Large-scale Data is Everywhere!

- There has been enormous data growth in both commercial and scientific databases due to advances in data generation and collection technologies.
- New mantra
 - Gather whatever data you can whenever and wherever possible.
- Expectations
 - Gathered data will have value either for the purpose collected or for a purpose not envisioned.
Why Data Mining? Commercial Viewpoint

- Lots of data is being collected and warehoused
 - Web data
 - Google has Peta Bytes of web data
 - Facebook has billions of active users
 - purchases at department/grocery stores, e-commerce
 - Amazon handles millions of visits/day
 - Bank/Credit Card transactions
- Computers have become cheaper and more powerful
- Competitive Pressure is Strong
 - Provide better, customized services for an edge (e.g. in Customer Relationship Management)

Why Data Mining? Scientific Viewpoint

- Data collected and stored at enormous speeds
 - remote sensors on a satellite
 - NASA EOSDIS archives over petabytes of earth science data / year
 - telescopes scanning the skies
 - Sky survey data
 - High-throughput biological data
 - scientific simulations
 - terabytes of data generated in a few hours
- Data mining helps scientists
 - in automated analysis of massive datasets
 - In hypothesis formation
Great opportunities to improve productivity in all walks of life

 McKinsey Global Institute

 Big data: The next frontier for innovation, competition, and productivity.

 Great Opportunities to Solve Society’s Major Problems

 Improving health care and reducing costs

 Finding alternative/ green energy sources

 Predicting the impact of climate change

 Reducing hunger and poverty by increasing agriculture production
What is Data Mining?

Many Definitions
- Non-trivial extraction of implicit, previously unknown and potentially useful information from data
- Exploration & analysis, by automatic or semi-automatic means, of large quantities of data in order to discover meaningful patterns

Draws ideas from machine learning/AI, pattern recognition, statistics, and database systems

Traditional techniques may be unsuitable due to data that is
- Large-scale
- High dimensional
- Heterogeneous
- Complex
- Distributed

A key component of the emerging field of data science and data-driven discovery

Origins of Data Mining
Data Mining Tasks

- **Prediction Methods**
 - Use some variables to predict unknown or future values of other variables.

- **Description Methods**
 - Find human-interpretable patterns that describe the data.

From [Fayyad, et.al.] Advances in Knowledge Discovery and Data Mining, 1996
Predictive Modeling: Classification

- Find a model for class attribute as a function of the values of other attributes

<table>
<thead>
<tr>
<th>Tid</th>
<th>Employed</th>
<th>Level of Education</th>
<th># years at present address</th>
<th>Credit Worthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Graduate</td>
<td>5</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>High School</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Undergrad</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>High School</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Model for predicting credit worthiness

Class

Employed

Education

Number of years

Number of years

Credit Worthy

Classification Example

<table>
<thead>
<tr>
<th>Tid</th>
<th>Employed</th>
<th>Level of Education</th>
<th># years at present address</th>
<th>Credit Worthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Undergrad</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Graduate</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>High School</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Test Set

Training Set

Learn Classifier

Model
Examples of Classification Task

- Classifying credit card transactions as legitimate or fraudulent
- Classifying land covers (water bodies, urban areas, forests, etc.) using satellite data
- Categorizing news stories as finance, weather, entertainment, sports, etc
- Identifying intruders in the cyberspace
- Predicting tumor cells as benign or malignant
- Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil

Classification: Application 1

- Fraud Detection
 - **Goal:** Predict fraudulent cases in credit card transactions.
 - **Approach:**
 - Use credit card transactions and the information on its account-holder as attributes.
 - When does a customer buy, what does he buy, how often he pays on time, etc
 - Label past transactions as fraud or fair transactions. This forms the class attribute.
 - Learn a model for the class of the transactions.
 - Use this model to detect fraud by observing credit card transactions on an account.
Classification: Application 2

- Churn prediction for telephone customers
 - **Goal:** To predict whether a customer is likely to be lost to a competitor.
 - **Approach:**
 - Use detailed record of transactions with each of the past and present customers, to find attributes.
 - How often the customer calls, where he calls, what time-of-the-day he calls most, his financial status, marital status, etc.
 - Label the customers as loyal or disloyal.
 - Find a model for loyalty.

From [Berry & Linoff] Data Mining Techniques, 1997

Classification: Application 3

- Sky Survey Cataloging
 - **Goal:** To predict class (star or galaxy) of sky objects, especially visually faint ones, based on the telescopic survey images (from Palomar Observatory).
 - 3000 images with 23,040 x 23,040 pixels per image.
 - **Approach:**
 - Segment the image.
 - Measure image attributes (features) - 40 of them per object.
 - Model the class based on these features.
 - Success Story: Could find 16 new high red-shift quasars, some of the farthest objects that are difficult to find!

From [Fayyad, et.al.] Advances in Knowledge Discovery and Data Mining, 1996
Classifying Galaxies

Data Size:
• 72 million stars, 20 million galaxies
• Object Catalog: 9 GB
• Image Database: 150 GB

Class:
• Stages of Formation

Attributes:
• Image features,
• Characteristics of light waves received, etc.

Early

Intermediate

Late

Regression

• Predict a value of a given continuous valued variable based on the values of other variables, assuming a linear or nonlinear model of dependency.
• Extensively studied in statistics, neural network fields.
• Examples:
 – Predicting sales amounts of new product based on advertising expenditure.
 – Predicting wind velocities as a function of temperature, humidity, air pressure, etc.
 – Time series prediction of stock market indices.
Clustering

- Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

 ![Intra-cluster distances are minimized](image1)

 ![Inter-cluster distances are maximized](image2)

Applications of Cluster Analysis

- **Understanding**
 - Custom profiling for targeted marketing
 - Group related documents for browsing
 - Group genes and proteins that have similar functionality
 - Group stocks with similar price fluctuations

- **Summarization**
 - Reduce the size of large data sets

![Use of K-means to partition Sea Surface Temperature (SST) and Net Primary Production (NPP) into clusters that reflect the Northern and Southern Hemispheres](image3)

![Clusters for Raw SST and Raw NPP](image4)

![Courtesy: Michael Eisen](image5)
Clustering: Application 1

Market Segmentation:

- **Goal:** subdivide a market into distinct subsets of customers where any subset may conceivably be selected as a market target to be reached with a distinct marketing mix.
- **Approach:**
 - Collect different attributes of customers based on their geographical and lifestyle related information.
 - Find clusters of similar customers.
 - Measure the clustering quality by observing buying patterns of customers in same cluster vs. those from different clusters.

Clustering: Application 2

Document Clustering:

- **Goal:** To find groups of documents that are similar to each other based on the important terms appearing in them.
- **Approach:** To identify frequently occurring terms in each document. Form a similarity measure based on the frequencies of different terms. Use it to cluster.

Enron email dataset
Association Rule Discovery: Definition

- Given a set of records each of which contain some number of items from a given collection
 - Produce dependency rules which will predict occurrence of an item based on occurrences of other items.

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Rules Discovered:

- \{Milk\} --> \{Coke\}
- \{Diaper, Milk\} --> \{Beer\}

Association Analysis: Applications

- Market-basket analysis
 - Rules are used for sales promotion, shelf management, and inventory management

- Telecommunication alarm diagnosis
 - Rules are used to find combination of alarms that occur together frequently in the same time period

- Medical Informatics
 - Rules are used to find combination of patient symptoms and test results associated with certain diseases
Association Analysis: Applications

- An Example Subspace Differential Coexpression Pattern from lung cancer dataset

Three lung cancer datasets [Bhattacharjee et al. 2001], [Stearman et al. 2005], [Su et al. 2007]

Enriched with the TNF/NFB signaling pathway which is well-known to be related to lung cancer
P-value: 1.4*10^-5 (6/10 overlap with the pathway)

[Fang et al. PSB 2010]

Deviation/Anomaly/Change Detection

- Detect significant deviations from normal behavior
- Applications:
 - Credit Card Fraud Detection
 - Network Intrusion Detection
 - Identify anomalous behavior from sensor networks for monitoring and surveillance.
 - Detecting changes in the global forest cover.
Motivating Challenges

- Scalability
- High Dimensionality
- Heterogeneous and Complex Data
- Data Ownership and Distribution
- Non-traditional Analysis