
Practical Program Modularization with Type-Based Dependence Analysis

Kangjie Lu
University of Minnesota

Abstract—Today’s software programs are bloating and have
become extremely complex. As there is typically no internal
isolation among modules in a program, a vulnerability can be
exploited to corrupt the memory and take control of the whole
program. Program modularization is thus a promising security
mechanism that splits a complex program into smaller modules,
so that memory-access instructions can be constrained from
corrupting irrelevant modules. A general approach to real-
izing program modularization is dependence analysis which
determines if an instruction is independent of specific code
or data; and if so, it can be modularized. Unfortunately,
dependence analysis in complex programs is generally con-
sidered infeasible, due to problems in data-flow analysis, such
as unknown indirect-call targets, pointer aliasing, and path
explosion. As a result, we have not seen practical automated
program modularization built on dependence analysis.

This paper presents a breakthrough—Type-based depen-
dence analysis for Program Modularization (TyPM). Its goal is
to determine which modules in a program can never pass a type
of object (including references) to a memory-access instruction;
therefore, objects of this type that are created by these modules
can never be valid targets of the instruction. The idea is to
employ a type-based analysis to first determine which types
of data flows can take place between two modules, and then
transitively resolve all dependent modules of a memory-access
instruction, with respect to the specific type. Such an approach
avoids the data-flow analysis and can be practical. We develop
two important security applications based on TyPM: refining
indirect-call targets and protecting critical data structures.
We extensively evaluate TyPM with various system software,
including an OS kernel, a hypervisor, UEFI firmware, and
a browser. Results show that on average TyPM additionally
refines indirect-call targets produced by the state of the art
by 31%-91%. TyPM can also remove 99.9% of modules for
memory-write instructions to prevent them from corrupting
critical data structures in the Linux kernel.

1. Introduction

The complexity of modern software keeps growing,
as more and more features are introduced. For example,
the Linux kernel and the Chromium browser both have
exceeded over 30 million lines of code with more than
20 thousand modules. This trend is detrimental to security;
there is typically no internal isolation in a program, so
a vulnerability can be exploited to corrupt memory and
take control of the control/data flow of the whole program.

Naturally, program modularization can effectively mitigate
the problem, which enforces the “least privilege” security
principle. Program modularization splits a complex program
into smaller modules, so that a vulnerability in one module
can be constrained from affecting other irrelevant modules.

Program modularization generally requires dependence
analysis which is to identify all possible control/data de-
pendencies of an instruction; independent code/data thus
can be safely excluded from the targets of the instruction. A
standard approach is to first identify the control dependencies,
and then perform data-flow analysis within the reachable
control-flow graph to identify data dependencies. Note that
soundness (i.e., identifying all valid targets) is a priority, as
missing a target may cause a program to fail at runtime,

Dependence analysis for complex C/C++ programs has
been generally considered “mission impossible”. Given a
memory-access instruction, determining which code/data in
the program can never be valid targets requires keeping
track of both control and data flows from sources (such as a
memory allocation) to the memory-access instruction. Such
an analysis suffers from hard problems, including unknown
indirect-call targets, inaccurate pointer aliasing, and path
explosion. Our experimental results on the Linux kernel and
Firefox show that the aliasing problem alone would render
the data-flow analysis impractical, due to overwhelming false
results and scalability issues. Moreover, as we will explain
in §2, existing dependence analyses would not work for a
multi-entry program.

Dependence analysis has thus been largely limited to
“detection” or offline analysis where inaccuracy and un-
soundness can be tolerated, but it has not been applied
to runtime defenses in practice. For instance, the state of
the art on program compartmentalization still has to rely on
humans to first annotate compartments [38]. We believe that
if dependence analysis, as a basic technique, is made practical,
it can potentially enable various security applications, such as
control-flow integrity (CFI) [6, 59, 56, 10, 43, 17, 60, 44, 15]
which limits control transfers to only valid code targets;
data-flow integrity (DFI) [53, 7, 12] which identifies critical
data structures and allows only valid memory read/write
instructions to access them; program compartmentaliza-
tion [33, 38, 39, 34, 28] which partitions programs into
isolated regions to contain attack impacts; and software
debloating [47, 8, 46] which tries to remove unrelated
modules.

In this paper, we present a breakthrough in depen-
dence analysis, namely, Type-based dependence analysis
for Program Modularization (TYPM). Given a memory-

access instruction, its goal is to determine a set of modules
(independent modules) in the program such that the object
targeted by the instruction cannot have emanated from these
modules. Therefore, objects created by independent modules
can never be valid targets of the instruction. TYPM achieves
this goal with a new type-based static analysis, instead of
impractical data-flow analysis. The high-level idea of TYPM
is to employ a type-based analysis to identify the types of
data flows between two modules, and then to transitively
identify dependent modules of a specific type based on
the type-labeled cross-module data flows. TYPM analyzes
and leverages the type information in the communication
channels between two modules. As will be described in
§3.2, the communication channels are clearly defined—there
are actually only two channels, function-call arguments
and global variables, both with type information. Therefore,
TYPM’s analysis can be practical and sound.

TYPM has three stages. The first stage is typecasting
analysis, which is to comprehensively collect all typecasts
in each module. The output is a cast map that maintains the
cast-from and cast-to types for each module. The second
stage is to identify the types of data-flows between two
modules, by analyzing globals and function-call arguments.
The analysis of this stage is general: It obtains types in both
objects and their references, parses nested types, and handles
typecasting by querying the cast map. The output is a flow
map that maintains possible types of data flows between two
modules. Given a <type, module> pair as the input, which
can be obtained from a memory-access instruction, the last
stage is to transitively resolve the dependent modules by
querying the flow map. The last stage additionally uses type
elevation to improve the precision.

We identify several challenges when implementing
TYPM and propose new techniques to address them. (1)
Identification of types and directions of data flows between
modules. Global variables and function arguments can be
complicated, as they often involve nested data structures. We
recursively label the types of their elements (e.g., nested
fields of structs), as well as directions of data flows through
a minimal variable-use analysis. (2) Typecasting analysis for
soundness. A major challenge in ensuring the soundness of
TYPM is handling the prevalent typecasting. An element
should be labeled with all possible types. We develop a
typecasting analysis that is conservative and handles general
types (e.g., void *). We also handle unions which may
manifest various types. (3) Iterative resolving for unknown
indirect calls. TYPM must analyze arguments of all function
calls, including indirect ones whose targets are unknown. To
address the problem, we propose to start with the existing
imprecise type matching, but further use an iterative algo-
rithm to optimize the precision. (4) Optimization through type
elevation. Finally, we optimize the precision of dependence
analysis by using elevated types together with original types
to make the resolving much more restrictive.

A common question is whether TYPM is able to capture
indirect data flows between two modules, e.g., a reference
(pointer) to an object is passed to other modules through
shared memory, heap, globals, or their combinations. TYPM

generally handles such cases based on an important insight.
For an object (e.g., a data structure) of module M1 to
become a target of module M2, a reference to the object,
i.e., the object itself or a pointer to it, must be passed
from module M1 to M2 (directly or transitively), through
function arguments and/or globals. Otherwise, module M2
cannot access the object. Such passing of references will be
generally captured by TYPM’s type analysis against function
arguments and/or globals. This is regardless of where the
object is stored: globals, the heap, shared memory, or the
stack. An object itself and its references are treated equally
in TYPM in such a way that TYPM always obtains the types
in them. Note that references also contain type information,
and TYPM handles nested types, no matter whether a field is
an object or a reference. We provide an example in Figure 2
that illustrates how TYPM generally captures both direct
and indirect data flows by inspecting the two channels.

We implement TYPM based on LLVM and demon-
strate its power with two security applications. First, we
show how TYPM can further significantly remove in-
valid indirect-call targets produced by existing type match-
ing [56, 43, 37, 18, 61, 36]. Intuitively, the type matching
should focus on only the dependent modules, but not the
whole program. For each indirect call, we thus use TYPM to
collect the dependent modules and remove the targets outside
the modules. Essentially, we achieve a scope-aware type
matching for indirect-call targets. Second, we apply TYPM
to protect critical data structures (e.g., the ones related to
access control) in the Linux kernel. We collect the critical
data structures, and for each memory-write, we use TYPM
to determine whether the types of the critical data structures
are possibly passed to the memory-write; if not, the memory-
write should not target the critical data structures and should
be constrained from accessing them.

We extensively evaluate TYPM using an OS kernel
(Linux), a hypervisor (Xen), UEFI firmware (OVMF), and
a browser (Firefox). The results show that TYPM can
typically finish the analysis of millions of lines of code
within minutes or hours. TYPM can further dramatically
remove the indirect-call targets produced by existing type
matching by 31%-91%. Our evaluation results also show
that TYPM does not introduce false negatives under its
model. For the protection of critical data structures, on
average TYPM is able to remove 99.9% of modules for
memory-write instructions, so that these instructions can be
effectively constrained from corrupting critical data structures
we collected in the Linux kernel. We believe that TYPM is
a practical and easy-to-use tool that would enable a variety
of security applications. We release our implementation of
TYPM at https://github.com/umnsec/typm.

To summarize, we make the following contributions in
the paper.
• A breakthrough in dependence analysis. We propose a

new concept—type-based dependence analysis for program
modularization (TYPM). Given a type of data and a target
module, TYPM determines modules that can never pass
such a type of data to the target module, and thus can
be safely excluded. Such an analysis can be generally

https://github.com/umnsec/typm

used to constrain targets of memory-access instructions
(read/write/execute) to improve memory safety or precision
of program analysis. TYPM avoids the challenging inter-
procedural data-flow analysis, and its approach is sound
in principle.

• New techniques for practicality. To implement a practical
TYPM, we propose multiple new techniques to address
challenges. In addition to identifying type- and direction-
labeled cross-module data flows, we perform typecasting
analysis and handle unions to ensure soundness, iteratively
resolve unknown indirect-call targets, and significantly
optimize results through type elevation.

• Two security applications. We implement TYPM based
on LLVM and apply TYPM to further improve the preci-
sion of existing indirect-call analysis and to protect critical
data structures. Evaluation results show that TYPM is
scalable and precise, and can significantly refine indirect-
call targets produced by existing techniques and remove
the vast majority of modules for memory-write instructions
in the monolithic Linux kernel.

2. Background and Motivation

In this section, we present the background of dependence
analysis and type analysis, as well as the motivation.

2.1. Limitations with Dependence Analysis

Dependence analysis is a foundational technique for secu-
rity applications, which determines if data can propagate from
one code location to another. Existing techniques [33, 32]
typically employ control- and data-flow analyses. A standard
approach is to first identify the control dependencies, and
then perform data-flow analysis within the reachable control-
flow graph to identify data dependencies. Such an approach
has important limitations.
Missing control dependence in multi-entry programs.
System software tends to have multiple entry points to
provide APIs or services to higher-level applications. For
example, the Linux kernel has more than 300 system calls
and many interrupt handlers; all of these are entry points. In
such programs, control dependence will not be a prerequisite
for forming data dependence. In particular, two functions
that are control-independent can still pass data (e.g., function
pointers) through global variables or shared memory. As
a result, existing data-dependence analyses that rely on
control dependences will suffer from false negatives when
the target program has multiple entry points. We believe
that an accurate dependence analysis should not limit data
flows within reachable control-flow graphs. In TYPM, we
will broadly recover data dependences, without relying on
control dependences.
Challenges with data-flow analysis. In this paper, we
study inter-procedural data dependences between modules.
Inter-procedural data-flow analysis has been known to suffer
from multiple open problems. First, point-to analysis or
alias analysis is required in data-flow analysis. Based on our

experiments, well-known inter-procedural pointer analysis
tools (e.g., SVF [54] and Andersen [21]) cannot scale to
programs like OS kernels. Second, when in the conservative
or sound mode, their results generally suffer from overwhelm-
ing false positives, and the imprecision becomes worse in
larger programs. Third, data-flow analysis itself requires a
complete call-graph which is not available due to indirect
calls.

2.2. Requirements for Defense Mechanisms

When using dependence analysis in defense mechanisms
like control-flow integrity (CFI) [6] and data-flow integrity
(DFI) [12], extra challenges exist.
Precision. Precision is a primary goal for defense mech-
anisms, as it relates to protection effectiveness, as well as
runtime and memory overheads. A general defense mecha-
nism (e.g., CFI and DFI) is to limit control/data flows to only
valid targets. The most common approach for computing the
targets is through data-flow analysis, and the limitations have
been discussed in §2.1. Alternatively, type matching [43, 36]
searches for potential targets based on types. As we will
describe in §2.3, it is still far from being precise.
Minimal false negatives. False negatives are often un-
acceptable in security applications, as they cause runtime
errors. It is typically impractical to guarantee zero false
negatives in computing targets due to non-standard code.
Even for the conservative function-type matching, it still has
false negatives [43]. However, we should ensure that the
false negatives are minimal (e.g., a handful), so that we can
manually modify the code in an affordable way. To allow
such modification, the analysis should be able to report such
non-standard code or potential false negatives.

2.3. Existing Scope-Unaware Type Analysis

Type analysis has recently shown promising results in
security applications. For example, researchers proposed to
use function types to match targets for indirect calls to
achieve CFI [56, 43]. Recently advances [37, 61, 36, 18, 31]
further use struct types to match function targets. However,
these techniques are imprecise because they globally scan the
whole program for targets and would thus include massive
irrelevant targets—most modules in the program may not
be related at all. More importantly, the precision of such a
global search will become worse and worse, as the size of
the target program grows.

3. The Concept of TYPM

In this paper, we aim to address the limitations with
dependence analysis to make it practical for security ap-
plications beyond detection. We propose a new concept,
Type-based dependence analysis for Program Modularization
(TYPM), that practically determines which modules in a
program can never pass a type of object (the object or its
references) to a target module. TYPM avoids the challenging

inter-procedural data-flow analysis and instead employs a
type-based analysis. In this section, we provide related
definitions and important insights behind TYPM.

3.1. Definitions

We observe that a module is relatively self-contained and
has clear boundaries. A module is defined as follows.

Definition 1. Module: A module is a compilation
unit [5]. A compilation unit refers to source code
that is compiled and treated as a single logical unit.
Typically, a C/C++ file corresponds to a module. In
LLVM, each bitcode file is a module.

If we perform the dependence analysis only between
modules, the internal complexity of a module would not
impact the dependence analysis, which may allow to achieve
a practical dependence analysis. We thus propose Type-based
Dependence Analysis which is defined as follows.

Definition 2. Type-based Dependence Analysis: Given
an object type and a target module, it determines
which modules in the program may propagate (both
directly and indirectly) objects (or their references)
of this type to the target module.

3.2. Insights

In the following, we present our insights on why TYPM
would work in practice.

Channel 1: globals

Channel 2:
func-call
arguments

Module M1 Module M2

foo() bar()

global

...

Figure 1: Two data-flow channels between modules

Only two data-flow channels between modules. Modules
are relatively self-contained, as each of them is a separate
compilation unit. The most important insight behind TYPM
is that in a regular program, two modules have only two
channels to pass references to memory objects: global
variables (globals for short) and function-call arguments,
as shown in Figure 1. In particular, to form a cross-module
data flow through a global, one module writes to the global,
and another module reads from it. To form a cross-module
data flow through a function call, a module calls a function in
another module and passes data through function arguments
or return values. For simplicity, we use argument to represent

both argument and return value. The data flows between two
modules can be indirect (i.e., transitive): two modules without
direct data flows can still be connected through other modules.
Also, two channels can be used together for a cross-module
data flow.

1 /* Global variable g */
2 struct global_t {
3 struct p_t *p;
4 } g;
5

6 /* Module M1: */
7 void foo() {
8 struct p_t *p = (struct p_t *)malloc(size);
9 bar(p);

10 g.p = p;
11 store_to_g(p); // store_to_g() is in M3
12 }
13

14 /* Module M2: */
15 void bar(struct p_t *p) {
16 use(p, g.p);
17 p = load_from_g(); // load_from_g() is in M4
18 }

Figure 2: A pseudo-code example that illustrates how module M1
can pass object reference p to module M2.

Figure 2 shows an example of how module M1 can pass
object reference p to module M2 using the two channels.
In the first case, on line 9, foo() in M1 calls bar() of
M2 with argument p, so we identify a data flow of type
p_t from M1 to M2. In the second case, line 10 stores
p to global g in M1, and line 16 loads p from g in M2,
so we identify two sub-flows: M1 –> g and g –> M2. By
transitively connecting these two sub-flows, we can identify
a data flow of type p_t from M1 to M2. The last case is an
indirect data flow that involves both a function call and the
global. Line 11 calls store_to_g() of module M3, which
stores p to global g, while line 17 calls load_from_g() in
module M4, which loads p from global g. Correspondingly,
we will first identify two sub-flows: (1) M1 –> M3 –> g
and (2) g –> M4 –> M2. By transitively connecting these
two sub-flows, we can again identify the data flow of type
p_t from M1 to M2. In all of these cases, the cross-module
data flows of type p_t are identified by only inspecting the
function calls and globals.

Such an observation indicates that by inspecting only the
two channels between modules, without actually tracking
the complicated data flows, we may still determine if two
modules can pass data to each other. This shows a possibility
of achieving dependence analysis without relying on data-
flow analysis.
Types are restrictive to cross-module data flows. If we
assume that two modules are dependent as long as there is
a data-flow channel between them, the dependence analysis
would be highly imprecise. Fortunately, we can leverage the
type information (as well as directions) to restrict the data
flows. Two modules may easily form a data flow, but the
data flow is unlikely of a specific type (e.g., a specific field
of a struct) and direction. More importantly, the likelihood
is even lower when there are many other modules between

the two modules, as all these modules have to transitively
form a data flow of this specific type.
Why TyPM can be effective and sound. The effective-
ness of TYPM is based on the difficulty of forming a
lengthy cross-module data flow that is of a specific type
and direction. Typically there are many other modules
between two modules, MA and MB . Given a possible
path, MA,M1,M2, ...,Mn,MB , to form the dependence of
type T through the path, there must exist a transitive and
complete sequence of type-labeled and directional data flows,
DFT (MA,M1), DFT (M1,M2), ..., DFT (Mn,MB). Such
conditions are restrictive, as all of the sub-flows must be
labeled with type T and transitively connected. Missing any
would not form the dependence.

The soundness of TYPM’s approach is based on the fact
that if a target object with type T in module MA is indeed
a target of a memory-access instruction, I , in MB , then a
reference to the object must be passed to I . The passing of
the reference is essentially a data-flow process. That is, there
must be a continuous data flow that can pass this specific
type of object from MA to MB . This data flow will be
identified by TYPM per its approach, so module MA will
be included as a dependent module of I .

4. Design of TYPM

TYPM is intended to be an effective and practical tech-
nique for program modularization and security mechanisms.
In this section, we present how we design TYPM to achieve
the goals.

4.1. An Overview

Assumptions. To realize TYPM, we make a few assump-
tions. (1) We assume that the target program does not
intentionally access objects out of the boundary, which by
itself is considered a violation of memory safety. (2) We
assume that all source code of the target program is available
and in our analysis scope. If a function is missing, TYPM
may miss the data flows through the function and thus miss
dependences. Hand-written assembly code is typically not a
problem unless it involves typecasting, cross-module function
calls, global accesses, or propagating data of target types.
(3) We assume that the underlying compiler (e.g., LLVM) is
correct in providing the type information of data.
The workflow. At a higher level, TYPM takes as input
a target type and a module (a pair <type, module>), as
well as the program, and automatically identifies all possi-
ble dependent modules. The <type, module> pair can be
automatically obtained from a memory-access instruction:
the type of accessed target and the module containing the
instruction. Otherwise, a user can also manually specify
the <type, module> pairs. Figure 3 shows the workflow of
TYPM.

TYPM has three stages. The first stage is to compre-
hensively collect typecasts in each module. Its output is a
casting map, CastMap(M,T, {T ′}), which indicates that

type T can be cast to types in set {T ′} in module M .
The second stage is to label the types and directions of
data flows between two modules. Its output is a flow map,
FlowMap(Mi,Mj , {T}), which indicates that data flows
of a type in set {T}) can take place from Mi to Mj . The
analysis of this stage is general: It obtains types in both
objects and their references, and parses nested types. The
analysis also handles typecasting by recursively querying
CastMap. For example, when we identify a data flow of
type T from Mi to Mj , and types {T ′} are ever directly or
transitively cast to T in Mi, then all the types in {T ′}) will
be added to the FlowMap, to conservatively indicate that data
flows of these types may happen from Mi to Mj . Given
any type-module pair ⟨T,M⟩ as an input, which can be
obtained from any memory-access instruction, the final stage
queries the FlowMap to compute dependent modules {M ′}
that may have a direct or transitive data flow (of type T) to
M . In particular, the stage determines the existence of such a
data flow from M ′ to M by finding either DFT (M

′,M) or
M1,M2, ...,Mn such that DFT (M

′,M1), DFT (M1,M2),
..., DFT (Mn,M) all exist. Other modules beyond {M ′}
are considered independent ones. The last stage additionally
uses type elevation to improve the precision.

4.2. Identifying Data-Flow Types and Directions

While the identification of data-flow types and directions
is the second stage, we present it before typecasting analysis
because typecasting analysis is to ensure the soundness of
the identification. The identification parses both globals and
function calls.
Type identification. The goal of the type identification is
to conservatively collect all possible types of data in a global
or a function argument. The general algorithm for the type
identification is recursive. The algorithm iterates each field
of the involved variable (either a global or an argument). If
a field is a composite type (e.g., a struct), we recursively
parse its fields. If a field is a pointer, we recursively parse
the types of the pointed elements. Through such a recursive
and exhaustive analysis, we can identify all possible types of
data that can be passed through the global or argument. Note
that this analysis does not require any data-flow analysis.

DT (M,V,U) =

V → M, if U is a load,
M → V, if U is a store, and V is

the pointer operand,
Recursion(U), if U is a cast or GEP,
V ↔ M, otherwise.

(1)

Direction identification. The goal of direction identification
is to further restrict the data flows in a global or argument.
Our design is to make the identification sound by conser-
vatively performing a minimal intra-procedural data-flow
analysis. We also enforce a fallback mechanism—If there
is any uncertainty, we stop the analysis and consider the
data flow bi-directional. The analysis parses each use (an
instruction using the variable), U , of an argument or global,
V , in module M , with the policy in Equation 1. DT (M,V,U)
is the function that determines the direction of the data flow

Modules

Channel 1: global

Channel 2:
function
calls

Module A Module B

foo() bar()

global

...

M1

M2

M3

M4

Ty_1

Ty_3

Ty_2

...

...

FlowMap

* Get <base type,
 module>
* Query FlowMap
* Resolve transitive
 flows

Iterate
resolving
if new icall targets

Iteratively refine FlowMap
if new icall targets

Dependent
modules for each
<type, module>

Stage1: Typecasting
analysis

Stage2: Identify types &
directions of data flows

Stage3: Resolve
dependences

* Find base type
* Externality
 analysis

Memory-access
instructions

Base type for each inst

Cast-to Cast-from

CastMap

Type elevation

Figure 3: Overview of TYPM. It has three stages and two major maps. TYPM outputs dependent modules for a pair <type, module>
which is obtained from a memory-access instruction.

(of type T) between M and V based on the use, U . GEP [3]
is an instruction in LLVM that gets the pointer to a field
based on the base pointer. In LLVM, a variable is a value,
and a use is also a value; Recursion(U) is to recursively
perform the identification on the use U of V .

Such a policy is conservative to ensure soundness. Basi-
cally, it only considers parsable load and store instructions
for inferring directions. Whenever other cases are encoun-
tered, we assume that the data flow is bi-directional. Note
that memcpy is also treated as a store operation.
Handling implicit data flows. Implicit data flows exist
for globals and external functions. A global or an external
function can be directly used in another module. For example,
function foo() defined in module A can be directly called in
module B without any explicit data flows that pass address
of foo() from module A to module B. To capture such
implicit data flows, we use a unique identifier to represent
each global and external function, and use a map to link
the unique identifier to the actual definition of the global
or external function. This way, when module A calls foo(),
we obtain its unique identifier and use the map to find its
original definition, which essentially rebuilds the explicit
data flows.
Building the FlowMap. With the results of DT (M,V,U),
we build the FlowMap which maintains possible type- and
direction-labeled data flows between two modules. We will
identify a data flow DFT (Mi,Mj)—a data flow of type T ,
from module Mi to module Mj—and add it to FlowMap, if:
1) Flow V → Mj of type T exists; V is an argument of

function F in Mj ; and Mi calls F ; or
2) Flows Mi → V and V → Mj of type T exist; and V is

a global.

4.3. Typecasting Analysis for Soundness

The identification of data-flow types and directions simply
parses the globals and arguments. However, typecasting is
prevalent. A type in a global or argument can be a cast-
to or cast-from type, and its actual type can be others.
In particular, casting a struct type to a general type (e.g.,
void * or int64_t) is common. Missing possible types

would miss the type-based dependences. We thus propose a
sound typecasting analysis to capture all possible types.

Given a module, for each cast operation, we obtain
its cast-to and cast-from types, and use a map (CastMap)
to record the typecasting relations. To achieve that, we
conservatively analyze, (1) all globals (as well as their nested
fields), (2) all instructions, and (3) all operands of instructions
(an operand of an instruction can be a cast operator), to
exhaustively capture all cast operations in the module.

In §4.2, whenever we encounter a type in parsing a global
or argument, we query CastMap to recursively collect all
related types. This way, we ensure that we collect all possible
types that a global or an argument can potentially pass, in the
presence of typecasting, which ensures the soundness. Note
that unions may appear to be different types in modules,
without an explicit casting operation. We handle unions by
using only the names of unions but not the types (in LLVM,
unions are treated as structs with a name). More details will
be presented in §5.

4.4. Iterative Analysis for Indirect Calls and De-
pendences

Indirect calls have been an obstacle for inter-procedural
program analysis. In TYPM, we also need to know the targets
of indirect calls in the first place, so that we can perform
the identification of type- and direction-labeled data flows
through function arguments. Our strategy is to adopt the
existing type matching (function-type matching and struct-
type matching) to find indirect-call targets, which is sound
(i.e., a target set is complete).

However, existing type matching is conservative in
finding targets, and thus is imprecise; most targets are false
positives. To address the problem, we propose an iterative
algorithm to gradually refine the targets. The idea is that
through one iteration, we can resolve the dependent modules
of an indirect call; by limiting the type matching to the
dependent modules, we refine its targets which are used in
the next iteration. We stop the iterations until we cannot
refine the targets. This way, we improve the precision of
both indirect-call targets and dependence analysis.

Dependence resolving. With the type- and direction-labeled
data flows in globals and arguments, we can build a large
map (FlowMap) that maintains the type-labeled data flows
between any two modules, which allows us to further resolve
the dependence. Given a <type, module> pair, we simply
query the map to recursively identify all dependent modules.

4.5. Type Elevation for Precision

In a real-world scenario, a typical case is to resolve the
dependence for a specific memory-access instruction, such as
indirect call and memory read/write. The type of the target of
the memory-access instruction can be obtained through the
type of the pointer operand of the instruction. For example,
an indirect call tells the type of the function pointer (i.e.,
function type). Such a type can be generic. When we use the
type to find dependences, the resolving can be very inclusive
and returns a large set of dependent modules. To improve
the precision, we propose type elevation.

1 /* Module: mm/mempolicy.c */
2 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma) {
3 pol = vma->vm_ops->get_policy(vma, addr);
4 }

Figure 4: An example that qualifies type elevation.

The idea of type elevation is to use more complex types
(thus more unique) to result in a smaller set of dependent
modules. The pointer operand of a memory-access instruction
is typically loaded from a struct, and oftentimes, a pointer
of the struct is loaded from another more complex struct,
and so forth. From the pointer operand of a memory-access
instruction, we can get a complex and unique base type for
it, i.e., type elevation. If we use both the base type and the
original pointer-operand type to resolve the dependences, the
resolving will certainly be much more restrictive, and the
results would be much more precise. This is because the
final results are essentially an intersection of the two sets
obtained from the two types.

We use an example in Figure 4 to illustrate how type
elevation works. In this case, we want to identify dependent
modules of the indirect call on line 3. Initially, we obtain
the type of the function pointer, get_policy, and use it
to identify dependent modules, ST1. Then, we elevate
the type to the container of the function pointer, which
is struct vm_operations_struct (from vm_ops) or even
struct vm_area_struct (from vma). We can use the struct
type to identify dependent modules, ST2. The final dependent-
module set is ST1 ∩ ST2, which would be smaller than the
original ST1.

However, such a simple design is not sound. When we
elevate the type to a complex base type (e.g., struct), an
object of this type may be created within the module, instead
of being passed in from other modules. Therefore, if we
still look for cross-module data flows of this base type, we
may not find a dependence even if the original pointer type
is indeed passed in from other modules, leading to false
negatives or soundness issues. In other words, to use a base

type for resolving dependences in a module, we must ensure
that this type of data is never internally created but is passed
in from the external.
Externality analysis for soundness. We thus propose
externality analysis to avoid false negatives. The idea is to
analyze the module to determine if an object of the elevated
complex type is ever internally created. To conservatively
identify any creation of the complex type, we analyze all
initializers and store instructions that target the type. If
any creation is found, we assume that data of this type
may be internally generated, and the type should not be
used as an elevated type, and we should fall back to the
original type. Otherwise, it is safe to use it to restrictively
resolve dependences. In the example in Figure 4, we found
that struct vm_area_struct cannot be used as the base
type because vm_area_struct.vm_ops is ever assigned in
the module; that is, it may be created internally, and we have
to lower the type. However, struct vm_operations_struct
is indeed external, and we can use it for dependence resolving
in this module. Note that once a type is lowered, we cannot
elevate it again during a single resolving.

5. Implementation with LLVM

We implemented TYPM based on LLVM 15 as a pass.
In this section, we present important considerations for the
implementation.
Type representation and comparison. We found the type
comparison in LLVM a challenging problem. First, in LLVM,
a type is a memory object, and different modules have
different memory objects even for the same type. We cannot
simply use pointers to types for comparison. Second, a struct
type may even have variant string representations. Therefore,
a string-based comparison will not work either. Third, a
struct may or may not have a name in different modules.

We use a strategy to deal with type comparison. First, if a
type is not a struct type, we use its string. If a type is a struct,
we use its name. However, we develop a name-recovering
technique to identify missed names. For structs, we first
record their names when they are available and collect type
IDs [4] of their fields. When we encounter a struct without a
name, we look up the records based on the field type IDs to
find the name. If we still cannot find the name, we will use
field type IDs for comparison. After obtaining the string and
names, we perform hashing, so that the following frequent
comparison can be efficient.
Handling union types. union types bring implementation
challenges because a union type can appear as “different
types”, depending on the instantiation object. This can cause
confusion to TYPM and result in soundness issues. We
address this problem by only taking the name of a union
type for comparison. This is based on the observation that
regardless of the actual type of the instantiation object, the
name of a union type in LLVM remains the same. Such an
implementation decision slightly hurts precision but avoids
soundness issues.

Type elevation. The idea of type elevation is to use as a
complex type as possible when resolving the dependences.
Given a memory-access instruction, its access target is
specified by the pointer operand. In LLVM IR, we can
get the type of the element pointed to by the pointer. We
found that the element is typically (more than 90% in the
Linux kernel) loaded from a base type, typically a struct.
To get the base type, we parse the GetElementPtr (GEP)
instructions [3] which contain both the base type and field
type. If there is a sequence of GEP instructions, we will take
the outermost (i.e., most complex) type as the base type
for dependence resolving. Note that this analysis is also
conservative; whenever we are unable to further parse the
instructions, e.g., encountering an argument, we stop the
analysis and take the current sequence of GEP instructions to
infer the base type. When parsing the GEP instructions, we
also record the indexes to achieve the field sensitivity which
is required by the externality analysis.

It is worth noting that the externality analysis is the only
part that requires field-sensitive analysis. For other parts,
TYPM does not require a field-sensitive analysis, which
significantly reduces the implementation complexity.
Specification of target types. We provide two ways for
specifying the target types. One is to generally specify
the class of memory-access instructions, such as indirect
calls; TYPM will then automatically identify the pair <type,
module> for each memory-access instruction. The other way
is to specify the name of the type as a string in an input
file, and TYPM will load the types from the file and use
hash values to represent the type names. In the dependence-
resolving stage, TYPM will use the hash values to match
types.
LLVM opaque pointers. LLVM switched to opaque point-
ers on 04/12/2022 (commit e758b77161a7), and the type
information of pointers is not immediately available. We
identify two practical solutions. First, we can simply disable
opaque pointers by using option -no-opaque-pointers or
use an LLVM version that does not use opaque pointers.
Second, we can build TYPM as a standalone binary based on
LLVM before version e758b77161a7. In this work, we chose
the second solution and developed a script to automate the
process. In the future, we will also explore the possibility of
making TYPM compatible with opaque pointers, as LLVM
offers APIs for obtaining type information to migrate to
opaque pointers [2].

6. Security Applications

Dependence analysis is an enabling technique for a
variety of security applications. In this section, we use TYPM
for two security applications: refining indirect-call targets
produced by existing type matching and protecting critical
data structures from independent writes. Both applications
are security-critical, as they are used to prevent privilege-
escalation attacks, and to achieve data integrity and control-
flow integrity. We will evaluate both applications in §7.

6.1. Refining Indirect-Call Targets

Our first security application is to refine indirect-call tar-
gets produced by existing type matching. Precisely resolving
indirect-call targets has been a prerequisite for effective
control-flow integrity and precise inter-procedural static
analysis. Our idea is that existing techniques globally match
indirect-call targets based on the types of functions or structs
in the whole program; if we use TYPM to first identify the
dependent modules and apply type matching to only these
modules, we would significantly improve the precision of
the results. This is essentially achieving scope-aware type
matching. In this application, the only input we need for
TYPM is which type matching we plan to use and improve.
We choose two schemes of type matching: function-type
matching [43, 56] and struct-type matching [37, 61, 36, 31].
As function-type matching is straightforward, we have our
own implementation in TYPM. For struct type matching, we
use the implementation of MLTA [35].

Specifically, for an indirect call, TYPM identifies the
dependent modules. After that, TYPM applies the existing
type matching to only the dependent modules. That is, if a
target returned by existing type matching does not belong
to any dependent module, we discard it. Once we refine the
targets, i.e., finishing one iteration, we go back to identify
types and directions of data flows that involve indirect calls.
We can perform the iterations until no more indirect-call
targets are removed. In TYPM, we also provide the number
of iterations as a configuration option in case users would
like to get results sooner. When some target functions are
not in the analysis scope, e.g., their address propagation
involves assembly, we provide an allowlist to conservatively
keep them in the resolving results.

6.2. Protecting Critical Data Structures

The motivation of the second application is that critical
system attacks often corrupt critical data structures. For
example, a pattern of privilege escalation is to overwrite the
UID to zero. In system software like the Linux kernel, there
are many centralized critical data structures that are used for
access control.
The method. We apply TYPM to protect critical data
structures in the Linux kernel. There are many memory-
write instructions; each takes a pointer that specifies the
writing target and stores data to it. When the pointer is
controlled by an attacker, e.g., through a buffer overflow, the
memory-write instruction becomes an arbitrary write and can
overwrite critical data structures. TYPM can be naturally
applied to mitigate the problem by identifying memory-write
instructions where critical data structures can never be passed
to them. We call such instructions non-sensitive writes which
will be directly constrained from writing to any critical data
structures. For each sensitive write, we further use TYPM
to identify the specific dependent critical modules.

The method works as follows. First, we collect all
modules that allocate critical data structures, including static
and dynamic allocations. We refer to the module set as

critical modules. Second, for each memory-write instruction,
we use TYPM to identify all possible target modules, which
are referred to as target modules. Finally, we intersect critical
modules with target modules. If there is any overlap, we mark
the instruction as a sensitive write. All other instructions are
marked as non-sensitive writes and may be constrained from
writing to any critical data structures. For a sensitive write,
we use TYPM to limit it to only the critical modules that
create objects of the specific types it targets.
Identifying critical data structures. The very first
task is to identify critical data structures. We take the
Linux kernel as an example. In this project, we focus
on permission- and access-control-related data structures.
Previous works [25, 61] show that the Linux kernel mainly
uses three kinds of access-control mechanisms, Discretionary
Access Controls (DAC), Capabilities, and Linux Security
Modules (LSM). Based on the kernel documentation and
previous works [27, 26, 61], we manually collect the
structures that are checked by the permission-check APIs
(e.g., capable(CAP_SYS_ADMIN)) as critical data structures.
As permission-check APIs are well-defined, the identification
of such structures is straightforward. In total, we collected
37 data structures that require LSM checks, 5 data structures
that require capability checks, and 2 data structures that
require DAC checks.

7. Evaluation

We evaluate TYPM from the following perspectives:
• Scalability and overall performance. TYPM is expected

to scale to programs as large as the Linux kernel and
browsers.

• Reducation rate of dependences. Given a type and a
module, we evaluate to what extent TYPM can remove
independent modules and constrain memory-write instruc-
tions from overwriting critical data structures.

• Refining rate on indirect-call targets. Compared to
existing type matching, we evaluate to what extent TYPM
can further improve the precision.

• False negatives or soundness. Soundness is a design goal
of TYPM. We evaluate if TYPM would introduce false
negatives when refining indirect-call targets.

• Mitigating existing exploits. At last, we test if TYPM can
defeat existing exploits (with CVE numbers) that escalate
privileges by manipulating critical data structures.

Target programs. We have three criteria for selecting target
programs: (1) the program should be security-sensitive and
demand isolation or protection of critical data structures; (2)
the program is written in an unsafe language like C/C++ and
has indirect calls; (3) the program should be popular and
have many users.

With the criteria, we select system software running on
different privilege levels (rings 3, 0, and -1). Specifically, we
selected the Linux kernel, the Xen hypervisor, OVMF UEFI
firmware, as well as the Firefox browser. The complexity of
these programs is summarized in Table 1.

Program #Lines #Modules #Icalls #Addrs Time

Linux-default 1,401K 2,372 21K 32K 7m53s
Linux-allyes 10,318K 17,440 127K 210K 461m
Xen 365K 2,112 3.0K 4.2K 28s
OVMF 333K 1,262 8.0K 2.8K 21s
Firefox (C++) 6,475K 15,442 241K 189K 772m

TABLE 1: Target programs and their complexity. “Addrs” refers
to the number of address-taken functions.

Experimental setup. We use LLVM 15.0 (e758b77161a7,
04/12/2022). We use the default compiler options to generate
the bitcode files of the target programs, e.g., -O2. We use
a desktop running on 64GB RAM and an Intel Xeon CPU
2.9 GHz with 8 cores. The OS is Ubuntu 20.04 LTS.

7.1. Overall Performance

Our evaluation results show that TYPM can easily scale
to millions of lines of code. Table 1 also shows the analysis
time for each program. In this evaluation, we use the basic
function-type matching to get the original indirect-call targets,
and the dependence resolving performs one iteration. We
will evaluate multi-iteration in §7.2.

TYPM can finish the analysis for regular programs within
a minute. However, for large programs with a massive number
of indirect calls, the analysis can take much longer, but still
within a day. We looked into the time distribution and found
that the time for the first two stages is linear, which is
less than half an hour for Linux (allyes config), but the
time for the last stage (dependence resolving) is quadratic,
with complexity O(n2), where n is the number of modules
in TYPM’s current design. For each indirect call, TYPM
recursively traverses all modules and queries the FlowMap,
which takes the majority of the time.

7.2. Refinement of Indirect-Call Targets

In this section, we evaluate the first security application.

7.2.1. Precision Improvements for Existing Techniques.
We apply TYPM to identify indirect-call targets and compare
the target reduction with existing type matching. We take
existing type matching as a baseline and apply TYPM to
improve the results. By its nature, TYPM’s approach is
orthogonal to existing type matching. We define the matching
scope as the number of modules a type will be matched with.
Previous type matching takes all modules of a program as
the scope. Ideally the improvement (i.e., additional reduc-
tion of indirect-call targets) should be proportional to the
reduction rate of the matching scope. Therefore, any existing
type matching can be used. We first use the function-type
matching to evaluate TYPM’s effectiveness in reducing the
matching scope and indirect-call targets. We run two sets
of experiments, one with only one iteration and the other
with multi-iterations until targets cannot be further removed.
We do not apply multi-iterations to Linux-allyes or Firefox
because the reduction rate is already good (87% and 71%),

and the running takes much time. We then switch to struct-
type matching. As shown in existing works [36, 37, 61], the
struct-type matching has significantly refined the indirect-call
targets. However, by reducing the matching scope, we expect
TYPM to further refine the targets effectively.

Table 2 shows the results. We first briefly describe the
results based on function-type matching. Even with one
iteration, TYPM is able to reduce the scope by up to 95% in
OVMF and by at least 73% in Firefox. The target-reduction
rates range from 35% (OVMF) to 87% (Linux-allyes). We
found that the number of iterations is typically 3. With multi-
iteration, the target-reduction rates are improved, while the
scope-reduction rates are stable. For example, the target-
reduction rate for OVMF is doubled, and the reduction rate
for Linux-default is improved to 45% which is significant.
We then describe the results based on struct-type matching.
Overall, the scope reduction is almost the same. The target-
reduction rates are a bit different but are still significant,
which is expected as TYPM improves precision by reducing
the matching scope, which is orthogonal to function-type
matching or struct-type matching.

0 2500 5000 7500 10000 12500 15000 17500
of dependent modules

0.0

0.2

0.4

0.6

0.8

1.0 PDF
CDF

Figure 5: Distribution of scope reduction for func-type matching.

Distribution of scope reduction. We also study the dis-
tribution of matching-scope reduction. In this study, we
take Linux-allyes (17K modules in total) as the target and
function-type matching as the base. For each indirect call,
we calculate the number of its dependent modules, and the
scope-reduction rate is calculated as the number divided by
the total number of modules. We draw the PDF and CDF
curves in Figure 5. On average, TYPM achieves a scope-
reduction rate of 88%. For most cases (about 80%), the
number of dependent modules is less than 3,500 out of 17K,
which is significant. There are about 10% of cases where
the reduction rate is small (less than 5%).
Effectiveness breakdowns. We propose four techniques
to make TYPM practical and effective. The typecasting
analysis is a must, but the other three are optimizations,
and readers may wonder how effective these optimizations
are. The effectiveness of iterative resolving is already shown
in Table 2, so here we evaluate the effectiveness of direction
inference for data flows and type elevation. We take Linux-
default as the target and compare the reduction rates by
enabling and disabling the techniques. In this evaluation, we
use one iteration.

When both techniques are enabled, as shown in Table 2,
the target reduction is 39%, and the scope reduction is 81%.

When only direction inference is disabled, the target reduction
is 38%, and the scope reduction is 80%. When only type
elevation is disabled, the target reduction is down to 9%,
and the scope reduction is 81%. When both are disabled,
the target reduction is 8%, and the scope reduction is 80%.
From the results, we can see that type elevation contributes
to the most reduction of targets, but not the reduction of
scope. The limited contribution to scope reduction can be
a result of that in type elevation, container types in globals
and arguments are also included, so more type-labeled data
flows are included, and the dependence-resolving results do
not change much. The direction inference does not improve
reduction significantly due to its conservative policy. As will
be discussed in §8, improving the direction inference would
be able to further improve the reduction.

7.2.2. False Negatives. Evaluating whether TYPM has false
negatives is challenging because we lack ground truth.
Therefore, in this work, we choose to use a tracer that
collects ground-truth traces (i.e., runtime indirect-call targets)
for soundness evaluation. When a runtime indirect-call target
is not included in the results of TYPM, but included in
the results of existing function-type matching, it is a false
negative introduced by TYPM. We implement the tracer as an
LLVM pass. In this pass, we add hook functions right before
indirect-call instructions. To record indirect-call targets, we
take the target address from an indirect-call instruction and
send it to the hook function which invokes sprint_symbol
provided by Linux to print out the target function. We finally
build the Linux kernel with our LLVM pass and run LTP
(Linux Test Project) to broadly collect traces.

With Linux LTP, we were able to collect 5,799 unique
<indirect call, target> pairs using our tracer. The results show
that TYPM indeed removes 7 true-positive pairs from the
results of existing function-type matching. After looking into
the causes, we found two reasons. The first one is about the
container_of feature [1] in Linux, which results in 6 false
negatives. The feature is to get a pointer of the container
object based on the pointer of a field object. From the
perspective of static analysis, this is an “out-of-bound” access
and violates TYPM’s assumption. At runtime, in case an
object does not come with the corresponding container object,
out-of-bound access may occur [23]. More specifically, in
the second stage, when parsing nested element types, TYPM
assumes that memory access can only be within the boundary
of the current project. Note that not all such cases would
cause false negatives in TYPM. For a container_of, there
is a typecast from a field type to a container type. When
both types are in the same module, TYPM will recognize it,
and there will be no false negative. This only incurs false
negatives when the two types are across modules and the
cross-module data flows only reflect the field types. While
we can still handle such cases by treating container_of the
whole as a typecasting and expanding types of cross-module
data flows, we do not plan to support it for now, as it is
Linux-specific and violating the memory-safety policy from
the static-analysis perspective.

The second cause is a compiler bug in LLVM 15.

Program
Func-type TYPM based on function-type matching TYPM based on struct-type matching

matching 1-iteration N-iteration 1-iteration N-iteration

of targets Target Scope N Target Scope Target Scope N Target Scope
reduction reduction reduction reduction reduction* reduction reduction* reduction

Linux-default 534,835 39% (324,534) 82% 3 45% (295,919) 82% 44% (176,852) 82% 4 44% (176,464) 83%
Xen 89,515 36% (57,449) 95% 2 43% (51,005) 95% 31% (42,218) 95% 2 31% (42,154) 95%
OVMF 51,701 35% (33,464) 95% 3 62% (19,476) 95% 42% (13,933) 96% 3 42% (13,837) 96%
Linux-allyes 50,709K 87% (6,545K) 88% - - - 91% (4,524K) 89% - - -
Firefox (C++) 308,426K 71% (87,320K) 73% - - - 72% (84,862K) 75% - - -

TABLE 2: Reduction of indirect-call targets and reduction of scope for type matching. Scope reduction is measured as the module-reduction
rate. That is how many independent modules are excluded. Target reduction is measured as the additional removed indirect-call targets
over the targets returned by existing techniques (either function-type matching or struct-type matching). *Here the target reduction is an
additional reduction over existing struct-type matching. The number of total targets is listed in the parentheses.

A constant-size array is defined in one module with
type [4 x void (%struct.page*)*]; however, in another
module that dereferences its element, the type becomes
[0 x void (%struct.page*)*], which is incorrect. We com-
piled the same code with other LLVM versions and found
that the bug does not exist in other versions.

7.3. Protection of Critical Data Structures

Dependence-reduction rate. In this section, we evaluate
the dependence-reduction rate for memory-write instructions
against critical data structures in the Linux kernel (Linux-
default). As discussed in §6.2, we manually collected 44
critical data structures in the Linux kernel that are related
to permission, capabilities, LSM, and DAC. To measure
the effectiveness of TYPM in this application, we used the
following strategy. For each memory-write instruction, we
use TYPM to first identify if it may target a critical data
structure. This is based on the type analysis in the type-
elevation component of TYPM—checking if the pointer of
a memory-access instruction refers to a critical-data type. If
so, we go ahead to apply TYPM to resolve the dependent
modules and report the number of dependent modules. By
comparing it with the number of all modules, we can calcu-
late a reduction rate. If a memory-write instruction does not
target critical data structures, it may be directly constrained,
and we do not further apply TYPM’s dependence resolving.

In Linux-default, we identify in total 172,534 memory-
write instructions. Out of them, we found that 16,739 may
write data to at least one critical data structures based on the
type analysis of type elevation; these are sensitive writes. The
other memory writes (90.3%) are considered non-sensitive
and may be directly constrained from writing to any of the
critical data structures. The following results thus focus on
only the sensitive writes which will further go through the
dependence resolving. For sensitive writes, if we do not limit
the write targets, they can target any of the 2,372 modules.
Therefore, the total number of target modules would be
39,705K. However, with TYPM, we identify that only 51,244
modules can be their valid targets, on average removing
99.9% of modules. In other words, on average a sensitive
memory-write instruction can only target three modules (as
opposed to 2,372 modules); such a reduction is dramatic.

Case study with CVEs. We then evaluate whether TYPM
is able to mitigate existing privilege-escalation attacks. We
select the most recent public privilege-escalation attacks
against Linux that corrupt critical data structures. In total,
we collected 8 exploits with CVEs (2022-32250, 2022-
34918, 2022-27666, 2021-41073, 2021-26708, 2022-29582,
2022-1015, 2022-25636). Three of them corrupt the critical
modprobe_path, and the other five corrupt UID. We con-
firmed that TYPM can defeat the first five cases, as the
involved writes are constrained from accessing the critical
data based on its type-analysis results. TYPM cannot defeat
the last three because they employ “confused-deputy” attacks
which call the valid function commit_cred() to indirectly
overwrite UID. To prevent them, TYPM must be enforced
together with CFI. Note that this is a general problem shared
by data-protection techniques [49, 53].

8. Discussion

Optimization for analysis time. We identify two major
time-consuming analyses in TYPM; both involve recursion.
The first one is in labeling the types and directions of
data flows in globals and arguments. The process needs
to recursively parse nested elements and cast-from types.
The second is in resolving the dependences. The process
needs to recursively traverse the data flows between modules
to collect all dependences.

We can have two strategies to reduce the analysis time:
caching and multi-threading. If a type in a module has
been parsed, or its dependences have been resolved, we can
cache it for reuse. The resolving is the most time-consuming
process. Its current implementation is single-threaded. As it
statically uses the FlowMap, multi-threading can be applied
to speed up the resolving in the future.
Support for C++ and safe languages. We believe that the
indirect-call targets with C++ programs can be significantly
refined if we perform the class-hierarchy analysis [45, 24, 20]
to directly map virtual functions to the corresponding classes,
instead of using general type matching. This is an orthogonal
approach to TYPM, and tools already exist, so we can
integrate them with TYPM to achieve more precise indirect-
call analysis for C++. TYPM can also be applied to type-
safe languages to understand the dependences between mod-
ules. This can be useful in applications such as logic-error

containing, compartmentalization, or software debloating.
When the language is type-safe, the typecasting and callback
analyses would be simpler and have more-precise results.
For example, when wild pointers (e.g., void *) do not exist,
the conservative policy of assuming that wild pointers can
target any type can be removed, which will significantly
improve the precision of the analysis.
Potential improvements for precision. TYPM can be fur-
ther improved for precision. We identify two potential efforts.
First, direction inference: in the current implementation,
TYPM conservatively performs a minimal intra-procedural
analysis for only load and store. Any uncertain case would
be treated bi-directional. As a result, in most cases, data flows
are still considered bi-directional. A more thorough but sound
data-flow analysis would effectively improve the precision in
dependence resolving. Second, handling of general types: in
TYPM, we assume that a general type (e.g., void *) can pass
any type of data and can represent any other type that has
transitive cast-to or cast-from relations with it. We believe
that using an analysis against general types to more precisely
infer which other types they can represent would effectively
improve the precision in dependence resolving.
TyPM for runtime defenses. TYPM currently cannot be
directly used for defenses due to false negatives as shown in
§7.2.2. However, the false-negative results are encouraging
and suggest that TYPM can also be applied for defense with
additional analysis. First, we need to also perform typecasting
against function arguments to make sure that the basic
function-type matching does not have false negatives [43].
Second, by performing a cross-module downcasting analysis,
we can detect dangerous casts that result in out-of-bound
accesses and report them for manual validation. If a cast
is valid, we can add it to an allowlist, so that TYPM can
capture them. Besides runtime defense mechanisms, TYPM
can be directly used to facilitate bug detection, reachability
analysis, and any other static analyses that can tolerate a few
false negatives.
Enforcement of write integrity. In this work, we focused
on identifying irrelevant write instructions which should
not target the critical data structures, but did not actually
enforce the write integrity. To enforce the write integrity, one
idea is to allocate critical structures in a dedicated memory
region and use software-based fault isolation (SFI) [55] to
constrain accesses from them. This requires the development
of new memory allocators and an SFI mechanism. Given
the complexity of the Linux kernel, the engineering efforts
alone would deserve separate work. On the other hand, as
will be mentioned in §9, researchers have proposed various
techniques for the enforcement of write integrity [7, 30, 53].
It is worth noting that CFI should be enforced together with
write integrity to avoid the “confused-deputy” problem—
attackers may indirectly invoke valid write instructions to
corrupt data structures via code-reuse attacks [48].
Function as dependence-resolving unit. TYPM’s current
implementation takes module as the unit. In principle, we
can also take function as the unit. However, two potential
issues should be addressed. First, the time of resolving is

quadratic to the number of units. Having function as the unit
would cost much more time. As an example, Linux-default
has 2,372 modules, but 44,392 functions. Second, given a
program, it is much easier to take out a module or isolate a
module, as modules are relatively self-contained. However,
functions may have complicated dependences with others,
so removing or isolating them would be harder in practice.
That said, function as a unit is still a valid choice and can
be explored in the future.

9. Related work

In this section, we discuss the most related work from
four perspectives: dependence analysis, type analysis, pro-
gram modularization, and write integrity.
Dependence analysis. PtrSplit [33] is a recent and closely
related work. It constructs program-dependence graph (PDG)
for each function and then builds a global graph based
on the PDGs, which is then used to resolve dependences
for manually annotated sensitive data. TYPM distinguishes
itself from PtrSplit in some important perspectives. First,
PtrSplit does not handle globals or shared memory; as a
result, it does not support multi-threaded programs such as
the programs tested in the paper. Second, PtrSplit does not
handle typecasting. As a result, the actual types of nested
general pointers in function parameters cannot be resolved.
Such cases are prevalent in system software. Third, the
overhead of dependence resolving is quadratic to the number
of units (e.g., module or function). Taking function as the
unit would suffer from scalability issues. In comparison,
TYPM does not construct a PDG, which itself is challenging
to ensure precision and soundness. TYPM handles globals
and shared memory, and can naturally support both single-
threaded and multi-threaded programs. TYPM carefully
handles typecasting and nested types in both parameters
and globals. Last, our design choice of taking module as the
unit allows TYPM to scale.

Other than that, ProgramCutter [57] is a graph-based
approach to separating the privileged code of a program
based on dynamic data dependency analysis. Bavota et
al. [9] provided a software modularization technique based
on the program structural dependencies analysis, which can
help with program maintenance by modularizing programs.
Decades ago, researchers studied program-modularization
issues. Cardelli [11] and Glew et al. [19] tried to separate
programs into self-contained and compilable modules, which
is to ensure type-safe linking. General analysis tools such
as SVF [54] and Andersen [21] can also be used to analyze
dependences; however, they cannot scale to large programs
and still suffer from accuracy issues.

Angr [52] and BPA [29] employ value-set analysis and
point-to analysis based on binaries. In resolving indirect-call
targets, besides scalability, their precision is not as good as
source-level type-based analysis. For instance, BPA achieves
a reduction rate of 37% over the original address-taken
functions; in comparison, taking Linux-default as an example,
function-type matching alone can reduce the average number
of targets from 32,484 to 26 (with a reduction rate of more

than 99.9%), and TYPM is able to further reduce it to
8.5; therefore, although it is an unfair comparison (binary
vs. source), in terms of the target-reduction rate, TYPM
outperforms BPA by 3 orders of magnitude.
Type analysis. C/C++ is not type-safe. However, types
provide rich semantics, sometimes even invariants, that are
precious for security-property reasoning. In the security
domain, the research on type-based analysis has thrived since
its uses in CFI. Notably, modular control-flow integrity [43]
and Google CFI [56] use function-type matching to resolve
indirect-call targets, which is sound in principle but im-
precise. τCFI also tries to use types to match targets of
indirect calls. However, due to the missed type information
in binaries, it only uses the size of each argument for
the matching. Recent advances additionally use struct-type
matching [36, 37, 61, 31, 18] to improve the precision.
All such matching is global and will include targets from
unrelated modules, which motivated us to perform scope-
aware type matching in TYPM. VIP [16] uses types to
improve the precision for pointer analysis related to virtual
calls in C++. However, it is unsound and imprecise.

Zdancewic et al. proposed to partition programs based on
security types [58, 62]. While they share a similar research
goal—program partitioning, their approach is clearly different
or even opposite. TYPM uses type-based analysis for data-
flow dependences, while the work of Zdancewic et al. uses
data-flow analysis for type propagation. More specifically,
their work requires manual annotation of security types
(classification labels) and pre-configured subprograms; it then
employs data-flow analysis to associate fields and statements
to subprograms. Such an approach is essentially data-flow
analysis, instead of type-based analysis. As a result, the
limitations with static data-flow analysis would still apply.
Program modularization and enforcement. Given its im-
portance, program modularization has been actively studied.
µSCOPE [49], which internally uses Memorizer [51], studies
the separability of the monolithic Linux kernel. µSCOPE
and TYPM use complementary approaches. µSCOPE uses
dynamic tracing to understand the separability, while TYPM
employs static type analysis to find the “CAN’T” set (inde-
pendent modules). µSCOPE is precise but has false negatives,
while TYPM is comprehensive but less precise. Note that
comprehensiveness is important for runtime mechanisms to
not crash the program.

Most recently, HAKC [38] supports kernel partitioning
through a data-ownership mechanism. However, HAKC
requires developers to annotate the compartments and specify
policies. Similarly, other works [39, 13, 50] on compartmen-
talization typically assume that the compartments are pro-
vided. Isolation and privilege separation [14, 40, 42, 41, 22]
in critical software such as OSes has also been extensively
studied. They also assume that partitions are given. Therefore,
TYPM can help make the works more usable by automati-
cally identifying compartments or partitions.
Write integrity. To protect critical data structures, TYPM
tries to constrain irrelevant write instructions from corrupting
such data structures, which is essentially to provide write

integrity. There are related works that also try to ensure
write integrity for specific data objects. WIT [7] uses point-
to analysis to compute the control-flow graph and the set of
objects that can be targeted by each write instruction. Such an
approach would not work for multi-entry programs as internal
control dependence is not required to form data dependence,
as shown in §2.1. Also, precise points-to analysis [54]
is unscalable, and itself requires a global callgraph (with
indirect-call targets resolved). DFI such as Kenali [53] also
uses point-to analysis or data-flow analysis to identify valid
targets of memory writes. Code-pointer integrity (CPI) [30]
identifies sensitive pointers and stores them in safe regions.
Sensitive pointers are labeled with types, but the propagation
analysis still uses data-flow analysis. In comparison, TYPM
supports multi-entry programs, avoids point-to analysis with
the type-based analyses, and thus is practical. It is worth
noting that TYPM can benefit existing mechanisms. For
example, by further matching types of aliases, TYPM can
improve the precision of alias (or point-to) analysis.

10. Conclusion

Dependence analysis is a foundational technique that
enables security applications such as control-flow integrity,
data integrity, program compartmentalization, and debloating.
Dependence analysis has been known to be hard, and even
infeasible for large C/C++ system programs. This paper
presents a breakthrough in dependence analysis—type-based
dependence analysis for program modularization (TYPM).
Given a type and a module, TYPM conservatively determines
all dependent modules in the program that may directly or
indirectly pass data of this type to the module. Other modules
are independent and can be excluded. We propose multiple
techniques to make TYPM scalable, practical, and precise,
including typecasting analysis, identification of type- and
direction-labeled data flows, iterative dependence resolving,
and type elevation. As a demonstration, we showed how to
use TYPM to significantly refine indirect-call targets over
the state of the art and to protect critical data structures from
being overwritten. Extensive evaluation results on an OS
kernel, a hypervisor, a firmware, and a browser confirm that
TYPM is precise and practical, and does not introduce false
negatives under its model. We open-source TYPM and hope
it would enable more security applications.

11. Acknowledgment

The author thanks the anonymous reviewers and the
shepherd for their valuable suggestions and comments. The
author also thanks Qiushi Wu and Dinghao Liu for helping
with the evaluation. This research was supported in part
by the NSF awards CNS-1815621, CNS-1931208, CNS-
2045478, CNS-2106771, and CNS-2154989. Any opinions,
findings, conclusions or recommendations expressed in this
material are those of the author and do not necessarily reflect
the views of NSF.

References

[1] The linux container_of macro, 2022. https://www.linuxjournal.com/
files/linuxjournal.com/linuxjournal/articles/067/6717/6717s2.html.

[2] Llvm opaque pointers, 2022. https://llvm.org/docs/OpaquePointers.
html.

[3] llvm::gepoperator class reference, 2022. https://llvm.org/doxygen/
classllvm_1_1GEPOperator.html.

[4] llvm::type class reference, 2022. https://llvm.org/doxygen/classllvm_
1_1Type.html.

[5] Single compilation unit, 2022. https://en.wikipedia.org/wiki/Single_
Compilation_Unit.

[6] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-
Flow Integrity. In Proceedings of the 12th ACM Conference on
Computer and Communications Security (CCS), Alexandria, VA,
November 2005.

[7] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and
Miguel Castro. Preventing Memory Error Exploits with WIT. In
Proceedings of the 29th IEEE Symposium on Security and Privacy
(Oakland), Oakland, CA, May 2008.

[8] Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. Less is
more: Quantifying the security benefits of debloating web applications.
In 28th USENIX Security Symposium (USENIX Security 19), pages
1697–1714, Santa Clara, CA, August 2019.

[9] Gabriele Bavota, Malcom Gethers, Rocco Oliveto, Denys Poshyvanyk,
and Andrea de Lucia. Improving software modularization via auto-
mated analysis of latent topics and dependencies. ACM Transactions
on Software Engineering and Methodology (TOSEM), 23(1):1–33,
2014.

[10] Nathan Burow, Scott A Carr, Joseph Nash, Per Larsen, Michael
Franz, Stefan Brunthaler, and Mathias Payer. Control-Flow Integrity:
Precision, Security, and Performance. ACM Computing Surveys
(CSUR), 50(1):16, 2017.

[11] Luca Cardelli. Program fragments, linking, and modularization. In
Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 266–277, 1997.

[12] Miguel Castro, Manuel Costa, and Tim Harris. Securing Software by
Enforcing Data-Flow Integrity. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
Seattle, WA, November 2006.

[13] Abraham A. Clements, Naif Saleh Almakhdhub, Khaled S. Saab,
Prashast Srivastava, Jinkyu Koo, Saurabh Bagchi, and Mathias Payer.
Protecting bare-metal embedded systems with privilege overlays. In
2017 IEEE Symposium on Security and Privacy (SP), pages 289–303,
2017.

[14] Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John Criswell,
and Vikram Adve. Nested kernel: An operating system architecture
for intra-kernel privilege separation. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, page 191–206, New
York, NY, USA, 2015. Association for Computing Machinery.

[15] Ren Ding, Chenxiong Qian, Chengyu Song, Bill Harris, Taesoo Kim,
and Wenke Lee. Efficient Protection of Path-Sensitive Control Security.
In Proceedings of the 26th USENIX Security Symposium (Security),
Vancouver, BC, Canada, August 2017.

[16] Xiaokang Fan, Yulei Sui, Xiangke Liao, and Jingling Xue. Boosting the
precision of virtual call integrity protection with partial pointer analysis
for c++. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2017, page
329–340, New York, NY, USA, 2017. Association for Computing
Machinery.

[17] Reza Mirzazade Farkhani, Saman Jafari, Sajjad Arshad, William
Robertson, Engin Kirda, and Hamed Okhravi. On the Effectiveness
of Type-Based Control Flow Integrity. In Proceedings of the Annual
Computer Security Applications Conference (ACSAC), 2018.

[18] Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger. Fine-

Grained Control-Flow Integrity for Kernel Software. In 2016 IEEE
European Symposium on Security and Privacy (EuroS&P), pages
179–194. IEEE, 2016.

[19] Neal Glew and Greg Morrisett. Type-safe linking and modular
assembly language. In Proceedings of the 26th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
250–261, 1999.

[20] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Cristiano
Giuffrida, Herbert Bos, and Erik Kouwe. Typesan: Practical type
confusion detection. In Proceedings of the 23rd ACM Conference
on Computer and Communications Security (CCS), Vienna, Austria,
October 2016.

[21] Ben Hardekopf and Calvin Lin. The ant and the grasshopper: Fast and
accurate pointer analysis for millions of lines of code. In Proceedings
of the 2007 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), San Diego, CA, June 2007.

[22] Taylor Hardin, Ryan Scott, Patrick Proctor, Josiah Hester, Jacob Sorber,
and David Kotz. Application memory isolation on Ultra-Low-Power
MCUs. In 2018 USENIX Annual Technical Conference (USENIX ATC
18), pages 127–132, Boston, MA, July 2018. USENIX Association.

[23] Takashi Iwai. Fix oob access of mixer element list, 2020.
[24] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. Safedispatch:

Securing C++ virtual calls from memory corruption attacks. In
Proceedings of the 2014 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, February 2014.

[25] Erik Karlsson. Evaluation of linux security frameworks, 2010.
[26] The kernel development community. Linux security module usage,

2022.
[27] The kernel development community. Security documentation, 2022.
[28] Douglas Kilpatrick. Privman: A library for partitioning applications.

In 2003 USENIX Annual Technical Conference (USENIX ATC 03),
San Antonio, TX, June 2003. USENIX Association.

[29] Sun Kim, Cong Sun, Dongrui Zeng, and Gang Tan. Refining indirect
call targets at the binary level. 01 2021.

[30] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George
Candea, R. Sekar, and Dawn Song. Code-Pointer integrity. In 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14), pages 147–163, Broomfield, CO, October 2014. USENIX
Association.

[31] Jinku Li, Xiaomeng Tong, Fengwei Zhang, and Jianfeng Ma. FINE-
CFI: Fine-Grained Control-Flow Integrity for Operating System
Kernels. IEEE Transactions on Information Forensics and Security,
13(6):1535–1550, 2018.

[32] Donglin Liang and M.J. Harrold. Slicing objects using system
dependence graphs. In Proceedings. International Conference on
Software Maintenance (Cat. No. 98CB36272), pages 358–367, 1998.

[33] Shen Liu, Gang Tan, and Trent Jaeger. Ptrsplit: Supporting general
pointers in automatic program partitioning. In Proceedings of the 24th
ACM Conference on Computer and Communications Security (CCS),
Dallas, TX, October–November 2017.

[34] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia.
Thwarting memory disclosure with efficient hypervisor-enforced intra-
domain isolation. In Proceedings of the 22nd ACM Conference on
Computer and Communications Security (CCS), Denver, Colorado,
October 2015.

[35] Kangjie Lu. Typedive: Multi-layer type analysis (mlta) for refining
indirect-call targets, 2019.

[36] Kangjie Lu and Hong Hu. Where does it go? refining indirect-call
targets with multi-layer type analysis. In Proceedings of the 26th
ACM Conference on Computer and Communications Security (CCS),
London, UK, November 2019.

[37] Kangjie Lu, Aditya Pakki, and Qiushi Wu. Detecting Missing-Check
Bugs via Semantic- and Context-Aware Criticalness and Constraints
Inferences. In Proceedings of the 28th USENIX Security Symposium
(Security), Santa Clara, CA, August 2019.

https://www.linuxjournal.com/files/linuxjournal.com/linuxjournal/articles/067/6717/6717s2.html
https://www.linuxjournal.com/files/linuxjournal.com/linuxjournal/articles/067/6717/6717s2.html
https://llvm.org/docs/OpaquePointers.html
https://llvm.org/docs/OpaquePointers.html
https://llvm.org/doxygen/classllvm_1_1GEPOperator.html
https://llvm.org/doxygen/classllvm_1_1GEPOperator.html
https://llvm.org/doxygen/classllvm_1_1Type.html
https://llvm.org/doxygen/classllvm_1_1Type.html
https://en.wikipedia.org/wiki/Single_Compilation_Unit
https://en.wikipedia.org/wiki/Single_Compilation_Unit

[38] Derrick McKee, Yianni Giannaris, Carolina Ortega, Howard Shrobe,
Mathias Payer, Hamed Okhravi, and Nathan Burow. Preventing Kernel
Hacks with HAKCs. In Proceedings of the 2022 Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA,
April 2022.

[39] Alejandro Mera, Yi Hui Chen, Ruimin Sun, Engin Kirda, and Long
Lu. D-Box: DMA-enabled Compartmentalization for Embedded
Applications. In Proceedings of the 2022 Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, April
2022.

[40] Vikram Narayanan, Abhiram Balasubramanian, Charlie Jacobsen,
Sarah Spall, Scott Bauer, Michael Quigley, Aftab Hussain, Abdullah
Younis, Junjie Shen, Moinak Bhattacharyya, and Anton Burtsev. LXDs:
Towards isolation of kernel subsystems. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 269–284, Renton, WA,
July 2019. USENIX Association.

[41] Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel,
Zhaofeng Li, Gerd Zellweger, and Anton Burtsev. RedLeaf: Isolation
and communication in a safe operating system. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20), pages 21–39. USENIX Association, November 2020.

[42] Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent Jaeger, and
Anton Burtsev. Lightweight kernel isolation with virtualization and
vm functions. VEE ’20, page 157–171, New York, NY, USA, 2020.
Association for Computing Machinery.

[43] Ben Niu and Gang Tan. Modular Control-Flow Integrity. In
Proceedings of the 2014 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Edinburgh, UK, June
2014.

[44] Ben Niu and Gang Tan. Per-Input Control-Flow Integrity. In Proceed-
ings of the 22nd ACM Conference on Computer and Communications
Security (CCS), Denver, Colorado, October 2015.

[45] Andre Pawlowski, Moritz Contag, Victor van der Veen, Chris Ouwe-
hand, Thorsten Holz, Herbert Bos, Elias Athanasopoulos, and Cristiano
Giuffrida. Marx: Uncovering class hierarchies in c++ programs. In
Proceedings of the 2017 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, February–March 2017.

[46] Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho Chung, Taesoo
Kim, and Wenke Lee. RAZOR: A framework for post-deployment
software debloating. In 28th USENIX Security Symposium (USENIX
Security 19), pages 1733–1750, Santa Clara, CA, August 2019.

[47] Anh Quach, Aravind Prakash, and Lok Kwong Yan. Debloating
software through piece-wise compilation and loading. In 27th USENIX
Security Symposium (USENIX Security 18). USENIX Association,
2018.

[48] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage.
Return-oriented programming: Systems, languages, and applications.
ACM Trans. Inf. Syst. Secur., 15(1), mar 2012.

[49] Nick Roessler, Lucas Atayde, Imani Palmer, Derrick McKee, Jai
Pandey, Vasileios P. Kemerlis, Mathias Payer, Adam Bates, Jonathan M.
Smith, Andre DeHon, and Nathan Dautenhahn. muscope: A method-
ology for analyzing least-privilege compartmentalization in large
software artifacts. In Proceedings of the 24th International Symposium
on Research in Attacks, Intrusions and Defenses, RAID ’21, page
296–311, New York, NY, USA, 2021. Association for Computing
Machinery.

[50] Nick Roessler, Lucas Atayde, Imani Palmer, Derrick McKee, Jai
Pandey, Vasileios P Kemerlis, Mathias Payer, Adam Bates, Jonathan M
Smith, Andre DeHon, et al. µscope: A methodology for analyzing
least-privilege compartmentalization in large software artifacts. In
24th International Symposium on Research in Attacks, Intrusions and
Defenses, pages 296–311, 2021.

[51] Nick Roessler, Yi Chien, Lucas Atayde, Peiru Yang, Imani Palmer,
Lily Gray, and Nathan Dautenhahn. Lossless instruction-to-object
memory tracing in the linux kernel. In Proceedings of the 14th ACM
International Conference on Systems and Storage, SYSTOR ’21, New
York, NY, USA, 2021. Association for Computing Machinery.

[52] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, and Giovanni Vigna. Sok: (state of) the
art of war: Offensive techniques in binary analysis. In 2016 IEEE
Symposium on Security and Privacy (SP), pages 138–157, 2016.

[53] Chengyu Song, Byoungyoung Lee, Kangjie Lu, William Harris, Taesoo
Kim, and Wenke Lee. Enforcing Kernel Security Invariants with
Data Flow Integrity. In Proceedings of the 2016 Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA,
February 2016.

[54] Yulei Sui and Jingling Xue. Svf: interprocedural static value-flow
analysis in llvm. In Proceedings of the 25th International Conference
on Compiler Construction, pages 265–266. ACM, 2016.

[55] Gang Tan. Principles and Implementation Techniques of Software-
Based Fault Isolation. Now Publishers Inc., Hanover, MA, USA,
2017.

[56] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway,
Úlfar Erlingsson, Luis Lozano, and Geoff Pike. Enforcing Forward-
Edge Control-Flow Integrity in GCC & LLVM. In USENIX Security
Symposium, pages 941–955, 2014.

[57] Yongzheng Wu, Jun Sun, Yang Liu, and Jin Song Dong. Automatically
partition software into least privilege components using dynamic
data dependency analysis. In 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 323–
333. IEEE, 2013.

[58] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C.
Myers. Untrusted hosts and confidentiality: Secure program partition-
ing. SIGOPS Oper. Syst. Rev., 35(5):1–14, oct 2001.

[59] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres,
Stephen McCamant, Dawn Song, and Wei Zou. Practical Control Flow
Integrity and Randomization for Binary Executables. In Proceedings
of the 34th IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2013.

[60] Mingwei Zhang and R. Sekar. Control Flow Integrity for COTS
Binaries. In Proceedings of the 24th USENIX Security Symposium
(Security), Washington, DC, August 2015.

[61] Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee Jung, Ahmed M
Azab, and Ruowen Wang. {PeX}: A permission check analysis
framework for linux kernel. In Proceedings of the 28th USENIX
Security Symposium (Security), Santa Clara, CA, August 2019.

[62] Lantian Zheng, S. Chong, A.C. Myers, and S. Zdancewic. Using
replication and partitioning to build secure distributed systems. In
2003 Symposium on Security and Privacy, 2003., pages 236–250,
2003.

	Introduction
	Background and Motivation
	Limitations with Dependence Analysis
	Requirements for Defense Mechanisms
	Existing Scope-Unaware Type Analysis

	The Concept of TyPM
	Definitions
	Insights

	Design of TyPM
	An Overview
	Identifying Data-Flow Types and Directions
	Typecasting Analysis for Soundness
	Iterative Analysis for Indirect Calls and Dependences
	Type Elevation for Precision

	Implementation with LLVM
	Security Applications
	Refining Indirect-Call Targets
	Protecting Critical Data Structures

	Evaluation
	Overall Performance
	Refinement of Indirect-Call Targets
	Precision Improvements for Existing Techniques
	False Negatives

	Protection of Critical Data Structures

	Discussion
	Related work
	Conclusion
	Acknowledgment

