Data Mining

Model Overfitting

Introduction to Data Mining, 2nd Edition
by
Tan, Steinbach, Karpatne, Kumar

Classification Errors

- Training errors (apparent errors)
 - Errors committed on the training set

- Test errors
 - Errors committed on the test set

- Generalization errors
 - Expected error of a model over random selection of records from same distribution
Example Data Set

Two class problem:

+ : 5400 instances
 - 5000 instances generated from a Gaussian centered at (10,10)
 - 400 noisy instances added

o : 5400 instances
 - Generated from a uniform distribution

10% of the data used for training and 90% of the data used for testing

Increasing number of nodes in Decision Trees

[Graph showing the relationship between the number of nodes and error rate]
Decision Tree with 4 nodes

Decision Tree with 50 nodes
Which tree is better?

![Decision Tree with 4 nodes](image1.png)

![Decision Tree with 50 nodes](image2.png)

Which tree is better?

Model Overfitting

As the model becomes more and more complex, test errors can start increasing even though training error may be decreasing.

Underfitting: when model is too simple, both training and test errors are large

Overfitting: when model is too complex, training error is small but test error is large
Model Overfitting

Using twice the number of data instances

- Increasing the size of training data reduces the difference between training and testing errors at a given size of model.
Reasons for Model Overfitting

- Limited Training Size
- High Model Complexity
 - Multiple Comparison Procedure

Effect of Multiple Comparison Procedure

- Consider the task of predicting whether stock market will rise/fall in the next 10 trading days
- Random guessing: \(P(\text{correct}) = 0.5 \)
- Make 10 random guesses in a row:
 \[
P(\# \text{correct} \geq 8) = \frac{\binom{10}{8} + \binom{10}{9} + \binom{10}{10}}{2^{10}} = 0.0547
\]
Effect of Multiple Comparison Procedure

● Approach:
 – Get 50 analysts
 – Each analyst makes 10 random guesses
 – Choose the analyst that makes the most number of correct predictions

● Probability that at least one analyst makes at least 8 correct predictions

\[P(\#\text{correct} \geq 8) = 1 - (1 - 0.0547)^{50} = 0.9399 \]

Effect of Multiple Comparison Procedure

● Many algorithms employ the following greedy strategy:
 – Initial model: \(M \)
 – Alternative model: \(M' = M \cup \gamma \),
 where \(\gamma \) is a component to be added to the model
 (e.g., a test condition of a decision tree)
 – Keep \(M' \) if improvement, \(\Delta(M, M') > \alpha \)

● Often times, \(\gamma \) is chosen from a set of alternative components, \(\Gamma = \{\gamma_1, \gamma_2, \ldots, \gamma_k\} \)

● If many alternatives are available, one may inadvertently add irrelevant components to the model, resulting in model overfitting
Effect of Multiple Comparison - Example

Use additional 100 noisy variables generated from a uniform distribution along with X and Y as attributes.

Use 30% of the data for training and 70% of the data for testing.

Notes on Overfitting

- Overfitting results in decision trees that are more complex than necessary.

- Training error does not provide a good estimate of how well the tree will perform on previously unseen records.

- Need ways for estimating generalization errors.
Model Selection

- Performed during model building
- Purpose is to ensure that model is not overly complex (to avoid overfitting)
- Need to estimate generalization error
 - Using Validation Set
 - Incorporating Model Complexity

Model Selection: Using Validation Set

- Divide training data into two parts:
 - Training set:
 - use for model building
 - Validation set:
 - use for estimating generalization error
 - Note: validation set is not the same as test set

- Drawback:
 - Less data available for training
Model Selection:
Incorporating Model Complexity

- Rationale: Occam’s Razor
 - Given two models of similar generalization errors, one should prefer the simpler model over the more complex model.
 - A complex model has a greater chance of being fitted accidentally.
 - Therefore, one should include model complexity when evaluating a model.

\[
\text{Gen. Error(Model)} = \text{Train. Error(Model, Train. Data)} + \alpha \times \text{Complexity(Model)}
\]

Estimating the Complexity of Decision Trees

- Pessimistic Error Estimate of decision tree \(T \) with \(k \) leaf nodes:

\[
err_{gen}(T) = err(T) + \Omega \times \frac{k}{N_{\text{train}}}
\]

- \(err(T) \): error rate on all training records
- \(\Omega \): trade-off hyper-parameter (similar to \(\alpha \))
 - Relative cost of adding a leaf node
- \(k \): number of leaf nodes
- \(N_{\text{train}} \): total number of training records
Estimating the Complexity of Decision Trees: Example

\[e(T_L) = \frac{4}{24} \]
\[e(T_R) = \frac{6}{24} \]
\[\Omega = 1 \]

\[
e_{gen}(T_L) = \frac{4}{24} + \frac{1}{24} = \frac{11}{24} = 0.458
\]
\[
e_{gen}(T_R) = \frac{6}{24} + \frac{1}{24} = \frac{10}{24} = 0.417
\]

Estimating the Complexity of Decision Trees

- Resubstitution Estimate:
 - Using training error as an optimistic estimate of generalization error
 - Referred to as optimistic error estimate

\[e(T_L) = \frac{4}{24} \]
\[e(T_R) = \frac{6}{24} \]
Minimum Description Length (MDL)

- Cost(Model, Data) = Cost(Data|Model) + \alpha \times Cost(Model)
 - Cost is the number of bits needed for encoding.
 - Search for the least costly model.
- Cost(Data|Model) encodes the misclassification errors.
- Cost(Model) uses node encoding (number of children) plus splitting condition encoding.

Model Selection for Decision Trees

- Pre-Pruning (Early Stopping Rule)
 - Stop the algorithm before it becomes a fully-grown tree
 - Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
 - More restrictive conditions:
 - Stop if number of instances is less than some user-specified threshold
 - Stop if class distribution of instances are independent of the available features (e.g., using \(\chi^2 \) test)
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).
 - Stop if estimated generalization error falls below certain threshold
Model Selection for Decision Trees

- Post-pruning
 - Grow decision tree to its entirety
 - Subtree replacement
 - Trim the nodes of the decision tree in a bottom-up fashion
 - If generalization error improves after trimming, replace sub-tree by a leaf node
 - Class label of leaf node is determined from majority class of instances in the sub-tree

Example of Post-Pruning

Class = Yes	20
Class = No	10
Error	10/30

Training Error (Before splitting) = 10/30
Pessimistic error = (10 + 0.5)/30 = 10.5/30
Training Error (After splitting) = 9/30
Pessimistic error (After splitting) = (9 + 4 × 0.5)/30 = 11/30
PRUNE!
Examples of Post-pruning

Decision Tree:
- **Depth**: 1
- **Breadth**: 7
- **Class 1**:
 - **ImagePages**: > 0.375
 - **TotalPages**: > 0.375
- **Class 0**:
 - **Breadth**: < 3
 - **ImagePages**: > 0.1333
 - **TotalPages**: > 0.1333

Simplified Decision Tree:
- **Depth**: 1
- **Class 1**:
 - **ImagePages**: > 0.1333
 - **Breadth**: > 6
 - **TotalPages**: > 81
- **Class 0**:
 - **MultAgent**: 0
 - **Breadth**: < 6
 - **TotalPages**: > 81

Model Evaluation

- **Purpose**:
 - To estimate performance of classifier on previously unseen data (test set)

- **Holdout**
 - Reserve k% for training and (100-k)% for testing
 - Random subsampling: repeated holdout

- **Cross validation**
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n
Cross-validation Example

- 3-fold cross-validation

![Diagram of 3-fold cross-validation]

Variations on Cross-validation

- Repeated cross-validation
 - Perform cross-validation a number of times
 - Gives an estimate of the variance of the generalization error

- Stratified cross-validation
 - Guarantee the same percentage of class labels in training and test
 - Important when classes are imbalanced and the sample is small

- Use nested cross-validation approach for model selection and evaluation