Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

Training Records

Compute Distance

Test Record

Choose k of the “nearest” records
Nearest-Neighbor Classifiers

- Requires three things
 - The set of labeled records
 - Distance metric to compute distance between records
 - The value of \(k \), the number of nearest neighbors to retrieve

- To classify an unknown record:
 - Compute distance to other training records
 - Identify \(k \) nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Nearest Neighbor Classification

- Compute proximity between two points:
 - Example: Euclidean distance
 \[
d(x, y) = \sqrt{\sum_{i} (x_i - y_i)^2}
\]

- Determine the class from nearest neighbor list
 - Take the majority vote of class labels among the \(k \)-nearest neighbors
 - Weight the vote according to distance
 - weight factor, \(w = 1/d^2 \)
Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Choice of proximity measure matters
- For documents, cosine is better than correlation or Euclidean

<table>
<thead>
<tr>
<th>1 1 1 1 1 1 1 1 1 1 0</th>
<th>0 0 0 0 0 0 0 0 0 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1 1 1 1 1 1 1</td>
<td>1 0 0 0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

Euclidean distance = 1.4142 for both pairs
Nearest Neighbor Classification...

- Data preprocessing is often required
 - Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
 - Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from $10K to $1M
 - Time series are often standardized to have 0 means a standard deviation of 1

Nearest-neighbor classifiers

- Nearest neighbor classifiers are local classifiers
- They can produce decision boundaries of arbitrary shapes.

1-nn decision boundary is a Voronoi Diagram
How to handle missing values in training and test sets?
- Proximity computations normally require the presence of all attributes
- Some approaches use the subset of attributes present in two instances
 - This may not produce good results since it effectively uses different proximity measures for each pair of instances
 - Thus, proximities are not comparable

Handling irrelevant and redundant attributes
- Irrelevant attributes add noise to the proximity measure
- Redundant attributes bias the proximity measure towards certain attributes
- Can use variable selection or dimensionality reduction to address irrelevant and redundant attributes
Improving KNN Efficiency

- Avoid having to compute distance to all objects in the training set
 - Multi-dimensional access methods (k-d trees)
 - Fast approximate similarity search
 - Locality Sensitive Hashing (LSH)
- Condensing
 - Determine a smaller set of objects that give the same performance
- Editing
 - Remove objects to improve efficiency