Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it’s probably a duck
Nearest-Neighbor Classifiers

- Requires the following:
 - A set of labeled records
 - Proximity metric to compute distance/similarity between a pair of records
 - e.g., Euclidean distance
 - The value of \(k \), the number of nearest neighbors to retrieve
 - A method for using class labels of \(K \) nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

How to Determine the class label of a Test Sample?

- Take the majority vote of class labels among the \(k \)-nearest neighbors
- Weight the vote according to distance
 - weight factor, \(w = 1/d^2 \)
Choice of proximity measure matters

- For documents, cosine is better than correlation or Euclidean

| 1 1 1 1 1 1 1 1 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 |
| 0 1 1 1 1 1 1 1 1 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |

Euclidean distance = 1.4142 for both pairs, but the cosine similarity measure has different values for these pairs.

Nearest Neighbor Classification...

- Data preprocessing is often required
 - Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
 - Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from $10K to $1M

- Time series are often standardized to have 0 means a standard deviation of 1
Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Nearest-neighbor classifiers

- Nearest neighbor classifiers are local classifiers
- They can produce decision boundaries of arbitrary shapes.

1-nn decision boundary is a Voronoi Diagram
Nearest Neighbor Classification...

How to handle missing values in training and test sets?
- Proximity computations normally require the presence of all attributes
- Some approaches use the subset of attributes present in two instances
 - This may not produce good results since it effectively uses different proximity measures for each pair of instances
 - Thus, proximities are not comparable

K-NN Classifiers...
Handling Irrelevant and Redundant Attributes

- Irrelevant attributes add noise to the proximity measure
- Redundant attributes bias the proximity measure towards certain attributes
K-NN Classifiers: Handling attributes that are interacting

Handling attributes that are interacting
Improving KNN Efficiency

- Avoid having to compute distance to all objects in the training set
 - Multi-dimensional access methods (k-d trees)
 - Fast approximate similarity search
 - Locality Sensitive Hashing (LSH)

- Condensing
 - Determine a smaller set of objects that give the same performance

- Editing
 - Remove objects to improve efficiency