Anomaly Detection

Lecture Notes for Chapter 9

Introduction to Data Mining, 2nd Edition
by
Tan, Steinbach, Karpatne, Kumar

Anomaly/Outlier Detection

- What are anomalies/outliers?
 - The set of data points that are considerably different than the remainder of the data

- Natural implication is that anomalies are relatively rare
 - One in a thousand occurs often if you have lots of data
 - Context is important, e.g., freezing temps in July

- Can be important or a nuisance
 - 10 foot tall 2 year old
 - Unusually high blood pressure
Importance of Anomaly Detection

Ozone Depletion History

- In 1985 three researchers (Farman, Gardinar and Shanklin) were puzzled by data gathered by the British Antarctic Survey showing that ozone levels for Antarctica had dropped 10% below normal levels.

- Why did the Nimbus 7 satellite, which had instruments aboard for recording ozone levels, not record similarly low ozone concentrations?

- The ozone concentrations recorded by the satellite were so low they were being treated as outliers by a computer program and discarded!

Sources:
http://www.epa.gov/ozone/science/hole/size.html

Causes of Anomalies

- Data from different classes
 - Measuring the weights of oranges, but a few grapefruit are mixed in

- Natural variation
 - Unusually tall people

- Data errors
 - 200 pound 2 year old
Distinction Between Noise and Anomalies

- Noise is erroneous, perhaps random, values or contaminating objects
 - Weight recorded incorrectly
 - Grapefruit mixed in with the oranges
- Noise doesn’t necessarily produce unusual values or objects
- Noise is not interesting
- Anomalies may be interesting if they are not a result of noise
- Noise and anomalies are related but distinct concepts

General Issues: Number of Attributes

- Many anomalies are defined in terms of a single attribute
 - Height
 - Shape
 - Color
- Can be hard to find an anomaly using all attributes
 - Noisy or irrelevant attributes
 - Object is only anomalous with respect to some attributes
- However, an object may not be anomalous in any one attribute
General Issues: Anomaly Scoring

- Many anomaly detection techniques provide only a binary categorization
 - An object is an anomaly or it isn’t
 - This is especially true of classification-based approaches

- Other approaches assign a score to all points
 - This score measures the degree to which an object is an anomaly
 - This allows objects to be ranked

- In the end, you often need a binary decision
 - Should this credit card transaction be flagged?
 - Still useful to have a score
- How many anomalies are there?

Other Issues for Anomaly Detection

- Find all anomalies at once or one at a time
 - Swamping
 - Masking

- Evaluation
 - How do you measure performance?
 - Supervised vs. unsupervised situations

- Efficiency

- Context
 - Professional basketball team
Variants of Anomaly Detection Problems

- Given a data set D, find all data points $x \in D$ with anomaly scores greater than some threshold t

- Given a data set D, find all data points $x \in D$ having the top-n largest anomaly scores

- Given a data set D, containing mostly normal (but unlabeled) data points, and a test point x, compute the anomaly score of x with respect to D

Model-Based Anomaly Detection

- Build a model for the data and see
 - Unsupervised
 - Anomalies are those points that don’t fit well
 - Anomalies are those points that distort the model
 - Examples:
 - Statistical distribution
 - Clusters
 - Regression
 - Geometric
 - Graph
 - Supervised
 - Anomalies are regarded as a rare class
 - Need to have training data
Additional Anomaly Detection Techniques

- **Proximity-based**
 - Anomalies are points far away from other points
 - Can detect this graphically in some cases
- **Density-based**
 - Low density points are outliers
- **Pattern matching**
 - Create profiles or templates of atypical but important events or objects
 - Algorithms to detect these patterns are usually simple and efficient

Visual Approaches

- **Boxplots or scatter plots**

- **Limitations**
 - Not automatic
 - Subjective
Statistical Approaches

Probabilistic definition of an outlier: An outlier is an object that has a low probability with respect to a probability distribution model of the data.

- Usually assume a parametric model describing the distribution of the data (e.g., normal distribution)
- Apply a statistical test that depends on
 - Data distribution
 - Parameters of distribution (e.g., mean, variance)
 - Number of expected outliers (confidence limit)
- Issues
 - Identifying the distribution of a data set
 - Heavy tailed distribution
 - Number of attributes
 - Is the data a mixture of distributions?

Normal Distributions

- **One-dimensional Gaussian**
- **Two-dimensional Gaussian**
Grubbs’ Test

- Detect outliers in univariate data
- Assume data comes from normal distribution
- Detects one outlier at a time, remove the outlier, and repeat
 - \(H_0 \): There is no outlier in data
 - \(H_A \): There is at least one outlier
- Grubbs’ test statistic:
 \[
 G = \frac{\max |X - \bar{X}|}{s}
 \]
- Reject \(H_0 \) if:
 \[
 G > \left(\frac{N - 1}{\sqrt{N}} \right) \sqrt{\frac{t^2_{(\alpha, N-2)}}{N - 2 + t^2_{(\alpha, N-2)}}}
 \]

Statistical-based – Likelihood Approach

- Assume the data set \(D \) contains samples from a mixture of two probability distributions:
 - \(M \) (majority distribution)
 - \(A \) (anomalous distribution)
- General Approach:
 - Initially, assume all the data points belong to \(M \)
 - Let \(L_t(D) \) be the log likelihood of \(D \) at time \(t \)
 - For each point \(x_i \) that belongs to \(M \), move it to \(A \)
 - Let \(L_{t+1}(D) \) be the new log likelihood.
 - Compute the difference, \(\Delta = L_t(D) - L_{t+1}(D) \)
 - If \(\Delta > c \) (some threshold), then \(x_i \) is declared as an anomaly and moved permanently from \(M \) to \(A \)
Statistical-based – Likelihood Approach

- Data distribution, \(D = (1 - \lambda) \ M + \lambda \ A \)
- \(M \) is a probability distribution estimated from data
 - Can be based on any modeling method (naïve Bayes, maximum entropy, etc)
- \(A \) is initially assumed to be uniform distribution
- Likelihood at time \(t \):

\[
L_t(D) = \prod_{i=1}^{N} P_D(x_i) = \left((1 - \lambda)^{M_t} \prod_{x_i \in M_t} P_M(x_i) \right) \left(\lambda^{A_t} \prod_{x_i \in A_t} P_A(x_i) \right)
\]

\[
LL_t(D) = |M_t| \log(1 - \lambda) + \sum_{x_i \in M_t} \log P_M(x_i) + |A_t| \log \lambda + \sum_{x_i \in A_t} \log P_A(x_i)
\]

Strengths/Weaknesses of Statistical Approaches

- Firm mathematical foundation
- Can be very efficient
- Good results if distribution is known
- In many cases, data distribution may not be known
- For high dimensional data, it may be difficult to estimate the true distribution
- Anomalies can distort the parameters of the distribution
Distance-Based Approaches

- Several different techniques

- An object is an outlier if a specified fraction of the objects is more than a specified distance away (Knorr, Ng 1998)
 - Some statistical definitions are special cases of this

- The outlier score of an object is the distance to its kth nearest neighbor
Strengths/Weaknesses of Distance-Based Approaches

- Simple
- Expensive – $O(n^2)$
- Sensitive to parameters
- Sensitive to variations in density
- Distance becomes less meaningful in high-dimensional space
Density-Based Approaches

- **Density-based Outlier**: The outlier score of an object is the inverse of the density around the object.
 - Can be defined in terms of the k nearest neighbors
 - One definition: Inverse of distance to kth neighbor
 - Another definition: Inverse of the average distance to k neighbors
 - DBSCAN definition

- If there are regions of different density, this approach can have problems

Relative Density

- Consider the density of a point relative to that of its k nearest neighbors

\[
\text{average relative density}(x, k) = \frac{\text{density}(x, k)}{\sum_{y \in N(x, k)} \text{density}(y, k) / |N(x, k)|} \quad (10.7)
\]

Algorithm 10.2 Relative density outlier score algorithm.

1: \(k \) is the number of nearest neighbors
2: for all objects \(x \) do
3: Determine \(N(x, k) \), the \(k \)-nearest neighbors of \(x \).
4: Determine \(\text{density}(x, k) \), the density of \(x \), using its nearest neighbors, i.e., the objects in \(N(x, k) \).
5: end for
6: for all objects \(x \) do
7: Set the \(\text{outlier score}(x, k) = \text{average relative density}(x, k) \) from Equation 10.7.
8: end for
Relative Density Outlier Scores

Density-based: LOF approach

- For each point, compute the density of its local neighborhood
- Compute local outlier factor (LOF) of a sample p as the average of the ratios of the density of sample p and the density of its nearest neighbors
- Outliers are points with largest LOF value

In the NN approach, p_2 is not considered as outlier, while LOF approach find both p_1 and p_2 as outliers
Strengths/Weaknesses of Density-Based Approaches

- Simple
- Expensive – $O(n^2)$
- Sensitive to parameters
- Density becomes less meaningful in high-dimensional space

Clustering-Based Approaches

- Clustering-based Outlier: An object is a cluster-based outlier if it does not strongly belong to any cluster
 - For prototype-based clusters, an object is an outlier if it is not close enough to a cluster center
 - For density-based clusters, an object is an outlier if its density is too low
 - For graph-based clusters, an object is an outlier if it is not well connected
- Other issues include the impact of outliers on the clusters and the number of clusters
Strengths/Weaknesses of Distance-Based Approaches

- Simple
- Many clustering techniques can be used
- Can be difficult to decide on a clustering technique
- Can be difficult to decide on number of clusters
- Outliers can distort the clusters