Ga
la

xy
 S

4
T-

M
ob

ile
Ga

la
xy

 S
5

AT
T

Ra
in

bo
w

4G
Ne

xu
s 5

Ga
la

xy
 S

5
Ac

tiv
e

AT
T

G2
 A

TT
On

e
M

8
AT

T
Ga

la
xy

 S
4

US
 C

el
lu

la
r

Ga
la

xy
 S

3
Ve

riz
on

Ga
la

xy
 S

4
m

in
i V

er
izo

n
Ga

la
xy

 S
4

AT
T

Ga
la

xy
 N

ot
e

2
Ve

riz
on

Ga
la

xy
 N

ot
e

3
AT

T
Ga

la
xy

 S
4

Ac
tiv

e
AT

T
Aq

ua
 Y

2
Pr

o

Ga
la

xy
 S

4
Ve

riz
on

Ga
la

xy
 N

ot
e

4
SM

-N
91

0H
Ga

la
xy

 S
4

AT
T

Ga
la

xy
 N

ot
e

4
AT

T
Ga

la
xy

 S
4

Un
lo

ck
ed

 G
T-

I9
50

0
Xp

er
ia

 Z
4

Ta
bl

et
Ga

la
xy

 N
ot

e
4

Ve
riz

on
On

e
M

9
AT

T
Ga

la
xy

 N
ot

e
3

Sp
rin

t
Ne

xu
s 7

 -
2n

d
Ge

n
W

iF
i

Ne
xu

s 5

Ga
la

xy
 N

ot
e5

 T
-M

ob
ile

M
ot

o
X

- 2
nd

 G
en

 V
er

izo
n

Ga
la

xy
 T

ab
 S

2
8.

0
W

iF
i

Ga
la

xy
 J5

 4
G

M
ot

o
E

- 2
nd

 G
en

Ne
xu

s 6

Ga
la

xy
 T

ab
 S

2
8.

0
W

iF
i

Ga
la

xy
 S

5
Ve

riz
on

Ga
la

xy
 S

6
T-

M
ob

ile
Ga

la
xy

 S
7

AT
T

Ga
la

xy
 S

7
T-

M
ob

ile
Ga

la
xy

 S
6

Ve
riz

on
Ga

la
xy

 S
6

SM
-G

92
0F

Ga
la

xy
 T

ab
 S

2
9.

7
Ga

la
xy

 S
5

AT
T

Ga
la

xy
 S

6
Ed

ge
 S

M
-G

92
5F

Ne
xu

s 7
 -

2n
d

Ge
n

W
iF

i
G5

 T
-M

ob
ile

Ga
la

xy
 N

ot
e5

 S
M

-N
92

0C
Ne

xu
s 5

Ga
la

xy
 S

7
SM

-G
93

0F

Sa
m

su
ng

 G
al

ax
y

Ta
b

A
10

.1
M

ot
o

G
4

Ga
la

xy
 S

8
T-

M
ob

ile
Ga

la
xy

 S
6

Ed
ge

 S
M

-G
92

5F
Ga

la
xy

 S
8

Un
lo

ck
ed

Ga
la

xy
 N

ot
e5

 A
TT

Ga
la

xy
 S

6
T-

M
ob

ile

Pi
xe

l
Ga

la
xy

 N
ot

e8
 U

nl
oc

ke
d G6

Sa
m

su
ng

 G
al

ax
y

A7
Sa

m
su

ng
 G

al
ax

y
A6

So
ny

 X
pe

ria
 X

Z2
Go

og
le

 P
ix

el
 2

Pi
xe

l X
L

Pi
xe

l 2
 X

L
Ga

la
xy

 S
8

Un
lo

ck
ed

Ga
la

xy
 S

9+
 U

nl
oc

ke
d

Ga
la

xy
 S

9
Un

lo
ck

ed
So

ny
 X

pe
ria

 X
Z1

Ga
la

xy
 J2

Go
og

le
 P

ix
el

 2
Sa

m
su

ng
 G

al
ax

y
Ta

b
S4

Sa
m

su
ng

 G
al

ax
y

No
te

 9

So
ny

 X
pe

ria
 X

Z2
Ga

la
xy

 N
ot

e
10

Ga
la

xy
 S

9
Un

lo
ck

ed
So

ny
 X

pe
ria

 X
Z3

Ga
la

xy
 S

10
Ga

la
xy

 S
9+

 U
nl

oc
ke

d
Go

og
le

 P
ix

el
 2

Go
og

le
 P

ix
el

 3
 X

L
Go

og
le

 P
ix

el
 3

0

25

50

75

100

125

150

175 Android 4.2 Android 4.3 Android 4.4 Android 5.0 Android 5.1 Android 6.0 Android 7.0 Android 7.1 Android 8.0 Android 8.1 Android 9.0

Figure 1: Test failures for the different devices considered.

Note that, to account for test flakiness [5, 22, 33], we executed
each test three times and considered a test as passing if it passed
at least once. This configuration led to the execution of over 12
million tests, which took 136 days of machine time to complete.

3 RESULTS AND ANALYSIS
Figure 1 summarizes the number of failures triggered by the tests.
The x-axis lists the devices considered (make, name, and carrier),
whereas the y-axis reports the number of failures for those devices.
Devices are grouped by their OS version, using different fill patterns
and with the most recent versions last. Overall, although most tests
passed, we observed 9,778 failures, and all devices experienced at
least one failure.

As a first investigation into the causes of these failures, we iden-
tified tests that failed on all devices on which they ran, as these
tests should reveal general issues with the cloud infrastructure. This
resulted in the identification of 58 tests from 15 different modules.
Intuitively, We then met with engineers from the DF team to discuss
the results, and they confirmed that the failures for 27 of these tests
were indeed caused by the cloud infrastructure, and in particular by
the fact that the software used to manage the cloud devices inhibits
certain types of screen animations. Therefore, when using these
cloud devices, app developers might experience test failures that
are not caused by faults in their apps and are thus false positives.
For the remaining 21 failures, the DF engineers were still collecting
the data produced in our experiments, so we do not yet have a
final confirmation. In future work, we plan to extend this part of
our study by analyzing failures on a per-vendor and per-version
basis, as cloud-related failures might also be vendor- or version-
specific. We will also investigate how light-weight monitoring of
test executions could help identify situations in which test results
are affected by software external to the apps being testes, so as to
suitably inform developers.

We also analyzed our results to detect whether cloud devices
have security-related issues that can be exploited. When new bugs,
and in particular security bugs (i.e., vulnerabilities) are found in the
Android OS, new tests are added to the CTS to prevent new devices
from being released with the same bugs. Devices that are already
running in the field should receive updates to fix these bugs, and so
should devices that are running within a cloud infrastructure. We
therefore investigated whether cloud devices are affected by known
security bugs that attackers could exploit (and that could make test
results unreliable). First, we identified security-related (failing) tests
by manually analyzing package names, test names, and stack traces

of failing tests. Across all devices and versions, we found 1,307
security-related test failures (13% of all failures) caused by 153 dif-
ferent tests. All devices but one had at least one security-related test
failure. For example, test testStagefright_cve_2016_2507 revealed
that seven of the considered devices are affected the vulnerabil-
ity described in CVE-2016-2507 [4] (an arbitrary code execution
vulnerability). This result motivates the investigation and use of
techniques for performing run-time security monitoring of cloud
devices and for frequently and quickly delivering updates to the
devices when problems are detected.

4 RELATEDWORK
Our work mostly relates to cloud-based testing of mobile apps [2,
3, 10, 23, 24, 27, 28, 31, 32, 37–39] and compatibility analysis of
mobile software [6, 12, 15, 17, 19, 20, 34, 35]. The former research
area focuses on designing and implementing cloud-based testing
infrastructure [24, 28, 31, 32] and on improving the process of test-
ing mobile apps in the cloud [10, 23, 27, 39]. The latter research
area focuses on identifying compatibility issues between different
devices [6, 15, 17, 34, 35] and between different releases of An-
droid [12, 19]. Although this previous work is related to ours, to
the best of our knowledge, this is the first study that systematically
studies issues in a real-world cloud testing infrastructure.

5 CONCLUSION
In this paper, we presented a preliminary study that identified
issues and research opportunities in the context of managing and
maintaining a cloud-based app-testing infrastructure. Our results
show that the cloud infrastructure can interfere with the tests run
on cloud devices and cause spurious failures. They also show that
cloud devices suffer from vulnerabilities that could be exploited
by malicious users. In the future, we plan to expand our study by
creating a detailed taxonomy of the failures.We also plan to perform
a per-vendor and per-version analysis of test failures. Our study
results also motivate research in the areas of automatic generation
of compatibility-based tests and light-weight monitoring of cloud-
based test executions.

ACKNOWLEDGMENTS
This work was partially supported by gifts from Amazon and Face-
book, and by NSF grant CCF-1563991.

Managing App Testing Device Clouds: Issues and Opportunities ASE ’20, September 21–25, 2020, Virtual Event, Australia

REFERENCES
[1] Amazon. 2020. AWS Device Farm. Retrieved August 31, 2020 from https://aws.

amazon.com/device-farm
[2] Antonia Bertolino, Guglielmo De Angelis, Micael Gallego, Boni García, Francisco

Gortázar, Francesca Lonetti, and Eda Marchetti. 2019. A Systematic Review on
Cloud Testing. ACM Comput. Surv. (2019).

[3] L. Cheng, J. Chang, Z. Yang, and C. Wang. 2016. GUICat: GUI testing as a
service. In 2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE) (Singapore, Singapore). IEEE, 858–863.

[4] CVE. 2016. CVE-2016-2507. Retrieved August 31, 2020 from https://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2016-2507

[5] Zhen Dong, Abhishek Tiwari, Xiao Liang Yu, and Abhik Roychoud-
hury. 2020. Concurrency-related Flaky Test Detection in Android apps.
arXiv:2005.10762 [cs.SE]

[6] Mattia Fazzini and Alessandro Orso. 2017. Automated Cross-Platform Inconsis-
tency Detection for Mobile Apps. In Proceedings of the 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (Urbana-Champaign, IL,
USA). IEEE, 308–318.

[7] Daniel Giordano. 2017. The Average Cost Of A Device Lab. Retrieved August 31,
2020 from https://crossbrowsertesting.com/blog/browsers/average-cost-device-
lab

[8] Google. 2020. Compatibility Test Suite. Retrieved August 31, 2020 from https:
//source.android.com/compatibility/cts

[9] Google. 2020. Firebase Test Lab. Retrieved August 31, 2020 from https://firebase.
google.com/docs/test-lab

[10] P. Graubner, L. Baumgärtner, P. Heckmann, M. Müller, and B. Freisleben. 2015.
Dynalize: Dynamic Analysis of Mobile Apps in a Platform-as-a-Service Cloud. In
2015 IEEE 8th International Conference on Cloud Computing (New York, NY, USA).
IEEE, 925–932.

[11] D. Han, C. Zhang, X. Fan, A. Hindle, K.Wong, and E. Stroulia. 2012. Understanding
Android Fragmentation with Topic Analysis of Vendor-Specific Bugs. In 2012 19th
Working Conference on Reverse Engineering (Kingston„ Canada). IEEE, 83–92.

[12] Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling Xue.
2018. Understanding and Detecting Evolution-induced Compatibility Issues in
Android Apps. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. ACM, Montpellier, France, 167–177.

[13] Software Testing Help. 2020. Best Cloud-Based Mobile App Testing Service Providers
In 2020. Retrieved August 31, 2020 from https://www.softwaretestinghelp.com/
cloud-mobile-testing-services

[14] Andreas Holzinger, Peter Treitler, andWolfgang Slany. 2012. Making apps useable
on multiple different mobile platforms: On interoperability for business appli-
cation development on smartphones. In International Conference on Availability,
Reliability, and Security (Prague, Czech Republic). IEEE, 176–189.

[15] J. Huang. 2014. AppACTS: Mobile App Automated Compatibility Testing Service.
In 2014 2nd IEEE International Conference on Mobile Cloud Computing, Services,
and Engineering (Oxford, UK). IEEE, 85–90.

[16] Mona Erfani Joorabchi, Ali Mesbah, and Philippe Kruchten. 2013. Real Challenges
in Mobile app Development. In 2013 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (Baltimore, MD, USA). IEEE,
15–24.

[17] Taeyeon Ki, Chang Min Park, Karthik Dantu, Steven Y. Ko, and Lukasz Ziarek.
2019. Mimic: UI Compatibility Testing System for Android Apps. In Proceedings
of the 41st International Conference on Software Engineering (Montreal, Quebec,
Canada). IEEE Press, 246–256.

[18] Huoran Li, Xuan Lu, Xuanzhe Liu, Tao Xie, Kaigui Bian, Felix Xiaozhu Lin,
Qiaozhu Mei, and Feng Feng. 2015. Characterizing smartphone usage patterns
from millions of Android users. In Proceedings of the 2015 ACM Conference on
Internet Measurement Conference (Tokyo, Japan). ACM, 459–472.

[19] Li Li, Tegawendé F. Bissyandé, Haoyu Wang, and Jacques Klein. 2018. CiD:
Automating the Detection of API-related Compatibility Issues in Android Apps.
In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, Amsterdam, Netherlands, 153–163.

[20] C. Liu, W. Chen, and S. Chen. 2016. A Concurrent Approach for Improving the
Efficiency of Android CTS Testing. In 2016 International Computer Symposium
(ICS) (Chiayi, Taiwan). IEEE, 611–615.

[21] Yepang Liu, Chang Xu, and Shing-Chi Cheung. 2014. Characterizing and de-
tecting performance bugs for smartphone applications. In Proceedings of the

36th International Conference on Software Engineering (Hyderabad, India). ACM,
1013–1024.

[22] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
Empirical Analysis of Flaky Tests. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (Hong Kong,
China). ACM, 643–653.

[23] R. Mahmood, N. Esfahani, T. Kacem, N. Mirzaei, S. Malek, and A. Stavrou. 2012.
A whitebox approach for automated security testing of Android applications
on the cloud. In 2012 7th International Workshop on Automation of Software Test
(AST) (Zurich, Switzerland). IEEE, 22–28.

[24] A. Malini, N. Venkatesh, K. Sundarakantham, and S. Mercyshalinie. 2014. Mobile
application testing on smart devices using MTAAS framework in cloud. In Inter-
national Conference on Computing and Communication Technologies (Hyderabad,
India). IEEE, 1–5.

[25] Microsoft. 2020. Visual Studio App Center. Retrieved August 31, 2020 from
https://appcenter.ms

[26] Abhinav Pathak, Y Charlie Hu, and Ming Zhang. 2011. Bootstrapping energy
debugging on smartphones: a first look at energy bugs in mobile devices. In
Proceedings of the 10th ACM Workshop on Hot Topics in Networks (Cambridge,
MA, USA). ACM, 1–6.

[27] C. M. Prathibhan, A. Malini, N. Venkatesh, and K. Sundarakantham. 2014. An
automated testing framework for testing Androidmobile applications in the cloud.
In 2014 IEEE International Conference on Advanced Communications, Control and
Computing Technologies (Ramanathapuram, India). IEEE, 1216–1219.

[28] Isabel K. Villanes Rojas, Silvia Meireles, and Arilo Claudio Dias-Neto. 2016. Cloud-
Based Mobile App Testing Framework: Architecture, Implementation and Execu-
tion. In Proceedings of the 1st Brazilian Symposium on Systematic and Automated
Software Testing (Maringa, Parana, Brazil). ACM, 1–10.

[29] Snigdha. 2020. Top Device Clouds for Mobile App Testing. Retrieved August 31,
2020 from https://www.appypie.com/top-device-clouds-for-mobile-app-testing

[30] SYSTANGO. 2020. Everything You Need to know about Cloud-
Based Device Testing Providers. Retrieved August 31, 2020 from
https://medium.com/@systango/everything-you-need-to-know-about-
cloud-based-device-testing-providers-3090fe465a58

[31] Chuanqi Tao and Jerry Gao. 2017. On building a cloud-based mobile testing
infrastructure service system. Journal of systems and software 124 (2017), 39–55.

[32] C. Tao, J. Gao, and B. Li. 2015. Cloud-Based Infrastructure for Mobile Testing as
a Service. In 2015 Third International Conference on Advanced Cloud and Big Data
(Yangzhou, China). IEEE, 133–140.

[33] S. Thorve, C. Sreshtha, and N. Meng. 2018. An Empirical Study of Flaky Tests
in Android Apps. In 2018 IEEE International Conference on Software Maintenance
and Evolution (Madrid, Spain). IEEE, 534–538.

[34] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming Android Fragmenta-
tion: Characterizing and Detecting Compatibility Issues for Android Apps. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering (Singapore, Singapore). ACM, 226–237.

[35] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2019. Pivot: Learning API-Device
Correlations to Facilitate Android Compatibility Issue Detection. In Proceedings
of the 41st International Conference on Software Engineering (Montreal, Quebec,
Canada). IEEE, 878–888.

[36] Lei Wu, Michael Grace, Yajin Zhou, ChiachihWu, and Xuxian Jiang. 2013. The im-
pact of vendor customizations on android security. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security (Berlin, Germany).
ACM, 623–634.

[37] M. G. Xavier, K. J. Matteussi, G. R. França, W. P. Pereira, and C. A. F. De Rose.
2017. Mobile Application Testing on Clouds: Challenges, Opportunities and Ar-
chitectural Elements. In 2017 25th Euromicro International Conference on Parallel,
Distributed and Network-based Processing (PDP) (St. Petersburg, Russia). IEEE,
181–185.

[38] Samer Zein, Norsaremah Salleh, and John Grundy. 2016. A Systematic Mapping
Study of Mobile Application Testing Techniques. J. Syst. Softw. (2016), 334–356.

[39] S. Zhang and B. Pi. 2015. Mobile Functional Test on TaaS Environment. In 2015
IEEE Symposium on Service-Oriented System Engineering (San Francisco, CA, USA).
IEEE, 315–320.

[40] Xiaoyong Zhou, Yeonjoon Lee, Nan Zhang, Muhammad Naveed, and XiaoFeng
Wang. 2014. The peril of fragmentation: Security hazards in android device driver
customizations. In 2014 IEEE Symposium on Security and Privacy (San Jose, CA,
USA). IEEE, 409–423.

