Artificial Neural Networks (ANN)

Output Y is 1 if at least two of the three inputs are equal to 1.
Artificial Neural Networks (ANN)

<table>
<thead>
<tr>
<th>X₁</th>
<th>X₂</th>
<th>X₃</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Black box

\[Y = \text{sign}(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4) \]

where \(\text{sign}(x) = \begin{cases} 1 & \text{if} \ x \geq 0 \\ -1 & \text{if} \ x < 0 \end{cases} \)

Artificial Neural Networks (ANN)

- Model is an assembly of inter-connected nodes and weighted links
- Output node sums up each of its input value according to the weights of its links
- Compare output node against some threshold \(t \)

Perceptron Model

\[Y = \text{sign} \left(\sum_{i=1}^{d} w_i X_i - t \right) \]

\[= \text{sign} \left(\sum_{i=0}^{d} w_i X_i \right) \]
Artificial Neural Networks (ANN)

- Various types of neural network topology
 - single-layered network (perceptron) versus multi-layered network
 - Feed-forward versus recurrent network

- Various types of activation functions \((f)\)

\[
Y = f\left(\sum_{i} w_i X_i\right)
\]
Perceptron

- Single layer network
 - Contains only input and output nodes

- Activation function: \(f = \text{sign}(w \cdot x) \)

- Applying model is straightforward
 \[
 Y = \text{sign}(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4)
 \]
 where \(\text{sign}(x) = \begin{cases}
 1 & \text{if } x \geq 0 \\
 -1 & \text{if } x < 0
 \end{cases} \)

- \(X_1 = 1, X_2 = 0, X_3 = 1 \Rightarrow y = \text{sign}(0.2) = 1 \)

Perceptron Learning Rule

- Initialize the weights \((w_0, w_1, \ldots, w_d)\)

- Repeat
 - For each training example \((x_i, y_i)\)
 - Compute \(f(w, x_i)\)
 - Update the weights:
 \[
 w^{(k+1)} = w^{(k)} + \lambda y_i - f(w^{(k)}, x_i) x_i
 \]

- Until stopping condition is met
Perceptron Learning Rule

- Weight update formula:
 \[
 w^{(k+1)} = w^{(k)} + \lambda \left[y_i - f(w^{(k)}, x_i) \right] x_i \; ; \; \lambda : \text{learning rate}
 \]

- Intuition:
 - Update weight based on error: \(e = [y_i - f(w^{(k)}, x_i)] \)
 - If \(y=f(x,w) \), \(e=0 \): no update needed
 - If \(y>f(x,w) \), \(e=2 \): weight must be increased so that \(f(x,w) \) will increase
 - If \(y<f(x,w) \), \(e=-2 \): weight must be decreased so that \(f(x,w) \) will decrease

Example of Perceptron Learning

\[
 w^{(k+1)} = w^{(k)} + \lambda \left[y_i - f(w^{(k)}, x_i) \right] x_i
\]

\[
 Y = \text{sign} \left(\sum_{i=0}^{d} w_i x_i \right)
\]

\(\lambda = 0.1 \)

<table>
<thead>
<tr>
<th>(X_1)</th>
<th>(X_2)</th>
<th>(X_3)</th>
<th>(Y)</th>
<th>(w_0)</th>
<th>(w_1)</th>
<th>(w_2)</th>
<th>(w_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-0.2</td>
<td>-0.2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>5</td>
<td>-0.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>-0.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>8</td>
<td>-0.2</td>
<td>0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Epoch</th>
<th>(w_0)</th>
<th>(w_1)</th>
<th>(w_2)</th>
<th>(w_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-0.2</td>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>-0.2</td>
<td>0</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>-0.4</td>
<td>0</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>-0.4</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>5</td>
<td>-0.6</td>
<td>0.2</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>6</td>
<td>-0.6</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Perceptron Learning Rule

- Since \(f(w,x) \) is a linear combination of input variables, decision boundary is linear.

- For nonlinearly separable problems, perceptron learning algorithm will fail because no linear hyperplane can separate the data perfectly.

Nonlinearly Separable Data

\[y = x_1 \oplus x_2 \]

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

XOR Data
Multilayer Neural Network

- Hidden layers
 - intermediary layers between input & output layers

- More general activation functions (sigmoid, linear, etc)

Multi-layer Neural Network

- Multi-layer neural network can solve any type of classification task involving nonlinear decision surfaces

XOR Data
Learning Multi-layer Neural Network

- Can we apply perceptron learning rule to each node, including hidden nodes?
 - Perceptron learning rule computes error term $e = y - f(w, x)$ and updates weights accordingly
 - Problem: how to determine the true value of y for hidden nodes?
 - Approximate error in hidden nodes by error in the output nodes
 - Problem:
 - Not clear how adjustment in the hidden nodes affect overall error
 - No guarantee of convergence to optimal solution

Gradient Descent for Multilayer NN

- Weight update: $w_j^{(k+1)} = w_j^{(k)} - \lambda \frac{\partial E}{\partial w_j}$
- Error function: $E = \frac{1}{2} \sum_{i=1}^{N} \left(t_i - f(\sum_j w_{ij} x_i) \right)$
- Activation function f must be differentiable
- For sigmoid function:
 $w_j^{(k+1)} = w_j^{(k)} + \lambda \sum_i (t_i - o_i) o_i (1 - o_i) x_{ij}$
- Stochastic gradient descent (update the weight immediately)
Gradient Descent for MultiLayer NN

- For output neurons, weight update formula is the same as before (gradient descent for perceptron).

- For hidden neurons:

\[
\delta_{j}^{(k+1)} = \delta_{j}^{(k)} + \lambda o_{j} (1 - o_{j}) \sum_{\forall p \in P} \delta_{p}^{(k)} w_{jp} x_{pi}
\]

Output neurons: \(
\delta_{j} = o_{j} (1 - o_{j}) (t_{j} - o_{j})
\)

Hidden neurons: \(
\delta_{j} = o_{j} (1 - o_{j}) \sum_{\forall k} \delta_{k} w_{jk}
\)

Design Issues in ANN

- Number of nodes in input layer
 - One input node per binary/continuous attribute
 - \(k\) or \(\log_2 k\) nodes for each categorical attribute with \(k\) values

- Number of nodes in output layer
 - One output for binary class problem
 - \(k\) or \(\log_2 k\) nodes for \(k\)-class problem

- Number of nodes in hidden layer

- Initial weights and biases
Characteristics of ANN

- Multilayer ANN are universal approximators but could suffer from overfitting if the network is too large.
- Gradient descent may converge to local minimum.
- Model building can be very time consuming, but testing can be very fast.
- Can handle redundant attributes because weights are automatically learnt.
- Sensitive to noise in training data.
- Difficult to handle missing attributes.

Recent Noteworthy Developments in ANN

- Use in deep learning and unsupervised feature learning
 - Seek to automatically learn a good representation of the input from unlabeled data.
- Google Brain project
 - Learned the concept of a ‘cat’ by looking at unlabeled pictures from YouTube.
 - One billion connection network.