Data Mining

Model Overfitting

Introduction to Data Mining, 2nd Edition
by
Tan, Steinbach, Karpatne, Kumar

Classification Errors

- Training errors (apparent errors)
 - Errors committed on the training set

- Test errors
 - Errors committed on the test set

- Generalization errors
 - Expected error of a model over random selection of records from same distribution
Example Data Set

Two class problem:
+ : 5200 instances
 - 5000 instances generated from a Gaussian centered at (10,10)
 - 200 noisy instances added

o : 5200 instances
 - Generated from a uniform distribution

10% of the data used for training and 90% of the data used for testing

Increasing number of nodes in Decision Trees
Decision Tree with 4 nodes

Decision Tree with 50 nodes
Which tree is better?

![Decision Tree with 4 nodes vs Decision Tree with 50 nodes](image)

Model Overfitting

Underfitting: when model is too simple, both training and test errors are large

Overfitting: when model is too complex, training error is small but test error is large
Model Overfitting

- Using twice the number of data instances
- If training data is under-representative, testing errors increase and training errors decrease on increasing number of nodes
- Increasing the size of training data reduces the difference between training and testing errors at a given number of nodes
Reasons for Model Overfitting

- Limited Training Size
- High Model Complexity
 - Multiple Comparison Procedure

Effect of Multiple Comparison Procedure

Consider the task of predicting whether stock market will rise/fall in the next 10 trading days

Random guessing: $P(\text{correct}) = 0.5$

Make 10 random guesses in a row:

$$P(\# \text{correct} \geq 8) = \frac{\binom{10}{8} + \binom{10}{9} + \binom{10}{10}}{2^{10}} = 0.0547$$

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
<th>Day 6</th>
<th>Day 7</th>
<th>Day 8</th>
<th>Day 9</th>
<th>Day 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>Down</td>
<td>Down</td>
<td>Up</td>
<td>Down</td>
<td>Down</td>
<td>Up</td>
<td>Up</td>
<td>Up</td>
<td>Down</td>
</tr>
</tbody>
</table>

$0.0547 = \frac{10}{8} + \frac{10}{9} + \frac{10}{10}$
Effect of Multiple Comparison Procedure

- Approach:
 - Get 50 analysts
 - Each analyst makes 10 random guesses
 - Choose the analyst that makes the most number of correct predictions

- Probability that at least one analyst makes at least 8 correct predictions

\[
P(\#\text{correct} \geq 8) = 1 - (1 - 0.0547)^{50} = 0.9399
\]

Effect of Multiple Comparison Procedure

- Many algorithms employ the following greedy strategy:
 - Initial model: \(M \)
 - Alternative model: \(M' = M \cup \gamma \)
 where \(\gamma \) is a component to be added to the model
 (e.g., a test condition of a decision tree)
 - Keep \(M' \) if improvement, \(\Delta(M, M') > \alpha \)

- Often times, \(\gamma \) is chosen from a set of alternative components, \(\Gamma = \{\gamma_1, \gamma_2, \ldots, \gamma_k\} \)

- If many alternatives are available, one may inadvertently add irrelevant components to the model, resulting in model overfitting
Effect of Multiple Comparison - Example

Use additional 100 noisy variables generated from a uniform distribution along with X and Y as attributes.

Use 30% of the data for training and 70% of the data for testing

Notes on Overfitting

- Overfitting results in decision trees that are more complex than necessary

- Training error does not provide a good estimate of how well the tree will perform on previously unseen records

- Need ways for estimating generalization errors
Model Selection

- Performed during model building
- Purpose is to ensure that model is not overly complex (to avoid overfitting)
- Need to estimate generalization error
 - Using Validation Set
 - Incorporating Model Complexity
 - Estimating Statistical Bounds

Model Selection: Using Validation Set

- Divide *training* data into two parts:
 - Training set:
 - use for model building
 - Validation set:
 - use for estimating generalization error
 - Note: validation set is not the same as test set

- Drawback:
 - Less data available for training
Model Selection:
Incorporating Model Complexity

- **Rationale: Occam’s Razor**
 - Given two models of similar generalization errors, one should prefer the simpler model over the more complex model
 - A complex model has a greater chance of being fitted accidentally by errors in data
 - Therefore, one should include model complexity when evaluating a model

\[
\text{Gen. Error(Model)} = \text{Train. Error(Model, Train. Data)} + \alpha \times \text{Complexity(Model)}
\]

Estimating the Complexity of Decision Trees

- **Pessimistic Error Estimate** of decision tree \(T \) with \(k \) leaf nodes:

\[
\text{err}_{\text{gen}}(T) = \text{err}(T) + \Omega \times \frac{k}{N_{\text{train}}}
\]

- \(\text{err}(T) \): error rate on all training records
- \(\Omega \): trade-off hyper-parameter (similar to \(\alpha \))
 - Relative cost of adding a leaf node
- \(k \): number of leaf nodes
- \(N_{\text{train}} \): total number of training records
Estimating the Complexity of Decision Trees: Example

\[e(T_L) = \frac{4}{24} \]
\[e(T_R) = \frac{6}{24} \]
\[\Omega = 1 \]
\[e_{\text{gen}}(T_L) = \frac{4}{24} + 1 \times \frac{7}{24} = \frac{11}{24} = 0.458 \]
\[e_{\text{gen}}(T_R) = \frac{6}{24} + 1 \times \frac{4}{24} = \frac{10}{24} = 0.417 \]

Estimating the Complexity of Decision Trees

- Resubstitution Estimate:
 - Using training error as an optimistic estimate of generalization error
 - Referred to as optimistic error estimate

\[e(T_L) = \frac{4}{24} \]
\[e(T_R) = \frac{6}{24} \]
Minimum Description Length (MDL)

- **Cost(Model, Data)** = Cost(Data|Model) + \(\alpha \) x Cost(Model)
 - Cost is the number of bits needed for encoding.
 - Search for the least costly model.
- **Cost(Data|Model)** encodes the misclassification errors.
- **Cost(Model)** uses node encoding (number of children) plus splitting condition encoding.

Estimating Statistical Bounds

Before splitting: \(e = 2/7 \), \(e'(7, 2/7, 0.25) = 0.503 \)

\[e'(T) = 7 \times 0.503 = 3.521 \]

After splitting:

\(e(T_L) = 1/4 \), \(e'(4, 1/4, 0.25) = 0.537 \)

\(e(T_R) = 1/3 \), \(e'(3, 1/3, 0.25) = 0.650 \)

\(e'(T) = 4 \times 0.537 + 3 \times 0.650 = 4.098 \)

Therefore, do not split
Model Selection for Decision Trees

• Pre-Pruning (Early Stopping Rule)
 – Stop the algorithm before it becomes a fully-grown tree
 – Typical stopping conditions for a node:
 ◆ Stop if all instances belong to the same class
 ◆ Stop if all the attribute values are the same
 – More restrictive conditions:
 ◆ Stop if number of instances is less than some user-specified threshold
 ◆ Stop if class distribution of instances are independent of the available features (e.g., using χ^2 test)
 ◆ Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).
 ◆ Stop if estimated generalization error falls below certain threshold

Model Selection for Decision Trees

• Post-pruning
 – Grow decision tree to its entirety
 – Subtree replacement
 ◆ Trim the nodes of the decision tree in a bottom-up fashion
 ◆ If generalization error improves after trimming, replace sub-tree by a leaf node
 ◆ Class label of leaf node is determined from majority class of instances in the sub-tree
 – Subtree raising
 ◆ Replace subtree with most frequently used branch
Example of Post-Pruning

Training Error (Before splitting) = 10/30
Pessimistic error = \((10 + 0.5)/30 = 10.5/30\)
Training Error (After splitting) = 9/30
Pessimistic error (After splitting) = \((9 + 4 \times 0.5)/30 = 11/30\)

PRUNE!

```
Class = Yes 20
Class = No 10
Error = 10/30
```

Example of Post-pruning

Decision Tree:
```
depth = 1:
  breadth > 7 : class 1
  breadth <= 7:
    breadth < 3:
      imagePages <= 0.375: class 0
      imagePages > 0.375:
        totalPages <= 6: class 1
        totalPages > 6:
          breadth > 1: class 0
          breadth <= 1:
            imagePages > 0.1333: class 0
            imagePages <= 0.1333:
              breadth <= 6: class 0
              breadth > 6:
                MultAgent = 0:
                  MultiIP = 0:
                    breadth <= 6: class 0
                    breadth > 6:
                      repeatedAccess <= 0.0322: class 0
                      repeatedAccess > 0.0322:
                        MultiAgent = 1:
                          totalPages <= 81: class 0
                          totalPages > 81: class 1
```

```
Class = Yes 8
Class = No 4
Error = Class = Yes 4
Class = No 1
```

Examples of Post-pruning

- **Subtree Raising**
- **Subtree Replacement**

```
Simplified Decision Tree:
depth = 1:
  imagePages <= 0.1333: class 1
  imagePages > 0.1333:
    breadth <= 6: class 0
    breadth > 6:
      MultAgent = 0:
        MultiIP = 0:
          breadth <= 6: class 0
          breadth > 6:
            repeatedAccess <= 0.0322: class 0
            repeatedAccess > 0.0322:
              MultiAgent = 1:
                totalPages <= 81: class 0
                totalPages > 81: class 1
```

03/26/2018 Introduction to Data Mining, 2nd Edition
Model Evaluation

- **Purpose:**
 - To estimate performance of classifier on previously unseen data (test set)

- **Holdout**
 - Reserve k% for training and (100-k)% for testing
 - Random subsampling: repeated holdout

- **Cross validation**
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n

Cross-validation Example

- **3-fold cross-validation**

![Diagram](show the diagram from the image)