About me …

• Professor of Computer Science & Engineering, Univ. of Minnesota
• Ph.D. (1993) from U.C. Berkeley
 • GUI toolkit architecture
• Teaching Interests: HCI, GUI Tools
• Research Interests: General HCI, and ...
 • Collaborative Information Filtering
 • Multimedia Authoring and Systems
 • Visualization and Information Management
 • Medical/Health Applications and their Delivery

A Quick Introduction

• What are recommender systems?
• Tools to help identify worthwhile stuff
 • Filtering interfaces
 • E-mail filters, clipping services
 • Recommendation interfaces
 • Suggestion lists, “top-n,” offers and promotions
 • Prediction interfaces
 • Evaluate candidates, predicted ratings

Scope of Recommenders

• Purely Editorial Recommenders
• Content Filtering Recommenders
• Collaborative Filtering Recommenders
• Hybrid Recommenders

Wide Range of Algorithms

• Simple Keyword Vector Matches
• Pure Nearest-Neighbor Collaborative Filtering
• Machine Learning on Content or Ratings

Classic Collaborative Filtering

• MovieLens*
• K-nearest neighbor algorithm
• Model-free, memory-based implementation
• Intuitive application, supports typical interfaces

• *Note – newest releases use updated architecture/algorithm
CF Classic

Submit Ratings

Store Ratings

Compute Correlations

Request Recommendations

Identify Neighbors
Select Items; Predict Ratings

C.F. Engine

- Ratings
- Correlations
- Neighborhood

Understanding the Computation

<table>
<thead>
<tr>
<th>Users</th>
<th>Hoop Dreams</th>
<th>Star Wars</th>
<th>Pretty Woman</th>
<th>Titanic</th>
<th>Blimp</th>
<th>Rocky XV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>John</td>
<td>A</td>
<td>F</td>
<td>D</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susan</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Pat</td>
<td>D</td>
<td>A</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jean</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Ben</td>
<td>F</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Nathan</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

Understanding the Computation

<table>
<thead>
<tr>
<th>Users</th>
<th>Hoop Dreams</th>
<th>Star Wars</th>
<th>Pretty Woman</th>
<th>Titanic</th>
<th>Blimp</th>
<th>Rocky XV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>John</td>
<td>A</td>
<td>F</td>
<td>D</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susan</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Pat</td>
<td>D</td>
<td>A</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jean</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Ben</td>
<td>F</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Nathan</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>
Understanding the Computation

<table>
<thead>
<tr>
<th></th>
<th>Hoop Dreams</th>
<th>Star Wars</th>
<th>Pretty Woman</th>
<th>Titanic</th>
<th>Blimp</th>
<th>Rocky XV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>John</td>
<td>A</td>
<td>F</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susan</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Pat</td>
<td>D</td>
<td>A</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jean</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Ben</td>
<td>F</td>
<td>A</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nathan</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

MovieLens

[Welcome to the new MovieLens](http://www.movielens.org)
Talk Roadmap

- Introduction
- Choices
 - Algorithms
 - Application Space Overview
 - Research Overview
 - Influencing Users
 - Recommending Research Papers
 - Rethinking Recommendation
- 8 Principles for Personalization

Collaborative Filtering Algorithms

- Non-Personalized Summary Statistics
- K-Nearest Neighbor
 - user-user
 - item-item
- Dimensionality Reduction
 - LSI
 - PLSI
 - Factor Analysis
- Content + Collaborative Filtering
- Burke’s Survey of Hybrids
- Graph Techniques
- Horting
- Clustering
- Classifier Learning
 - Naïve Bayes
 - Bayesian Belief Networks
 - Rule-induction
Collaborative Filtering Algorithms

- Non-Personalized Summary Statistics
- K-Nearest Neighbor
 - user-user
 - item-item
- Dimensionality Reduction
 - LSI
 - PLSI
 - Factor Analysis
- Content + Collaborative Filtering
 - Burke's Survey of Hybrids
- Graph Techniques
 - Horting
- Clustering
- Classifier Learning
 - Naïve Bayes
 - Bayesian Belief Networks
 - Rule-induction
Item-Item Matrix Formulation

- Target item
- 5 closest neighbors
- Raw scores for prediction generation
- Approximation based on linear regression

Item-Item Discussion
- Good quality, in sparse situations
- Promising for incremental model building
 - Small quality degradation
 - Big performance gain

Collaborative Filtering Algorithms
- Non-Personalized Summary Statistics
- K-Nearest Neighbor
 - user-user
 - item-item
- Dimensionality Reduction
 - LSI
 - PLSI
 - Factor Analysis
- Content + Collaborative Filtering
 - Burke’s Survey of Hybrids
 - Graph Techniques
 - Clustering
 - Classifier Learning
 - Naïve Bayes
 - Bayesian Belief Networks
 - Rule-induction

Dimensionality Reduction
- Latent Semantic Indexing
 - Used by the IR community
 - Worked well with the vector space model
 - Used Singular Value Decomposition (SVD)
- Main Idea
 - Term-document matching in feature space
 - Captures latent association
 - Reduced space is less-noisy

SVD: Mathematical Background

\[
R_k = U_k S_k V_k^T
\]

The reconstructed matrix \(R_k \) is the closest rank-\(k \) matrix to the original matrix \(R \).

SVD for Collaborative Filtering

1. Low dimensional representation \(O(m+n) \) storage requirement
2. Direct Prediction
Singular Value Decomposition

Reduce dimensionality of problem
- Results in small, fast model
- Richer Neighbor Network

Incremental Update
- Folding in
- Model Update

Collaborative Filtering Algorithms

- Non-Personalized Summary Statistics
- K-Nearest Neighbor
 - user-user
 - item-item
- Dimensionality Reduction
 - LSI
 - PLSI
- Factor Analysis
 - Content + Collaborative Filtering
 - Burke’s Survey of Hybrids
 - Graph Techniques
 - Horting
 - Clustering
 - Classifier Learning
 - Naïve Bayes
 - Bayesian Belief Networks
 - Rule-induction

Talk Roadmap

- Introduction
- Choices
 - Algorithms
 - Application Space Overview
 - Research Overview
 - Influencing Users
 - Recommending Research Papers
 - Rethinking Recommendation
 - 8 Principles for Personalization

Recommender Application Space

- Dimensions of Analysis
 - Domain
 - Purpose
 - Whose Opinion
 - Personalization Level
 - Privacy and Trustworthiness
 - Interfaces
 - <Algorithms Inside>

Domains of Recommendation

- Content to Commerce
 - News, information, “text”
- Products, vendors, bundles
Purposes of Recommendation

- The recommendations themselves
 - Sales
 - Information

- Education of user/customer

- Build a community of users/customers around products or content

Whose Opinion?

- "Experts"
- Ordinary "phoaks"
- People like you
Personalization Level

- **Generic**
 - Everyone receives same recommendations
- **Demographic**
 - Matches a target group
- **Ephemeral**
 - Matches current activity
- **Persistent**
 - Matches long-term interests

Privacy and Trustworthiness

- Who knows what about me?
 - Personal information revealed
 - Identity
 - Deniability of preferences
- Is the recommendation honest?
 - Biases built-in by operator
 - “business rules”
 - Vulnerability to external manipulation

Interfaces

- Types of Output
 - Predictions
 - Recommendations
 - Filtering
- Organic vs. explicit presentation
- Types of Input
 - Explicit
 - Implicit
Launching Organic Interfaces

- Launch.yahoo.com – a truly personal radio station
 - Observes play limits
 - Mixes different inputs, different recommenders
 - Kill a song – once and forever
 - Nice information on why a song is playing

Talk Roadmap

✓ Introduction
- Choices
 - Algorithms
 - Application Space Overview
 - Research Overview
 - Influencing Users
 - Recommending Research Papers
 - Rethinking Recommendation
 - 8 Principles for Personalization
Current and Recent Research

User Experience
- Impact of Ratings on Users
- New User “Orientation”
- Confidence Displays
- Interface Design
- Human-Recommender Interaction

Algorithmic and Systems Issues
- Beyond Accuracy: Metrics and Algorithms
- Buddies and Multi-User Recommendations
- Influence and Shilling

Eliciting Participation in On-Line Communities
- Reinventing Conversation
- User-Maintained Communities

Extending Recommendation to New Domains
- Recommending Research Papers

Talk Roadmap

- Introduction
- Choices
 - Algorithms
 - Application Space Overview
 - Research Overview
- Influencing Users
- Recommending Research Papers
- Rethinking Recommendation
- 8 Principles for Personalization

Does Seeing Predictions Affect User Ratings?

- RERATE: Ask 212 users to rate 40 movies
 - 10 with no shown prediction
 - 30 with shown predictions (random order): 10 accurate, 10 up a star, 10 down a star
- Compare ratings to accurate predictions
 - “Prediction” is user’s original rating
 - Hypothesis: users rate in the direction of the shown prediction

The Study

<table>
<thead>
<tr>
<th>Prediction</th>
<th>Your Rating</th>
<th>Genre</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accurate</td>
<td>8.0</td>
<td>Crime</td>
<td>The Godfather (1972)</td>
</tr>
<tr>
<td>Up</td>
<td>7.0</td>
<td>Romance</td>
<td>Love Story (1976)</td>
</tr>
</tbody>
</table>

Seeing Matters

Accuracy Matters

<table>
<thead>
<tr>
<th>Prediction</th>
<th>Below</th>
<th>At</th>
<th>Above</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accurate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Domino Effects?

- The power to manipulate?

Rated, Unrated, Doesn’t Matter

- Recap of RERATE effects:
 - Showing prediction changed 8% of ratings
 - Altering shown prediction changed 12%
- Similar experiment, UNRATED movies
 - 137 experimental users, 1599 ratings
 - Showing prediction changed 8% of ratings
 - Altering shown prediction changed 14%

But Users Notice!

- Users are often insensitive…
- UNRATED part 2: satisfaction survey
 - Control group: only accurate predictions
 - Experimental predictions accurate, useful?
 - ML predictions overall accurate, useful?
 - Manipulated preds less well liked
 - Surprise: 24 bad = MovieLens worse!

Talk Roadmap

- Introduction
- Choices
 - Algorithms
 - Application Space Overview
 - Research Overview
 - Influencing Users
 - Recommending Research Papers
 - Rethinking Recommendation
 - 8 Principles for Personalization

Recommending Research Papers

- Using Citation Webs
- For a full paper, we can recommend citations
 - A paper “rates” the papers it cites
 - Every paper has ratings in the system
- Other citation web mappings are possible, but many are have problems

Pure Experiment Results -- Online

- Worst algorithm returned good results over 25% of the time
- 76% of users got at least one good recommendation
- Users happy with one good recommendation in list of five
What’s Next?

- Short-Term Efforts
 - Task-specific recommendation
 - Understanding personal bibliographies
 - Privacy issues
- Longer-Term Efforts
 - Toolkits to support librarians and other power users
 - Exploring the shape of disciplines
 - Rights issues

Task-Specific Recommendations

- Many different user needs
 - awareness in area of expertise
 - find specific work in area of expertise
 - explore peripheral or new area
 - find people with relevant expertise
 - reviewers, program committees, collaborators
 - reading list for students, newcomers
 - individuals or groups
- Different algorithms fulfill different needs

Talk Roadmap

- Introduction
- Choices
 - Algorithms
 - Application Space Overview
 - Research Overview
 - Influencing Users
 - Recommending Research Papers
 - Rethinking Recommendation
 - 8 Principles for Personalization

Evaluating Recommendations

- Prediction Accuracy
 - MAE, MSE,
- Decision-Support Accuracy
 - Reversals, ROC
- Recommendation Quality
 - Top-n measures
 - Item-Set Coverage

From Items to Lists

- Do users really experience recommendations in isolation?
Making Good Lists

- Individually good recommendations do not equal a good recommendation list
- Other factors are important
 - Diversity
 - Affirmation
 - Appropriateness
- Called the “Portfolio Effect”
 [Ali and van Staa, 2004]

Topic Diversification

- Re-order results in a rec list
- Add item with least similarity to all items already on list
- Weight with a ‘diversification factor’
- Ran experiments to test effects

Experimental Design

- Books from BookCrossing.com
- Algorithms
 - Item-based CF
 - User-based CF
- Experiments
 - On-line user surveys
 - 2125 users each saw one list of 10 recommendations

Online Results

- User satisfaction more complicated than only accuracy
- List makeup is important to users
- 30% change enough to alter user opinion
- Change not equal across algorithms

Diversity is Important
Human-Recommendator Interaction

- Three premises:
 - Users perceive recommendation quality in context; users evaluate lists
 - Users develop opinions of recommenders based on interactions over time
 - Users have an information need and come to a recommender as a part of their information seeking behavior

HRI Pillars and Aspects

<table>
<thead>
<tr>
<th>Recommendation Dialogue</th>
<th>Recommender Personality</th>
<th>End User's Information Seeking Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectiveness</td>
<td>Personalization</td>
<td>Comprehension of Task</td>
</tr>
<tr>
<td>Transparency</td>
<td>Usefulness</td>
<td>Task Constraints</td>
</tr>
<tr>
<td>Salience</td>
<td>Boldness</td>
<td>Recommendation Importance</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>Adaptability</td>
<td>Recommendation Appropriateness</td>
</tr>
<tr>
<td>Usability</td>
<td>Fairness</td>
<td>Recommendation Suitability</td>
</tr>
</tbody>
</table>

HRI Process Model

- Makes HRI Constructive
 - Links Users/Tasks to Algorithms
- Need New Metrics

New Metrics

- Benchmark a variety of algorithms
- Need several metrics inspired by different HRI Aspects
- Examples:
 - Ratability
 - Boldness
 - Adaptability

Metric Experimental Design

- ACM DL Dataset
 - Thanks to ACM for cooperation!
 - 24,000 papers
 - Have citations, titles, authors, & abstracts
 - High quality

- Algorithms
 - User-based CF
 - Item-based CF
 - Naïve Bayes Classifier
 - TF/IDF Content-based
 - Co-citation
 - Local Graph Search
 - Hybrid variants

Ratability

- Probability a user will rate a given item
 - “Obviousness”
 - Based on current user model
 - Independent of liking the item
- Many possible implementations
 - Naïve Bayes Classifier
Ratability Results

- Measure of “Extreme Predictions”
 - Only defined on explicit rating scale
 - Choose “extreme values”
 - Count appearance of “extremes” and normalize
- For example, MovieLens
 - 0.5 to 5.0 star scale, half-star increments
 - Choose 0.5 and 5.0 as “extreme”

Boldness

- Measure of how algorithm changes in response to changes in user model
 - How do users grow in the system?
- Perturb a user model with a model from another random user
 - 50% each
 - See quality of new recommendation lists

Adaptability

- Measure of how algorithm changes in response to changes in user model
 - How do users grow in the system?
- Perturb a user model with a model from another random user
 - 50% each
 - See quality of new recommendation lists
Adaptability Results

Talk Roadmap

✓ Introduction
 • Choices
 ▪ Algorithms
 ▪ Application Space Overview
 ▪ Research Overview
 ▪ Influencing Users
 ▪ Recommending Research Papers
 ▪ Rethinking Recommendation
 ▪ 8 Principles for Personalization

Eight Principles for Personalizing Your Business

Illustrated by Case Studies

The Eight Principles

1. Demonstrate Product Expertise
2. Be a Customer Agent
3. Maintain Excellent Service Across Touchpoints
4. Box Products, Not People
5. Watch What I Do
6. Revolutionize Knowledge Management
7. Use Communities to Create Content
8. Turn Communities into Content

Principle 1. Demonstrate Product Expertise

Key Ideas

• Use expertise and recommenders to build customer trust

• Provide deep product data, so that customers can make informed decisions

• Make it fun!
Examples

• Priceline Hotels
• Ticketmaster and Hockey
• Entrée – a FindMe System
• See’s Candies
Principle 3.
Maintain Excellent Service Across Touchpoints

Key Ideas
- It's still you however your customers get there
- Different strokes for different folks

Kiosks
- Alienware PC's Now Offered on Best Buy "Computer Creation Stations"
- Blockbuster
 - customer identity
 - privacy issues
- Music Store
 - sampling versus "listening"

Call Centers
- Inbound
 - "screen-pops"
 - Legacy systems
 - appropriateness
- Outbound
 - Predict who will buy
 - Predict what they will buy
 - Predict when to contact them
 - Online campaign management

Zagat What it Takes
- What happened to my favorite guide?
 - They let you rate the restaurants!

- What should be done?
 - Personalized guides, from the people who "know good restaurants!"
Principle 5.
Watch What I Do

Key Ideas
- Actions speak louder than words
- Determine actions by context
- Respond to customers’ reactions to your recommendations

Examples
- Google
- PHOAKS
- Amazon
- My Yahoo

Google PageRank
- Ranks pages based on incoming links
- Links from higher ranked pages matter more
- Combines text analysis with importance to decide which pages to show you
- Runs on network of thousands of PCs!
- Works to be hard to trick (e.g., citation trading)
PHOAKS

- Read Usenet news to find web sites!
 - Implicit ratings
 - Filter URLs to find endorsements
 - Create top-n lists of web sites for a Usenet newsgroup community
- Links to endorsements (with age shown)
- Tested against hand-maintained FAQ lists

Principle 7.
Use Communities to Create Content
Key Ideas

- Editorial process is value added
- Free is better than paying for it
 - customers trust what they produce
- Reward creatively
Conclusions

• From humble origins …
 • Substantial algorithmic research
 • HCI and online community research
 • Important applications
 • Commercial deployment

Talk Roadmap

✓ Introduction
• Choices
 • Algorithms
 • Application Space Overview
 • Research Overview
 • Influencing Users
 • Recommending Research Papers
 • Rethinking Recommendation
 • 8 Principles for Personalization

Acknowledgements

• This work is being supported by grants from the National Science Foundation, and by grants from Net Perceptions, Inc.

• Many people have contributed ideas, time, and energy to this project.

Recommender Systems: User Experience and System Issues

Joseph A. Konstan
University of Minnesota

konstan@cs.umn.edu
http://www.grouplens.org

UNIVERSITY OF MINNESOTA