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Connection  subgraphs

Christos Faloutsos (CMU & IBM)
Kevin McCurley (IBM)
Andrew Tomkins (IBM)
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Outline

• Introduction / Motivation
• Survey
• Proposed Method
• Algorithms
• Experiments
• Conclusions
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Introduction

• What are the best paths between 
‘Kidman’ and ‘Diaz’?

SIAM-DM04 Faloutsos, McCurley & Tomkins 4

Carnegie Mellon

Problem definition

• Given a graph, and two nodes s and t, 
and a 'budget' b of nodes

• Find the best b nodes that capture the 
relationship between s and t

s t

f
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Problem definition

• Given a graph, and two nodes s and t, 
and a 'budget' b of nodes

• Find the best b nodes that capture the 
relationship between s and t

s t

f
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Carnegie Mellon

Problem definition

• Part 1: How to quantify the 
goodness?

• Part 2: How to pick ‘best 
few’ nodes?

• Part 3: Scalability: large 
graphs (10**7 nodes)

s t

f
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Survey

• Graph Partitioning
– [Karypis+Kumar]; [Newman+];
– [Virtanen]; …

• Communities
– [Flake+]; [Tomkins, Kleinberg+]

• External distances [Palmer+]
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• part 1: measuring goodness:
– electricity

• part 2: finding good paths
– dynamic programming

• part 3: scalability
– heuristics

Proposed method
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Electricity

• Why not shortest path?
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Electricity

• Why not shortest path?
• Why not net. flow?
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Electricity

• Why not shortest path?
• Why not net. flow?
• Why not plain ‘voltages’?

+1V 0V
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Electricity

• Why not shortest path?
• Why not net. flow?
• Why not plain ‘voltages’?

+1V 0V

+0.5V
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...

Electricity, cont’d

• Proposed method: voltages with 
universal sink:
– ~ ‘tax collector’

• goodness of a path:
• its electric current(*)!+1V 0V

0V
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Electricity – Algorithm

• Voltages/Amperages can be computed 
easily ( O(E) )

• without universal sink:
v(i) = � [v(j) * C(i,j) / C(i,*) ] 
i � source, sink

v(source)=1; v(sink)=0
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Electricity – Algorithm

With universal sink:
v(i) = 1/(1+a) � [v(j) * C(i,j) / C(i,*) ]
(~ insensitive to a (=1))
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Given the voltages and amperages
• Which b nodes to keep?
• (and how to spot them quickly?)

Part 2: DisplayGen
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Part 2: DisplayGen
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Part 2: DisplayGen

• ‘delivered current’ of a path:
– ~ ‘how many electrons’ choose this path

=4/5 *1/2A
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Part 2: DisplayGen

• find subgraph that max’s delivered 
current

• Incrementally, add nodes with max 
marginal delivered current
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Part 3: Scalability

‘CandidateGen’
• Starting from the large graph
• Eliminate nodes that are too far away 

to matter
• How?
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s tsource sink

Part 3: Scalability

• By successive, careful expansions
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s t

Part 3: Scalability
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s t

Part 3: Scalability

SIAM-DM04 Faloutsos, McCurley & Tomkins 26

Carnegie Mellon

s t

Part 3: Scalability
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Pseudo-code

Until (stoppingCriterion)
use pickHeuristic() to pick a node n
expand node n
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Pseudo-code

pickHeuristic() favors
• Nearby nodes with
• Strong connections to source or sink 

and with
• Small degree
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Experiments

• on large real graph 
– ~15M nodes, ~100M edges, weighted
– ‘who co-appears with whom’ (from 

500M web pages)

• Q1: Quality of ‘voltage’ approach?
• Q2: Speed/accuracy trade-off?
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Q1: Quality

• Actors (A); Computer-Scientists (CS)
• Kidman-Diaz (A-A)
• Negreponte-Palmisano (CS-CS)
• Turing-Stone (CS-A)
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(A-A) Kidman-Diaz

Strong, direct link

• What are the best paths between 
‘Kidman’ and ‘Diaz’?
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CS-CS: Negreponte -
Palmisano

NN SP

• Mainly: CEOs of  major Computer companies 
(Dell, Gates, Fiorina, ++) 
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CS-CS: Negreponte -
Palmisano

NN
Esther Dyson Louis Gerstner

SP
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CS-A: Turing - Stone

Turing Anderson

Stone
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Outline

• Introduction / Motivation
• ...
• Experiments

– Q1: quality
– Q2: speed/accuracy trade-off

• Conclusions
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Speed/Accuracy Trade-off

number of nodes kept (‘b’)

delivered
current Kleinberg-Newell

Rivest-Hoffman
Turing-Stone
Kidman-Diaz
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Speed/accuracy trade-off

• 80/20-like rule: the first few 
nodes/paths

• contribute the vast majority of 
‘delivered current’

• Thus: CandidateGen makes sense
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Conclusions

• Defined the problem
• Part 1: Electricity-based method to measure 

quality
• Part 2: Dynamic programming to spot best 

paths (‘DisplayGen’)
• Part 3: Scalability with good accuracy 

(‘CandidateGen’)
• Operational system


