Bayesian Classifiers

A probabilistic framework for solving classification problems

Conditional Probability:

\[P(Y | X) = \frac{P(X,Y)}{P(X)} \]

\[P(X | Y) = \frac{P(X,Y)}{P(Y)} \]

Bayes theorem:

\[P(Y | X) = \frac{P(X | Y)P(Y)}{P(X)} \]
Using Bayes Theorem for Classification

• Consider each attribute and class label as random variables
• Given a record with attributes \((X_1, X_2, \ldots, X_d)\), the goal is to predict class \(Y\)

 – Specifically, we want to find the value of \(Y\) that maximizes \(P(Y \mid X_1, X_2, \ldots, X_d)\)

• Can we estimate \(P(Y \mid X_1, X_2, \ldots, X_d)\) directly from data?

<table>
<thead>
<tr>
<th>Tid</th>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Evade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Married</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Divorced</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Married</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Divorced</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Single</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Married</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Single</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Using Bayes Theorem for Classification

• Approach:
 – compute posterior probability \(P(Y \mid X_1, X_2, \ldots, X_d)\) using the Bayes theorem

\[
P(Y \mid X_1 X_2 \ldots X_n) = \frac{P(X_1 X_2 \ldots X_d \mid Y) P(Y)}{P(X_1 X_2 \ldots X_d)}
\]

 – Maximum a-posteriori: Choose \(Y\) that maximizes \(P(Y \mid X_1, X_2, \ldots, X_d)\)

 – Equivalent to choosing value of \(Y\) that maximizes \(P(X_1, X_2, \ldots, X_d \mid Y) P(Y)\)

• How to estimate \(P(X_1, X_2, \ldots, X_d \mid Y)\)?
Example Data

Given a Test Record:

\[
X = (\text{Refund} = \text{No}, \text{Divorced}, \text{Income} = 120K)
\]

- We need to estimate
 \[P(\text{Evade} = \text{Yes} | X)\] and \[P(\text{Evade} = \text{No} | X)\]

In the following we will replace
 \[
 \begin{align*}
 \text{Evade} = \text{Yes} & \text{ by Yes, and} \\
 \text{Evade} = \text{No} & \text{ by No}
 \end{align*}
 \]

Using Bayes Theorem:

- \[P(\text{Yes} | X) = \frac{P(X | \text{Yes})P(\text{Yes})}{P(X)}\]
- \[P(\text{No} | X) = \frac{P(X | \text{No})P(\text{No})}{P(X)}\]

How to estimate \[P(X | \text{Yes})\] and \[P(X | \text{No})\]?
Conditional Independence

- \(X\) and \(Y\) are conditionally independent given \(Z\) if
 \[P(X|YZ) = P(X|Z) \]

- Example: Arm length and reading skills
 - Young child has shorter arm length and limited reading skills, compared to adults
 - If age is fixed, no apparent relationship between arm length and reading skills
 - Arm length and reading skills are conditionally independent given age

Naïve Bayes Classifier

- Assume independence among attributes \(X_i\) when class is given:
 \[P(X_1, X_2, \ldots, X_d | Y_j) = P(X_1| Y_j) P(X_2| Y_j) \cdots P(X_d| Y_j) \]
 - Now we can estimate \(P(X_i| Y_j)\) for all \(X_i\) and \(Y_j\) combinations from the training data
 - New point is classified to \(Y_j\) if \(P(Y_j) \prod P(X_i| Y_j) \) is maximal.
Naïve Bayes on Example Data

Given a Test Record:

\[X = (\text{Refund} = \text{No}, \text{Divorced}, \text{Income} = 120K) \]

\[
P(X | \text{Yes}) = P(\text{Refund} = \text{No} | \text{Yes}) \times P(\text{Divorced} | \text{Yes}) \times P(\text{Income} = 120K | \text{Yes})
\]

\[
P(X | \text{No}) = P(\text{Refund} = \text{No} | \text{No}) \times P(\text{Divorced} | \text{No}) \times P(\text{Income} = 120K | \text{No})
\]

Estimate Probabilities from Data

- \(P(y) = \) fraction of instances of class \(y \)
 - e.g., \(P(\text{No}) = 7/10, \quad P(\text{Yes}) = 3/10 \)

- For categorical attributes:
 \[P(X_i = c | y) = \frac{n_c}{n} \]
 - where \(|X_i = c| \) is number of instances having attribute value \(X_i = c \) and belonging to class \(y \)
 - Examples:
 \begin{align*}
 P(\text{Status}=\text{Married}|\text{No}) &= 4/7 \\
 P(\text{Refund}=\text{Yes}|\text{Yes}) &= 0
 \end{align*}
Estimate Probabilities from Data

- For continuous attributes:
 - **Discretization**: Partition the range into bins:
 - Replace continuous value with bin value
 - Attribute changed from continuous to ordinal
 - **Probability density estimation**:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, use it to estimate the conditional probability \(P(X_i|Y) \)

Normal distribution:
\[
P(X_i | Y_j) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(X_i - \mu)^2}{2\sigma^2}}
\]
- One for each \((X_i, Y_j)\) pair

- For \((\text{Income}, \text{Class}=\text{No})\):
 - If \text{Class}=\text{No}
 - sample mean = 110
 - sample variance = 2975

\[
P(\text{Income} = 120 | \text{No}) = \frac{1}{\sqrt{2\pi(54.54)}} e^{-\frac{(120-110)^2}{2(54.54)}} = 0.0072
\]
Example of Naïve Bayes Classifier

Given a Test Record:

\[X = (\text{Refund} = \text{No}, \text{Divorced}, \text{Income} = 120K) \]

Naïve Bayes Classifier:

\[
P(X | \text{No}) = P(\text{Refund} = \text{No} | \text{No}) \times P(\text{Divorced} | \text{No}) \times P(\text{Income} = 120K | \text{No})
\]
\[
= \frac{4}{7} \times \frac{1}{7} \times 0.0072 = 0.0006
\]

\[
P(X | \text{Yes}) = P(\text{Refund} = \text{No} | \text{Yes}) \times P(\text{Divorced} | \text{Yes}) \times P(\text{Income} = 120K | \text{Yes})
\]
\[
= 1 \times \frac{1}{3} \times 1.2 \times 10^{-9} = 4 \times 10^{-10}
\]

Since \(P(X|\text{No})P(\text{No}) > P(X|\text{Yes})P(\text{Yes}) \)

Therefore \(P(\text{No}|X) > P(\text{Yes}|X) \)

\(\Rightarrow \) Class = No

Naïve Bayes Classifier can make decisions with partial information about attributes in the test record

Even in absence of information about any attributes, we can use Apriori Probabilities of Class Variable:

Naïve Bayes Classifier:

\[
P(\text{Yes}) = 3/10
\]
\[
P(\text{No}) = 7/10
\]

If we only know that marital status is Divorced, then:

\[
P(\text{Yes} | \text{Divorced}) = 1/3 \times 3/10 / P(\text{Divorced})
\]
\[
P(\text{No} | \text{Divorced}) = 1/7 \times 7/10 / P(\text{Divorced})
\]

If we also know that Refund = No, then

\[
P(\text{Yes} | \text{Refund} = \text{No}, \text{Divorced}) = 1 \times 1/3 \times 3/10 / P(\text{Divorced}, \text{Refund} = \text{No})
\]
\[
P(\text{No} | \text{Refund} = \text{No}, \text{Divorced}) = 4/7 \times 1/7 \times 7/10 / P(\text{Divorced}, \text{Refund} = \text{No})
\]

If we also know that Taxable Income = 120, then

\[
P(\text{Yes} | \text{Refund} = \text{No}, \text{Divorced}, \text{Income} = 120) = 1.2 \times 10^{-9} \times 1 \times 1/3 \times 3/10 / P(\text{Divorced}, \text{Refund} = \text{No}, \text{Income} = 120)
\]
\[
P(\text{No} | \text{Refund} = \text{No}, \text{Divorced}, \text{Income} = 120) = 0.0072 \times 4/7 \times 1/7 \times 7/10 / P(\text{Divorced}, \text{Refund} = \text{No}, \text{Income} = 120)
\]
Issues with Naïve Bayes Classifier

Given a Test Record:

\[X = \text{(Married)} \]

Naïve Bayes Classifier:

\[
P(\text{Yes}) = \frac{3}{10} \\
P(\text{No}) = \frac{7}{10} \\
P(\text{Yes} | \text{Married}) = 0 \times \frac{3}{10} / P(\text{Married}) \\
P(\text{No} | \text{Married}) = \frac{4}{7} \times \frac{7}{10} / P(\text{Married})
\]

For Taxable Income:
If class = No: sample mean = 110
sample variance = 2975
If class = Yes: sample mean = 90
sample variance = 25

Consider the table with Tid = 7 deleted

<table>
<thead>
<tr>
<th>Tid</th>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Evade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Married</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Divorced</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Married</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Single</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Married</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Single</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Given \(X = (\text{Refund} = \text{Yes}, \text{Divorced}, 120K) \)

\[
P(X | \text{No}) = \frac{2}{6} \times 0 \times 0.0083 = 0 \\
P(X | \text{Yes}) = 0 \times \frac{1}{3} \times 1.2 \times 10^{-9} = 0
\]

Naïve Bayes will not be able to classify \(X \) as Yes or No!
Issues with Naïve Bayes Classifier

- If one of the conditional probabilities is zero, then the entire expression becomes zero
- Need to use other estimates of conditional probabilities than simple fractions
- Probability estimation:

 \[
 \text{original: } P(X_i = c|y) = \frac{n_c}{n} \\
 \text{Laplace Estimate: } P(X_i = c|y) = \frac{n_c + 1}{n + v} \\
 \text{m − estimate: } P(X_i = c|y) = \frac{n_c + mp}{n + m}
 \]

\(n_c\): number of training instances belonging to class \(y\)

\(n\): number of instances with \(X_i = c\) and \(Y = y\)

\(v\): total number of attribute values that \(X_i\) can take

\(p\): initial estimate of \(P(X_i = c|y)\) known apriori

\(m\): hyper-parameter for our confidence in \(p\)

Example of Naïve Bayes Classifier

<table>
<thead>
<tr>
<th>Name</th>
<th>Give Birth</th>
<th>Can Fly</th>
<th>Live in Water</th>
<th>Have Legs</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>human</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>python</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>non-mammals</td>
</tr>
<tr>
<td>salmon</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>non-mammals</td>
</tr>
<tr>
<td>whale</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>non-mammals</td>
</tr>
<tr>
<td>frog</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>yes</td>
<td>non-mammals</td>
</tr>
<tr>
<td>komodo</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>non-mammals</td>
</tr>
<tr>
<td>bat</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>pigeon</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>cat</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>non-mammals</td>
</tr>
<tr>
<td>leopard shark</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>non-mammals</td>
</tr>
<tr>
<td>turtle</td>
<td>no</td>
<td>yes</td>
<td>sometimes</td>
<td>yes</td>
<td>non-mammals</td>
</tr>
<tr>
<td>penguin</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>yes</td>
<td>non-mammals</td>
</tr>
<tr>
<td>porcupine</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>seal</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>non-mammals</td>
</tr>
<tr>
<td>salamander</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>yes</td>
<td>non-mammals</td>
</tr>
<tr>
<td>gila monster</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>non-mammals</td>
</tr>
<tr>
<td>platypus</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>non-mammals</td>
</tr>
<tr>
<td>penguin</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>dolphin</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>non-mammals</td>
</tr>
<tr>
<td>eagle</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>non-mammals</td>
</tr>
</tbody>
</table>

A: attributes

M: mammals

N: non-mammals

\[
P(A|M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} = 0.06
\]

\[
P(A|N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042
\]

\[
P(A|M)P(M) = 0.06 \times \frac{7}{20} = 0.021
\]

\[
P(A|N)P(N) = 0.004 \times \frac{13}{20} = 0.0027
\]

\[
P(A|M)P(M) > P(A|N)P(N)
\]

\(\Rightarrow\) Mammals
Naïve Bayes (Summary)

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Redundant and correlated attributes will violate class conditional assumption
 - Use other techniques such as Bayesian Belief Networks (BBN)

Naïve Bayes

- How does Naïve Bayes perform on the following dataset?

Conditional independence of attributes is violated
Bayesian Belief Networks

• Provides graphical representation of probabilistic relationships among a set of random variables

• Consists of:
 – A directed acyclic graph (dag)
 ◆ Node corresponds to a variable
 ◆ Arc corresponds to dependence relationship between a pair of variables

 – A probability table associating each node to its immediate parent

Conditional Independence

• A node in a Bayesian network is conditionally independent of all of its nondescendants, if its parents are known

D is parent of C
A is child of C
B is descendant of D
D is ancestor of A
Conditional Independence

- Naïve Bayes assumption:

Probability Tables

- If X does not have any parents, table contains prior probability $P(X)$
- If X has only one parent (Y), table contains conditional probability $P(X|Y)$
- If X has multiple parents (Y_1, Y_2, \ldots, Y_k), table contains conditional probability $P(X|Y_1, Y_2, \ldots, Y_k)$
Example of Bayesian Belief Network

Example of Inferencing using BBN

- Given: $X = (E=\text{No}, D=\text{Yes}, CP=\text{Yes}, BP=\text{High})$
 - Compute $P(HD|E,D,CP,BP)$?

- $P(HD=\text{Yes}| E=\text{No},D=\text{Yes}) = 0.55$
 - $P(CP=\text{Yes}| HD=\text{Yes}) = 0.8$
 - $P(BP=\text{High}| HD=\text{Yes}) = 0.85$
 - $P(HD=\text{Yes}|E=\text{No},D=\text{Yes},CP=\text{Yes},BP=\text{High})$
 $\propto 0.55 \times 0.8 \times 0.85 = 0.374$

- $P(HD=\text{No}| E=\text{No},D=\text{Yes}) = 0.45$
 - $P(CP=\text{Yes}| HD=\text{No}) = 0.01$
 - $P(BP=\text{High}| HD=\text{No}) = 0.2$
 - $P(HD=\text{No}|E=\text{No},D=\text{Yes},CP=\text{Yes},BP=\text{High})$
 $\propto 0.45 \times 0.01 \times 0.2 = 0.0009$

Classify X as Yes