Artificial Neural Networks (ANN)

<table>
<thead>
<tr>
<th>X₁</th>
<th>X₂</th>
<th>X₃</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

Output Y is 1 if at least two of the three inputs are equal to 1.
Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN)

- Model is an assembly of inter-connected nodes and weighted links
- Output node sums up each of its input value according to the weights of its links
- Compare output node against some threshold t

$$Y = \text{sign}(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4)$$

where $\text{sign}(x) = \begin{cases}
1 & \text{if } x \geq 0 \\
-1 & \text{if } x < 0
\end{cases}$
General Structure of ANN

Artificial Neural Networks (ANN)

- Various types of neural network topology
 - single-layered network (perceptron) versus multi-layered network
 - Feed-forward versus recurrent network

- Various types of activation functions \(f \)

\[
Y = f \left(\sum w_i X_i \right)
\]
Perceptron

- Single layer network
 - Contains only input and output nodes

- Activation function: \(f = \text{sign}(w \cdot x) \)

- Applying model is straightforward

\[
Y = \text{sign}(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4)
\]

where \(\text{sign}(x) = \begin{cases}
1 & \text{if } x \geq 0 \\
-1 & \text{if } x < 0
\end{cases} \)

- \(X_1 = 1, X_2 = 0, X_3 = 1 \Rightarrow y = \text{sign}(0.2) = 1 \)

Perceptron Learning Rule

- Initialize the weights \((w_0, w_1, \ldots, w_d)\)

- Repeat
 - For each training example \((x_i, y_i)\)
 - Compute \(f(w, x_i)\)
 - Update the weights:
 \[
w^{(k+1)}_i = w^{(k)}_i + \lambda \left[y_i - f^{(k)}(w, x_i) \right] x_i
 \]

- Until stopping condition is met
Perceptron Learning Rule

- Weight update formula:
 \[w^{(k+1)} = w^{(k)} + \lambda y_i - f(w^{(k)}, x_i) x_i \] ; \(\lambda \): learning rate

- Intuition:
 - Update weight based on error: \(e = y - f(w^{(k)}, x_i) \)
 - If \(y = f(x, w) \), \(e = 0 \): no update needed
 - If \(y > f(x, w) \), \(e = 2 \): weight must be increased so that \(f(x, w) \) will increase
 - If \(y < f(x, w) \), \(e = -2 \): weight must be decreased so that \(f(x, w) \) will decrease

Example of Perceptron Learning

\[w^{(k+1)} = w^{(k)} + \lambda y_i - f(w^{(k)}, x_i) x_i \]

\[Y = \text{sign} \left(\sum_{i=0}^{d} w_i X_i \right) \]

\(\lambda = 0.1 \)

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>Y</th>
<th>W_0</th>
<th>W_1</th>
<th>W_2</th>
<th>W_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-0.2</td>
<td>-0.2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>5</td>
<td>-0.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>6</td>
<td>-0.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>8</td>
<td>-0.2</td>
<td>0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Epoch | W_0 | W_1 | W_2 | W_3 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-0.2</td>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>-0.2</td>
<td>0</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>-0.4</td>
<td>0</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>-0.4</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>5</td>
<td>-0.6</td>
<td>0.2</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>6</td>
<td>-0.6</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Perceptron Learning Rule

- Since $f(w,x)$ is a linear combination of input variables, decision boundary is linear

- For nonlinearly separable problems, perceptron learning algorithm will fail because no linear hyperplane can separate the data perfectly

Nonlinearly Separable Data

$y = x_1 \oplus x_2$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>
Multilayer Neural Network

- Hidden layers
 - intermediary layers between input & output layers

- More general activation functions (sigmoid, linear, etc)

Multi-layer Neural Network

- Multi-layer neural network can solve any type of classification task involving nonlinear decision surfaces

[XOR Data diagram]
Learning Multi-layer Neural Network

● Can we apply perceptron learning rule to each node, including hidden nodes?
 – Perceptron learning rule computes error term $e = y - f(w, x)$ and updates weights accordingly
 ◆ Problem: how to determine the true value of y for hidden nodes?
 – Approximate error in hidden nodes by error in the output nodes
 ◆ Problem:
 – Not clear how adjustment in the hidden nodes affect overall error
 – No guarantee of convergence to optimal solution

Gradient Descent for Multilayer NN

● Weight update: $w^{(k+1)}_j = w^{(k)}_j - \lambda \frac{\partial E}{\partial w_j}$

● Error function: $E = \frac{1}{2} \sum_{i=1}^{N} \left(t_i - f \left(\sum_j w_{ij} x_{ij} \right) \right)$

● Activation function f must be differentiable

● For sigmoid function:
 $$w^{(k+1)}_j = w^{(k)}_j + \lambda \sum_i (t_i - o_i) o_i (1 - o_i) x_{ij}$$

● Stochastic gradient descent (update the weight immediately)
Gradient Descent for MultiLayer NN

- For output neurons, weight update formula is the same as before (gradient descent for perceptron)

- For hidden neurons:

 \[w^{(k+1)}_{pi} = w^{(k)}_{pi} + \lambda o_i (1 - o_i) \sum_{j \in \mathcal{V}_k} \delta_j w_{ij} x_{pi} \]

 Output neurons: \(\delta_j = o_j (1 - o_j)(t_j - o_j) \)

 Hidden neurons: \(\delta_j = o_j (1 - o_j) \sum_{k \in \mathcal{V}_k} \delta_k w_{jk} \)

Design Issues in ANN

- Number of nodes in input layer
 - One input node per binary/continuous attribute
 - \(k \) or \(\log_2 k \) nodes for each categorical attribute with \(k \) values

- Number of nodes in output layer
 - One output for binary class problem
 - \(k \) or \(\log_2 k \) nodes for \(k \)-class problem

- Number of nodes in hidden layer
- Initial weights and biases
Characteristics of ANN

- Multilayer ANN are universal approximators but could suffer from overfitting if the network is too large
- Gradient descent may converge to local minimum
- Model building can be very time consuming, but testing can be very fast
- Can handle redundant attributes because weights are automatically learnt
- Sensitive to noise in training data
- Difficult to handle missing attributes

Recent Noteworthy Developments in ANN

- Use in deep learning and unsupervised feature learning
 - Seek to automatically learn a good representation of the input from unlabeled data
- Google Brain project
 - Learned the concept of a ‘cat’ by looking at unlabeled pictures from YouTube
 - One billion connection network