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Abstract—Mutation-based fuzzing is one of the most popular
approaches to discover vulnerabilities in a program. To alleviate
the inefficiency of mutation-based fuzzing incurred by high
randomness in the mutation process, multiple solutions are
developed in recent years, especially coverage-based fuzzing.
They mainly employ adaptive mutation strategies or integrate
constraint-solving techniques to make a good exploration of the
test cases which trigger unique paths and crashes. However, they
lack a fine-grained reusing of fuzzing history to construct these
interesting test cases, i.e., they largely fail to properly utilize
fuzzing history across different fuzzing trials. In fact, we discover
that test cases in fuzzing history contain rich knowledge of the key
mutation strategies that lead to the discovery of unique paths and
crashes. Specifically, partial path constraint solutions implicitly
carried in these mutation strategies can be reused to accelerate
the discovery of new paths and crashes that share similar partial
path constraints.

Therefore, we first propose a lightweight and efficient Proba-
bilistic Byte Orientation Model (PBOM) that properly captures the
byte-level mutation strategies from intra- and inter-trial history
and thus can effectively trigger unique paths and crashes. We
then present a novel history-driven mutation framework named
EMS that employs PBOM as one of the mutation operators to
probabilistically provide desired mutation byte values according
to the input ones. We evaluate EMS against state-of-the-art
fuzzers including AFL, QSYM, MOPT, MOPT-dict, EcoFuzz,
and AFL++ on 9 real world programs. The results show that
EMS discovers up to 4.91× more unique vulnerabilities than the
baseline, and finds more line coverage than other fuzzers on most
programs. We report all of the discovered new vulnerabilities to
vendors and will open source the prototype of EMS on GitHub.

I. INTRODUCTION

As one of the most prevalent software-testing approaches,
mutation-based fuzzing generates test cases with simple
random-based mutation strategies and tests a target program
frequently to explore vulnerabilities. The high randomness
in the mutation process results in a limited exploration of
the test cases that trigger unique paths or crashes, leading
to low efficiency of finding vulnerabilities. In recent years,
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multiple solutions have been proposed to improve mutation-
based fuzzing, one of which is coverage-based fuzzing, e.g.,
AFL [3]. Since the precondition of triggering vulnerabilities is
to execute the corresponding code paths in the target program,
coverage-based fuzzing tries to explore as many unique exe-
cution paths of a program as possible. Therefore, many efforts
have been taken to improve coverage-based fuzzers. Among
them, one prevalent direction is employing adaptive mutation
strategies to improve the seed selection and generation pro-
cess [13], [44], [54], [71], e.g., AFLFast [13] and EcoFuzz [71]
focus on adaptively estimating the potential of each test case
to trigger unique branching behaviors and thus allocate more
time to mutate the promising ones. Another popular direction
is integrating constraint-solving techniques [17], [18], [63],
[70], [72], [74] to solve the complex constraints, which lead
to different branching behaviors and cover more difficult paths
that are rarely triggered via traditional mutation.

While existing fuzzers take a good exploration of the test
cases that trigger unique paths and crashes, they lack a fine-
grained reusing of fuzzing history to construct these test cases.
We find that fuzzing history contains rich knowledge of the key
mutation strategies that lead to the discovery of unique paths
and crashes. More specifically, the mutations from the seed
test cases to the mutated ones which trigger unique execution
paths might contain common strategies. These strategies lead
to the trigger of specific branching behaviors, which might
also exist in many other execution paths. Thus, for the unique
paths containing these branching behaviors, we might be able
to reach them faster in the following fuzzing process, if we can
learn these strategies and re-utilize the partial path constraint
solutions implicitly carried in them. Furthermore, we might
avoid or significantly reduce the repetitive cost of explicitly
solving complex path constraints. Our insights rely on the
assumption that the same/similar program logics, which are
often wrapped into functions and libraries, are repeatedly used
within a single program or across different programs. The reuse
practice is very common in software development, and the
thriving open source communities further promote it.

To further support our insights, we conduct two case
studies on several programs. In particular, we study the cmp
assembly instruction and the associate immediate operands,
since they directly control the branching behaviors of a pro-
gram. Highlights of our findings are as follows. 1) In a
program, the same immediate operands are compared with the
values of registers multiple times by the instruction cmp; and
2) different programs contain the same immediate operands
employed by the instruction cmp, which account for a non-
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negligible number of all the immediate operands used in
the cmp instruction. In addition, we show the fact that the
proportion of the shared basic blocks is non-negligible in the
execution paths of different programs from the same vendor.
More details of the case studies are introduced in Section III-A.
These case studies demonstrate only two types of reuse of
program logics to help understand the value of reusing efficient
mutation strategies. In practice, there should be more diverse
reuse patterns resulting from the reuse practice in software
development. Thus, more efficient mutation strategies can be
inferred. Therefore, both the intra-trial fuzzing history (history
in the current fuzzing process) and inter-trial fuzzing history
(history from the previous fuzzing processes which can be
from the same or a different program) can be valuable assets
to guide effective fuzzing.

To utilize fuzzing history in a fuzzing process, the key
challenge is how to capture the mutation strategies that trigger
unique paths and crashes from the intra- and inter-trial history.
In other words, given the input byte values from a seed test
case, the learned mutation strategy model should be able to
output the corresponding mutated values and the mutation
types that have caused the test case to trigger a unique
path or crash. Since we consider both intra- and inter-trial
fuzzing history, the mutation strategy model needs to support
incremental updates, as the intra-trial history is generated in
real time in the fuzzing process and is more relevant to the
tested program. On the other hand, the model is required to
have an appropriate computational cost and high execution
speed to ensure the efficiency of the mutation-based fuzzers.
As we all know, the execution speed significantly influences
the unique path and crash discovery of fuzzers.

To achieve our goal, we propose Probabilistic Byte Orien-
tation Model (PBOM) to learn and reuse the efficient mutation
strategies from the intra- and inter-trial fuzzing history with
fast execution speed. To be specific, we first categorize all the
mutation operators into three types: overwrite, delete
and insert. For each operator used to mutate one test case,
we temporarily record the input byte values, the byte length,
the mutation type, and the corresponding mutated byte values.
If the mutated test case triggers a new unique path or crash, we
store the recorded data into the training set. Then, we utilize
the stored data in the training set to construct inter-PBOM.
Essentially, PBOM uses a hash map to map input byte values to
its corresponding efficient mutation strategies. Each mutation
strategy contains the mutation type, the mutated byte values,
the frequency of this mutation, and the selection probability of
this mutation. Note that the selection probability of a mutation
is calculated based on its frequency in history.

Furthermore, in order to utilize intra-trial history, we con-
tinuously collect the efficient mutation strategies during the
fuzzing process, and periodically update the intra-PBOM.

Based on the intra- and inter-PBOMs, we present a novel
history-driven mutation framework, named EMS, to utilize the
fuzzing history. Specifically, EMS employs the two PBOMs as
two additional mutation operators to probabilistically provide
the desired mutation byte values and mutation types according
to the input byte values and lengths. Both the traditional
mutation operators and PBOMs are utilized to find interesting
test cases that trigger unique paths and crashes.

EMS is a generic framework that can be applied to most
mutation-based fuzzers. In this paper, we apply it to the
state-of-the-art fuzzer MOPT and implement the prototype of
EMS. We compare the fuzzing performance of EMS with
the state-of-the-art fuzzers on 9 real world programs. In total,
EMS discovers 130 unique vulnerabilities. Compared to other
fuzzers, EMS finds 4.91× more unique vulnerabilities reported
by AddressSanitizer (ASan) [1] than the baseline AFL [3],
and finds 2.33×, 1.17×, 0.78×, 0.67×, and 0.31× more
vulnerabilities than QSYM [72], MOPT [44], MOPT-dict,
EcoFuzz [71], and AFL++ [22], respectively.

In summary, we make the following contributions.

•We discover that both intra- and inter-trial fuzzing history
contain rich knowledge of the key mutation strategies that lead
to the discovery of unique paths and crashes. These mutation
strategies implicitly carry partial path constraint solutions and
can be used to accelerate the discovery of new paths and
crashes sharing similar partial path constraints.

• We propose a lightweight and efficient PBOM to capture
the mutation strategies that trigger unique paths and crashes
in the intra- and inter-trial history. We further present a novel
history-driven mutation framework EMS that employs PBOM
as one of the mutation operators to probabilistically provide
the desired mutation bytes according to the input ones.

• We implement EMS based on the state-of-the-art fuzzer
MOPT and construct the prototype of EMS. Then, we evaluate
EMS against AFL, QSYM, MOPT, MOPT-dict, Ecofuzz, and
AFL++ on 9 real world programs. The results show that EMS
discovers more unique vulnerabilities and line coverage than
other fuzzers on most programs. We utilize the standardized
benchmark FuzzBench to show the significant coverage per-
formance of EMS. When using different initial seed sets,
EMS also finds the most vulnerabilities reported by different
sanitizers. Furthermore, we conduct an analysis of the PBOM
operator’s contribution and the efficient mutation strategies
learned from inter-trial history to demonstrate the validity of
PBOM. We also conduct an evaluation on the different programs
from the same vendor, and show the discovery improvement
of EMS with the different inter-PBOMs. The close execution
speed compared to MOPT also demonstrates the low overhead
of EMS.

• We report all of the discovered vulnerabilities to the
vendors to improve the programs’ security. Also, we will
open source EMS at https://github.com/puppet-meteor/EMS to
facilitate the research in the fuzzing area.

II. BACKGROUND

A. Mutation-based Fuzzing

The core idea of mutation-based fuzzing is to mutate the
prepared test cases and frequently test the target program to see
whether the mutated test cases can trigger abnormal behaviors.
The general workflow of mutation-based fuzzers is as follows.
A fuzzer 1) requires an initial seed set and constructs a queue
of seed test cases; 2) selects seed test cases from the queue
and randomly mutates the seeds with several kinds of mutation
operators; 3) employs the mutated test cases to test the target
program, and adds the interesting test cases that trigger new
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execution paths or abnormal behaviors into the seed queue;
and 4) goes back to step 2) to continue the fuzzing process.

The logic of most mutation-based fuzzers to mutate the
test cases is straightforward. For instance, AFL, one of the
most well-known mutation-based fuzzers, implements three
stages to mutate the test cases: the deterministic stage, the
havoc stage, and the splicing stage. In the deterministic stage,
AFL utilizes bit- or byte-level mutation operators, e.g., bitflip,
byteflip, and byte insertion, to mutate each bit or byte of a
seed test case; In the havoc stage, AFL randomly selects the
operators multiple times and employs all of them to mutate
at the random locations on the seed test case; In the splicing
stage, AFL first splices the parts of two seed test cases together
to generate one new case, and then enters the havoc stage to
employ further mutation operators.

Without analyzing how to solve path constraints, traditional
mutation-based fuzzers explore new execution paths blindly by
utilizing the randomly mutated test cases to test a program.
Because of the straightforward logic, the execution speed of
mutation-based fuzzers is fast, leading to effective vulnerability
exploration. However, the straightforward logic cannot solve
complex path constraints, which limits the fuzzing efficiency.
Therefore, plenty of works focus on improving the path
coverage and develop coverage-based fuzzing on top of the
mutation-based fuzzing.

B. Coverage-based Fuzzing

To address the aforementioned limitation of mutation-based
fuzzing, researchers propose to leverage coverage information
as feedback to better guide the fuzzing process. Since it is
efficient and effective to accurately track the execution paths,
and a fuzzer cannot find a vulnerability in a not covered
execution path, improving the coverage of execution paths is
reasonable to enhance the fuzzing performance.

Several works employ adaptive strategies to improve
coverage-based fuzzing. For instance, AFLFast [13] and Eco-
Fuzz [71] focus on adaptively adjusting the execution fre-
quency of each seed test case on different programs. They
employ the Markov chain model and adversarial multi-armed
bandit model to evaluate the potential of each test case to
trigger unique branching behaviors, respectively. Then, they
allocate more time to mutate the promising test cases, and vice
versa [13], [71]. MOPT proposes that the optimal selection
probability distribution of mutation operators is different on
different target programs. It provides an iterative scheduling
strategy to adaptively adjust the selection probability of each
mutation operator according to its efficiency of discovering
unique paths and crashes [44].

Another direction of the prevalent coverage-based fuzzing
is to integrate mutation-based fuzzing with constraint-solving
techniques, e.g., concolic execution. To solve the path con-
straints, such techniques are supposed to first compile the
programs utilizing the powerful instrumentation to trace and
collect the path constraints. Then, the constraint-solving tech-
niques need to perform expensive procedures, including for-
mulating path constraints, tracing the data fields that influence
the target constraints, and calculating the numerical interval
of the data fields that can trigger different states of the
constraints. Thus, both constraint collecting and solving can

be expensive. Using the constraint-solving techniques to solve
a path constraint usually requires significant computational
cost and time, which might reduce the performance of fuzzing
[74]. To overcome the challenges, several works improve the
fuzzing performance by selectively assigning difficult paths
to concolic execution [63], [74]. Yun et al. developed a fast
and lightweight concolic execution engine named QSYM [72]
to improve the performance. Impressively, Angora employs
the gradient descent algorithm, and several data tracking and
analysis techniques to solve path constraints faster in place of
concolic execution [17].

Recently, multiple researches try to discover the valu-
able byte locations in seed test cases with machine learning
techniques. For instance, Augmented-AFL utilizes the prior
experience during one trial to train a neural network model,
and then employs the model to predict the good locations in a
test case that are going to trigger unique crashes or paths after
mutation [53]. She et al. utilized the byte data of test cases as
the input and the branching behaviors of a target program as
the output to train a neural network model, and then employed
the gradient-guided algorithm on the model to locate the bytes
in a test case that influence the branching behaviors most [60].
Due to their design philosophy, these tools first need to run
AFL on each target program to obtain the training dataset, then
the model can be trained.

In summary, these state-of-the-art coverage-based fuzzers
mainly focus on improving fuzzing performance via a better
exploration of the test case space. However, an evident limita-
tion is that existing fuzzers lack an adequate utilization of the
history information in the intra trial. Moreover, they do not
utilize the results of the past experiments, i.e., the inter-trial
history. We observe that the intra- and inter-trial history can be
quite valuable in guiding effective fuzzing, which is the main
focus of this paper.

III. DESIGN OF EMS

In this section, we introduce the motivation of this paper,
show the framework of EMS, and then present the design of
the proposed Probabilistic Byte Orientation Model (PBOM).

A. Why Intra- and Inter-Trial History Matters

To some extent, the intra-trial history is considered by
existing fuzzers containing adaptive strategies [13], [44], [54],
[71]. However, they mainly focus on the high level heuristics
obtained from the intra-history to guide the seed selection and
generation process, which lack a fine-grained reusing of the
employed mutation strategies that effectively trigger unique
paths or crashes. The motivation is that different execution
paths of one program may contain the same function call. In
addition, common values, such as -1, 0 and 1, always appear
in the program constraints. Thus, different execution paths
might have the same particular values in the path constraints,
e.g., magic bytes and checksums, that control the branching
behavior.

On the other hand, the inter-trial fuzzing history is also a
valuable asset to guide the fuzzing. First, the inter-trial fuzzing
history from the same program has a similar contribution to
the intra-trial history. Then, it can direct the fuzzing to resolve
path constraints that have already been resolved for the same
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TABLE I: Statistics of the number of immediate operands and
their usages by the cmp instruction.

Singulara Repetitiveb Total

pdfimages
Number of immediate

operands 15 21 36

Number of usages of
immediate operands 15 46 61

objdump
Number of immediate

operands 25 34 59

Number of usages of
immediate operands 25 195 220

nasm
Number of immediate

operands 6 5 11

Number of usages of
immediate operands 6 35 41

aIf an immediate operand is used only once, it is singular.
bIf an immediate operand is used more than once, it is repetitive.

program, e.g., an initial seed set with better path coverage can
improve the fuzzing performance. In addition, the inter-trial
fuzzing history from a different program could also be useful
due to the following observations. Many software platforms
provide a unified development framework and underlying
libraries in order to improve the quality and efficiency of
program development [21], [32], [34], [46], [56], [65], [73].
For instance, nearly 10% of IoT firmware images employ the
same open-source library BusyBox [4]. Similarly, there may
be the same path constraints in different programs because of
the shared libraries.

1) Immediate Operand Analysis: To verify our hypothesis,
we conduct a case study to analyze the assembly codes in
three different programs pdfimages, objdump and nasm.
In particular, we investigate the immediate operands and
their usages in the cmp assembly instructions, since they
directly control branching behaviors of a program and are
closely related to path constraints. Moreover, there are many
universal immediate operands in different programs such as
“$0x00000000” and “$0x00000001”, which will be beneficial
to our analysis and weaken the impact of the rare immediate
operands. To improve the persuasion of the analysis, we do
not include the universal immediate operands, which are
defined as the interesting values of AFL and are used
frequently to mutate input files, in most of our analysis.
The results are shown in Table I and Fig. 1, from which we
have the following conclusions.

• The same immediate operand influences the control
flow and data flow multiple times in a program. For in-
stance, pdfimages utilizes cmap tables to map the character
codes to the glyph index values used in the font. This intro-
duces the same magic bytes in different execution paths. As a
result, we find that the immediate operand “$0x636d6170” is
compared with the values of different registers by the assembly
instruction cmp at different code positions of pdfimages.
These repetitive immediate operands influence the control and
data flow of a program.

• The repetitive immediate operands account for the
vast majority in each program. To figure out how many
immediate operands are used multiple times, we count how
many times each unique immediate operand is used in the
assembly instruction cmp and then classify these immediate

85.1%

97.5%

 pdfimages / nasm

24.6%

82.9%
92.0%

79.9%

 objdump / nasm

without universal
immediate operands 

with universal
immediate operands

24.5%

43.9%

88.5%
82.4%

 pdfimages / objdump

21.3%
30.9%

without universal
immediate operands 

with universal
immediate operands

without universal
immediate operands 

with universal
immediate operands

Fig. 1: The percentage of usages of the same immediate
operands, i.e., the number of usages of the same immediate
operands employed in both programs divided by the number
of usages of all the immediate operands in each program.

operands into two categories, based on whether they are used
more than once. If an immediate operand is used more than
once, we consider it as a repetitive immediate operand. Other-
wise, it is a singular immediate operand. The results are shown
in Table I, from which we have the following observations.
1) The number of repetitive immediate operands is larger
than the singular immediate operands on most programs. For
instance, in objdump, the number of repetitive immediate
operands is 1.36× of the singular immediate operands. 2) The
total number of usages of the repetitive immediate operands
is significantly larger than that of the singular immediate
operands. The aforementioned observations indicate that the
influence of repetitive immediate operands is more significant
than singular immediate operands on the branching behaviors
of a program.

• The proportion of the usages of the same immediate
operands employed in two programs cannot be ignored. In
order to find out the correlation of the immediate operands’
usages in different programs, we count the total number of
usages of the same immediate operands used in cmp in a
pair of programs. The percentage of the same immediate
operands’ usages, i.e., the number of usages of the same
immediate operands employed in both programs divided by
the number of usages of all the immediate operands in each
program, is shown in Fig. 1, from which we have the fol-
lowing observation. The same immediate operands cannot be
ignored in different programs. For instance, the usages of the
same immediate operands account for 24.6% and 82.9% in
pdfimages and nasm, respectively. The proportion of the
usages of the same immediate operand achieves more than
79.9% in all the programs, if the universal immediate operands
are included.

In addition to the easily accessible and reproducible obser-
vations as described above, more implicit efficient strategies
can be reused because of the implementation of the same pro-
gram logic. For instance, the same efficient mutation strategy
can trigger a similar branching behavior in the shared codes
when fuzzing different programs from the same vendor.

2) Shared Code Analysis: To figure out the number
of the shared codes used in different programs from the
same vendor, we count the number of the shared ba-
sic blocks triggered in the execution paths of different
programs in this case study. To achieve this, we uti-
lize MOPT to fuzz pdfimages, pdftotext, pdfinfo,
objdump, addr2line, and objcopy from xpdf-4.02
and binutils-2.28, whose settings are shown in Table X.
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1,212 1,096

4,011

486
41 64

3,117

pdfimages pdftotext

pdfinfo

1,844
2201,213

2,433
337

249
2,533

objdump addr2line

objcopy

Fig. 2: The number of shared basic blocks and unique basic
blocks triggered in three programs from the same vendor.

The experiment settings are the same in Section V-A, and each
evaluation lasts for 5 hours. Then, we record the triggered
basic blocks in the execution paths of each program, and
count the number of the shared triggered blocks in different
programs from the same vendor. The number of the shared
basic blocks triggered in different programs and the number
of the unique basic blocks triggered in each program from the
same vendor are shown in Fig. 2, from which we have the
following conclusion. The proportion of the shared basic
blocks is non-negligible in different programs from the
same vendor. For instance, the number of the shared basic
blocks is 7,128 (4,011 + 3,117) triggered in pdfimages
and pdftotext, whose proportion is 85.05% and 86.00% in
each of them, respectively. These shared basic blocks contain
the same constraints to be solved for a fuzzer in the inter
trials. However, the state-of-the-art fuzzers ignore the valuable
mutation strategies that have solved these same constraints
in the inter trials, and thus cannot leverage the inter-trial
fuzzing history in the fuzzing scenarios like parallel fuzzing
and continuous fuzzing.

Motivation. Based on the analysis above, we discover that
1) most of the immediate operands employed by cmp are
repetitive in one program; and 2) different programs have the
same immediate operands, which are the majority of all the
operands. Therefore, it is possible that the immediate operands
in the current path constraints are the same ones in other
constraints, which might be solved in intra- and inter-trials.
From another aspect, different programs developed by the same
vendor invoke the same codes and contain the shared basic
blocks in their execution paths, introducing more kinds of the
same path constraints. Thus, many efficient mutation strategies
can be concluded from the trials that fuzz on the same and
different programs. However, state-of-the-art fuzzers do not
consider utilizing repetitive historical information like this.
Therefore, it is necessary to construct a new fuzzing solution
to properly utilize the intra- and inter-trial fuzzing history.

B. Framework of EMS

The goal of EMS is to learn the mutation strategies from
intra- and inter-trial fuzzing history, which lead to the discov-
ery of unique branching behaviors. In other words, given the
input byte values from a seed test case, EMS aims to provide
efficient strategies to mutate the input byte values, which
finally makes the test case more likely to trigger unique paths
and crashes. Additionally, the aforementioned challenges, such
as the computational cost and the execution speed, also need
to be addressed.

In the following subsections, we mainly introduce the
framework of EMS and the design of PBOM. The relevant
symbols are defined as follows.

Fuzzing  Engine
Employed Mutation Operator

Traditional Operator

ArithmeticByteflipBitflip

Interesting Insert Delete

PBOM Operator

Intra-PBOM 
Update

Intra-PBOM

Inter-PBOM 
Initialization

Inter-PBOM Inter-PBOM Intra-PBOM
Len Selection

Output Selection
Value Type

Input Search

Inter- and 
Intra-PBOMs

Traditional 
Operator

Efficient Mutation 
Strategies

Operator Analysis and Data Collection

Len Selection

Output Selection
Value Type

Input Search

Fig. 3: The framework of EMS.

• in is the input byte values read from a test case, where
L is the byte length of in;

• (out, type) is a mutation operator corresponding to a
unique in, where out is the output byte values with the
same L, and type is the mutation type;

• MO is a set of mutation operators corresponding to in,
i.e., (out, type) ∈MO;

• (out, type, F, P ) is a probabilistic output mutation strat-
egy corresponding to in, where F is the frequency of
a unique (out, type) under in, and P is the selection
probability of this output strategy under in;

• T is the set of (out, type, F, P ) corresponding to in, i.e.,
(out, type, F, P ) ∈ T;

• IN is the set of input byte values, i.e., in ∈ IN;
• favorite_list is a set of the recorded locations, at

which the test cases are mutated to trigger unique paths
and crashes in the intra trial;

• Inter-PBOM is the PBOM trained by the inter-trial fuzzing
history, and intra-PBOM is the PBOM trained by the intra-
trial fuzzing history.

The entire framework of EMS is shown in Fig. 3. To
achieve the goal, EMS constructs inter- and intra-PBOMs to
learn and utilize inter- and intra-trial history, respectively. At
the beginning of fuzzing, EMS invokes the Inter-PBOM Initial-
ization to construct inter-PBOM. During the fuzzing process, it
employs the PBOM Operator to mutate test cases with inter-
and intra-PBOMs. Further, EMS utilizes the Operator Analysis
and Data Collection to continuously collect the intra-trial
history, and periodically invokes the Intra-PBOM Update to
update intra-PBOM with the new collected intra-trial history.
The details are as follows.

Inter-PBOM Initialization. In order to utilize the inter-trial
history, EMS employs the Inter-PBOM Initialization to con-
struct inter-PBOM at the beginning of fuzzing, which connects
input byte values with the efficient output mutation strategy
and assigns appropriate selection probability learned from the
inter-trial fuzzing history. To achieve this, EMS 1) first extracts
input byte values in and all the corresponding mutation
strategies MO from inter-trial history; 2) counts the frequency
F of each unique (out, type) ∈ MO under in; 3) calculates
the selection probability P of (out, type) according to F under
in; and 4) constructs inter-PBOM by utilizing in as the input
and the corresponding mutation strategy (out, type, F, P ) as
the output.

PBOM Operator. EMS implements both inter- and intra-
PBOMs to utilize efficient mutation strategies learned from
the inter- and intra-trial history, which are employed by the

5



PBOM Operator as shown in Fig. 3. Taking inter-PBOM as an
instance, the process of the PBOM Operator is as follows: 1)
len selection: EMS probabilistically selects the length L of
input byte values to be mutated, according to the proportion
of each length in IN. Then, EMS reads the contiguous input
byte values in of the selected length L from a random location
of one test case, or from the stored preferred location; 2)
input search: EMS utilizes in as the input of inter-PBOM,
and searches the corresponding output mutation strategies; and
3) output selection: EMS probabilistically selects one output
mutation strategy (out, type, F, P ) according to P . Finally,
EMS mutates once at the selected location according to the
output byte values out and mutation type type, i.e., overwriting
in with the selected out, deleting in, or inserting out in front
of in.

Operator Analysis and Data Collection. In each mutation
process of a test case, EMS records the following data of
each operator (including fuzzer’s traditional mutation operators
and the PBOM operator using inter- and intra-PBOMs): 1) the
original byte values as in; 2) the mutation type as type; 3)
the mutated byte values as out; and 4) the mutated location.
Then, if the mutated test case triggers a new unique path or
crash, EMS considers the recorded in and (out, type) of all
the used operators in this mutation process as efficient mutation
strategies, and employs them to update intra-PBOM lately.

Intra-PBOM Update. In the Intra-PBOM Update, EMS analyzes
efficient mutation strategies of the intra-trial history collected
from the previous component. For the first time to invoke the
Intra-PBOM Update, EMS follows the same process of the
Inter-PBOM Initialization to construct intra-PBOM. Then, EMS
periodically invokes the Intra-PBOM Update to update intra-
PBOM with the newly collected mutation strategies. Therefore,
intra-PBOM is trained by the mutation strategies that have
played roles during intra-trial fuzzing process.

C. Probabilistic Byte Orientation Model

In this subsection, we describe the data structure and
probability algorithm of PBOM in detail.

As shown in Fig. 4, in order to prevent the execution
speed of the fuzzer from decreasing, we construct inter- and
intra-PBOMs with two hash maps, respectively. The process
to construct a hash map for a PBOM is as follows. First, we
utilize the unique hash of input byte values in as the index
of a hash map. In each index, EMS maintains a list of index
nodes for unique in with the same hash. Thus, to locate a node
for specific in, EMS calculates the index of in and searches
the blue node with the corresponding in as shown in Fig.
4. To add a new node for a new unique in, EMS calculates
the index of in and adds a new index node at the end of
the list; Second, we construct a linked list for each unique
in to store the corresponding output mutation strategies T.
Each mutation node in the linked list of in stores 1) a unique
mutation operator containing the output byte values out and
mutation type type, and 2) the frequency F and the selection
probability P of the mutation operator (out, type) under this
in. To add a new mutation node for a new unique (out, type),
EMS locates the index node for the corresponding in and adds
a new mutation node at the end of in’s linked list.
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Fig. 4: The data structure of PBOM.

To construct inter-PBOM, first, EMS collects inter-trial
history by employing normal fuzzers, e.g., AFL and MOPT,
to fuzz programs. Then, EMS constructs the data structure as
shown in Fig. 4 and updates each node’s selection probability
P in the linked list of in. In the following paragraphs we
introduce the selection probability algorithm of inter-PBOM.

Since the efficient mutation strategies are triggered by
the traditional mutation operators of normal fuzzers when
collecting inter-trial history, many of them are generated by
simple operators, such as flipping a bit, or increasing 1 on value
of a byte. Moreover, the mutation strategies can be collected
from multiple different programs and can be collected for
a long time. In summary, the number of collected mutation
strategies can be large, and most strategies are triggered by
the simple operators because of their heavy use.

Therefore, the higher the frequency F of (out, type) is, the
more easily mutation-based fuzzers can generate (out, type)
from in with traditional mutation operators in the inter-trial
history. On the contrary, the low-frequency (out, type) can
be constructed by rare mutation operators, e.g., inserting the
specific byte values into a seed test case. It is less useful
if inter-PBOM always reproduces the simple operators. Thus,
inter-PBOM assigns more selection probability P to (out, type)
that appears less frequently. Based on the frequency F of each
(out, type, F, P ) ∈ T, the following formulas calculate the
probability distribution P, where p is the weight of (out, type)
to calculate P under in:

pi = 1−
Fi

F1 + F2 + ...+ Fn−1 + Fn

= 1−
count((outi, type))∑

(outk,type)∈MO count((outk, type))
.

Pi =
pi

p1 + p2 + ...+ pn−1 + pn

=

∑
(outk,type)∈MO count((outk, type))− count((outi, type))

(n− 1)×
∑

(outk,type)∈MO count((outk, type))
.

(1)

According to Formula 1, inter-PBOM assigns higher se-
lection probability P to (out, type) with fewer frequencies
F . Then, it constructs the selection probability distribution
P for MO that selects the rare (out, type) more often to
overwrite, delete or insert a seed test case.

On the other hand, all the history data collected for intra-
PBOM are the efficient mutation strategies that are valid on the
current program. Then, one output operator (out, type) with
the larger frequency F means that it has triggered more unique
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paths and crashes so far. Therefore, in order to employ efficient
mutation strategies more times on the current program, intra-
PBOM allocates larger selection probability to (out, type) with
the larger frequency F , whose formula is as follows.

Pi =
Fi

F1 + F2 + ...+ Fn−1 + Fn

=
count((outi, type))∑

(outk,type)∈MO count((outk, type))
.

(2)

By constructing a linked list containing T for each unique
in with the aforementioned formulas, each of inter- and intra-
PBOMs utilizes efficient mutation strategies collected from
inter- and intra-trial history, respectively.

IV. IMPLEMENTATION OF EMS

In this section, we introduce the detailed implementation of
EMS. As aforementioned, since AFL-based fuzzers will enter
the havoc stage after generating a new test case in the splicing
stage, it is needless to add the PBOM operator in the splicing
stage. Therefore, EMS, which is constructed based on MOPT,
implements the PBOM operator in the deterministic and havoc
stages to utilize efficient mutation strategies. As shown in Fig.
5, the workflow of EMS is as follows.

1) At the beginning of fuzzing: EMS employs the Inter-
PBOM Initialization to construct inter-PBOM and update the
selection probability distribution for each unique in, which is
the only update of inter-PBOM in the entire fuzzing process.

2) In the fuzzing process: As shown in Fig. 5, EMS invokes
the PBOM operator in two stages. It continually invokes the
Operator Analysis and Data Collection in the generation
of each mutated test case. The Intra-PBOM Update will be
invoked periodically in the workflow.

PBOM Operator in the Deterministic Stage. The first place
to invoke the PBOM operator is in the deterministic stage.
Since intra-PBOM is empty before the first update, EMS only
employs inter-PBOM in the deterministic stage. Similar to other
operators in the deterministic stage, EMS reuses each efficient
mutation strategy once at a time to mutate a test case on the
same input byte values. In other words, EMS utilizes each
(out, type) under the same in to mutate a test case once at a
time. The procedures are as follows.

1) EMS randomly selects input byte values in with the
length L on the original test case, and searches in and L
in the index nodes of the hash map;

2) If in and L have been matched, EMS employs one
(out, type, F, P ) stored in the linked list once at a time
to mutate the original test case. To be specific, EMS
first reads the output operator (out, type) in the mu-
tation node; Second, EMS mutates once according to
(out, type) to overwrite the original byte values in with
out, delete in, or insert out in front of in; Then, it tests
a target program with the mutated test case in order to
trigger a new path or crash; Finally, EMS restores the
test case to the original one, and starts the next mutation
if there is an unused (out, type) in the linked list.

PBOM Operator in the Havoc Stage. In the havoc stage,
AFL-based fuzzers randomly select one mutation operator
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Interesting Test Case

Inter-PBOM 
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Havoc Stage

PBOM Operator 
(Inter- & Intra-PBOMs) 

Bitflip
Byteflip

Deterministic Stage
Bitflip

Byteflip

Intra-PBOM 
Update

Operator Analysis 
and Data Collection

Splicing 
Stage

PBOM Operator
(Inter-PBOM)

Fig. 5: The workflow of EMS.

to mutate byte values at a random location, which will be
executed multiple times to construct one mutated test case.
Similarly, in the havoc stage of EMS, inter- and intra-
PBOMs are considered as two different mutation operators,
whose selection probability is decided by the particle swarm
optimization algorithm, respectively. If EMS selects one of
PBOMs to mutate the test case, it will perform the following
procedures.

1) In order to decide the length of input byte values in,
EMS analyzes the proportion of each length in IN, and
probabilistically selects one length L according to the
proportion;

2) To select a mutation location of a test case, with
a small probability EMS randomly selects one from
favorite_list, i.e., the stored location that has been
mutated and has triggered the unique path or crash in the
intra trial. Otherwise, EMS randomly selects one from
all the possible locations of a test case. Then, EMS reads
the input byte values in with the selected length L, and
searches in the hash map to find the matched index node;

3) Once EMS matches in and L in the index node of the
hash map, it probabilistically selects one output strategy
(out, type, F, P ) stored in the linked list of the index
node according to the selection probability P . Then, EMS
mutates at the selected location of the test case according
to out and type.

Two invocations of the PBOM operator at different stages
ensure EMS can employ the learned mutation strategies in dif-
ferent ways. On the other hand, the following two invocations
enable the update of intra-PBOM.

Operator Analysis and Data Collection. For each mutation
operator that is used, including the traditional mutation oper-
ators and the PBOM operator using PBOMs, EMS temporarily
records the used mutation strategies, which contains in, L,
out, type, and the mutation location. Note that only the
data with the length L of 1, 2 and 4 will be recorded,
which cover most mutation results caused by the majority
of potential mutation operators in AFL-based fuzzers. If the
mutated test case triggers a new unique path or crash, EMS
stores the temporarily recorded strategies in the training set
for the update of intra-PBOM, and adds the mutation location
to favorite_list.

Intra-PBOM Update. When the execution number of EMS
reaches the preset value during the fuzzing process, EMS
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periodically updates F and P in the mutation nodes and adds
new nodes in the linked lists of intra-PBOM with the training
set. For each recorded mutation strategy containing in, L, out,
and type, the update process is as follows.

1) EMS calculates the hash map’s index according to in.
Then, EMS searches index nodes in the index to match in
and L as described in Section III-C. If it is not matched,
EMS adds a new node at the end of this index to store
in and L;

2) EMS searches in the linked list of the matched index node
to match out and type. If it is not matched, EMS adds a
new mutation node to store out, type and the frequency
F with the initial value 0. Then, F increases 1;

3) After EMS traverses all the training data and constructs a
new hash map of intra-PBOM, EMS traverses all the index
nodes of the entire hash map, and updates the selection
probability P of the mutation nodes under each index
node according to Formula 2. Then, EMS empties the
training set and continues the fuzzing process.

V. EVALUATION

In this section, we evaluate the fuzzing performance of
EMS following the guidelines in [38], [41].

A. Experiment Setup

Compared fuzzers. We compare EMS with the state-of-the-
art open-source mutation-based fuzzers, including AFL [3],
QSYM [72], MOPT [44], MOPT-dict, EcoFuzz [71], and
AFL++ [22]. We pick these fuzzers for the following reasons.
First, AFL is one of the most famous fuzzers in academia and
industry, which can be a baseline for other fuzzers. Second,
QSYM implements a fast concolic execution engine that solves
path constraints and improves its fuzzing performance. Then,
MOPT and EcoFuzz are two state-of-the-art fuzzers that utilize
adaptive strategies to improve the seed selection and generation
process. In this paper we implement EMS based on MOPT.
Recently, Fioraldi et al. incorporated multiple state-of-the-art
fuzzing researches and presented AFL++ [22], which is one
of the best fuzzers evaluated by the well-known open source
benchmark FuzzBench [5]. We enable most configurations of
AFL++ in our evaluation, including the CmpLog instrumen-
tation, the RedQueen mutator and the MOPT mutator. By
reading the immediate operands of each target program as
a dictionary and leveraging them as an additional mutation
operator, we then construct MOPT-dict based on MOPT. We
compare EMS against MOPT-dict to show the effectiveness
of PBOMs. Note that the fuzzing performance of EMS and
other fuzzers can also be improved with a dictionary. Each
MOPT-based fuzzer employs ‘-L 5’ as the configuration in
the evaluation. Since these fuzzers represent different solutions
in the fuzzing field, the performance of EMS can be fairly
assessed compared with other solutions.

Real world target programs. Following the guidance of
the state-of-the-art research UniFuzz [41], we evaluate the
aforementioned fuzzers on 9 open-source linux programs as
shown in Table II, which are selected from UniFuzz [41]
or are widely used in the state-of-the-art fuzzing research
[17], [23], [24], [44], [70], [71]. We utilize pdfimages and
pdftotext to evaluate the performance of inter-PBOM on

TABLE II: Target programs evaluated in the experiments.

Target Source Input format Test instruction

pdfimages xpdf-4.02 pdf @@ /dev/null
pdftotext xpdf-4.02 pdf @@ /dev/null
objdump binutils-2.28 binary -S @@
infotocap ncurses-6.2 txt @@ -o /dev/null

cflow cflow-1.6 C files @@
nasm nasm-2.14.03rc2 asm -f bin @@ -o /dev/null
w3m w3m-0.5.3 txt @@
mujs mujs-1.0.2 javascript @@

mp3gain mp3gain-1.5.2-r2 mp3 @@

the programs from the same vendor. From another aspect,
other target programs come from different vendors with dif-
ferent functionalities. Thus, we comprehensively evaluate each
fuzzer from the perspectives of vendors and code logic, which
make the analysis more all-sided. Furthermore, the programs
are prevalent and widely-used open-source programs. Hence,
evaluating the security of them is meaningful for the vendors
and users.

Initial seed sets. Following the same seed collection and
selection procedure as in UniFuzz [41] and in the previous
works [44], [51], [52], [55], for each program, we 1) use 100
input files provided by the open-source dataset in UniFuzz;
or 2) randomly download 100 input files from the Internet
according to its required input file format as shown in Table
II. Thus, each fuzzer employs the same 100 input files as an
initial seed set to fuzz the same program.

Experiment settings. Since mutation-based fuzzers employ a
random process to mutate test cases, the fuzzing performance
fluctuates to a certain degree. To mitigate the impact of
performance fluctuation on the evaluation, we implement the
following two experiment settings: First, each evaluation lasts
for 168 hours. Relatively long experiment time can reduce
the influence of fuzzing randomness. Second, each evaluation
is repeated 16 times and statistically analyzed, which can
improve the reliability of the conclusions.

Each fuzzing evaluation runs on a docker container con-
figured with 1 CPU core of 2.40GHz E5-2680 V4 and the
OS of 64-bit Ubuntu 16.04 LTS. We run fuzzing experiments
on 10 servers, each of which has two E5-2680 V4 CPUs and
256GB memory. In total, we spend several months in order to
get reliable and reproducible results.

Evaluation metrics. As aforementioned, we evaluate 7 fuzzers
with different implementation logics. Their metrics to count
the abnormal behaviors and unique execution paths may have
differences. To eliminate the differences, we employ the fol-
lowing two metrics to evaluate the fuzzers’ performance.

The first metric is the number of unique vulnerabilities
reported by ASan. The reason is as follows. Many crashes
explored by fuzzers may not trigger unique vulnerabilities.
Thus, finding more crashes does not mean that a fuzzer
discovers more unique vulnerabilities. On the contrary, the
number of unique vulnerabilities is a more direct and important
metric to measure the performance of fuzzers.

For the crashes that trigger real vulnerabilities, ASan
reports the stack traces of target programs, which are widely
used for deduplication in the Common Vulnerabilities and
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TABLE III: The number of unique vulnerabilities after dedu-
plication in 16 trials.

AFL QSYM MOPT MOPT-dict EcoFuzz AFL++ EMS

pdfimages 2 3 4 5 7 13 15
pdftotext 2 6 9 9 9 6 13
objdump 5 11 3 6 18 22 30
infotocap 0 0 6 6 3 7 7

cflow 1 4 6 7 6 7 9
nasm 0 0 11 15 13 20 18
w3m 0 1 0 1 0 0 11
mujs 4 3 4 6 6 6 7

mp3gain 8 11 17 18 16 18 20
total 22 39 60 73 78 99 130

Exposures (CVE) dataset [6] and debugging for vendors.
By filtering stack traces to obtain the unique function call
sequences, we can collect the explored unique vulnerabilities
on target programs. In this paper, we extract the top three
function calls in the stack traces to de-duplicate vulnerabilities
following the guidelines in [38], [41]. We analyze the number
of unique vulnerabilities triggered in each trial, and present
the unique vulnerabilities after deduplication in all the trials
as the total unique vulnerabilities.

The second metric is the line coverage analyzed by afl-
cov [2], which is widely used in recent researches [24], [41],
[60], [71]. As we all know, different fuzzers may have different
metrics to maintain seed test cases in the queue. For instance,
QSYM needs to run hybrid fuzzing with AFL, and they will
sync test cases with each other. The number of test cases in the
queue cannot show the program execution coverage of a fuzzer.
Thus, we utilize afl-cov [2] to analyze the line coverage of the
source codes triggered by each fuzzer on a target program.
Employing line coverage to evaluate fuzzing performance
can eliminate the diversity between different fuzzers, which
provides a more accurate and uniform metric.

B. EMS Buildup

In this subsection, we introduce the settings for inter- and
intra-PBOMs of EMS.

In order to train the initial inter-PBOM, we 1) spend 5 hours
employing MOPT to fuzz pdfimages once, which discovers
5,270 unique paths and 143 unique crashes; and 2) obtain
137,337 efficient mutation strategies that trigger the unique
paths and crashes for 43,758 unique input bytes, in which the
number of mutation strategies for input bytes with the length
of 1,2,4 is 70,007, 27,744 and 39,586, respectively. It takes
9 seconds to construct initial inter-PBOM with these mutation
strategies.

To fuzz a target program in the benchmark, EMS first
loads inter-PBOM at the beginning of fuzzing to utilize the
inter-trial history learned from pdfimages. Then, EMS fine
tunes intra-PBOM with the efficient mutation strategies that
have triggered the unique paths and crashes so far to further
utilize the intra-trial fuzzing history learned from each target.

C. Unique Vulnerability and Line Coverage Discovery

Unique vulnerability. In this subsection, we analyze the dis-
covered vulnerabilities of each fuzzer with ASan. The results

AFL QSYM MOPT MOPT-dict EcoFuzz AFL++ EMS
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Fig. 6: The boxplot of the number of unique vulnerabilities
reported by ASan in 16 trials, where ‘◦’ and ‘– –’ represent the
mean and median, respectively. Y-axis: the number of unique
vulnerabilities discovered in each trial.
TABLE IV: The published CVE IDs found by each fuzzer.

CVE ID AFL QSYM MOPT MOPT-dict EcoFuzz AFL++ EMS

pdfimages CVE-2019-17064
CVE-2019-9588

pdftotext CVE-2019-16088
CVE-2019-9588

objdump

CVE-2017-8396
CVE-2017-8398
CVE-2017-14930
CVE-2017-16831
CVE-2018-7568

CVE-2018-1000876
CVE-2019-9072
CVE-2019-17450

cflow
CVE-2019-16165
CVE-2019-16166
CVE-2020-23856

nasm

CVE-2018-19755
CVE-2018-20535
CVE-2018-20538
CVE-2019-20334

mujs CVE-2017-5628
CVE-2018-6191

mp3gain

CVE-2017-14406
CVE-2017-14407
CVE-2017-14409
CVE-2017-14410
CVE-2019-18359
total 7 12 10 13 11 16 19

of unique vulnerabilities are shown in Table III and Fig. 6,
from which we have the following conclusions.

• As shown in Table III, EMS finds the most vulner-
abilities on most target programs. Specifically, it finds 31
and 52 more unique vulnerabilities than the second best and
third best fuzzer, respectively. EMS finds 4.91× more unique
vulnerabilities than the baseline AFL. Only AFL++ finds 2
more unique vulnerabilities than EMS on nasm. Interestingly,
EMS finds more unique vulnerabilities than other fuzzers on
pdftotext, which partly demonstrates the contribution of
the inter-PBOM trained on a program from the same vendor.

• We can learn from Fig. 6 that EMS achieves the best
vulnerability discovery performance in most trials on several
target programs. For instance, the mean of EMS is higher than
other fuzzers on pdftotext and infotocap. The median
of EMS is higher than others on objdump and mp3gain.
The results demonstrate that EMS has a higher probability of
finding more unique vulnerabilities in a single trial.

• Interestingly, although we construct EMS based on
MOPT, EMS discovers 70 more unique vulnerabilities that
cannot be found by MOPT in total. EMS finds more unique
vulnerabilities than MOPT and MOPT-dict on all the target
programs. This demonstrates the practical utility of EMS in
mutation-based fuzzing. The mutation strategies learned by
EMS can improve the vulnerability discovery performance of
mutation-based fuzzers.

In order to verify the validity of the discovered vulner-
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Fig. 7: The boxplot of the line coverage from 16 trials, where
‘◦’ and ‘– –’ represent the mean and median, respectively.
Y-axis: the line coverage discovered in each trial.

0 24 48 72 96 120 144 168
0

500

1,000

1,500

2,000

2,500

 mp3gain

AFL 
QSYM 
MOPT 
MOPT-dict 
EcoFuzz 
AFL++ 
EMS

0 24 48 72 96 120 144 168
0

1,000

2,000

3,000

4,000

5,000

 

AFL 
QSYM 
MOPT 
MOPT-dict 
EcoFuzz 
AFL++ 
EMS

mujs

0 24 48 72 96 120 144 168
0

2,000

4,000

6,000

8,000

 

 objdump

AFL 
QSYM 
MOPT 
MOPT-dict 
EcoFuzz 
AFL++ 
EMS

0 24 48 72 96 120 144 168
0

2,000

4,000

6,000

8,000

10,000

 

 pdftotext

AFL 
QSYM 
MOPT 
MOPT-dict 
EcoFuzz 
AFL++ 
EMS

Fig. 8: The line coverage growth on 4 programs discovered
by each fuzzer over 168 hours. Each coverage interval with a
different color shows the mean and 95% confidence interval
for a fuzzer. Y-axis: the number of covered code lines.

abilities for each fuzzer, we utilize the published Common
Vulnerabilities and Exposures (CVE), which are confirmed by
the vendors and seriously threaten the services and users before
being patched, as the ground truth to measure the performance
of each fuzzer on serious vulnerability discovery. To achieve
this, following the guidance in UniFuzz [41], we 1) manually
collect the stack traces of the published CVE IDs and their
Proof-of-Concept (PoC) exploits from the CVE dataset [6]
for each program; 2) leverage the PoC exploits to reproduce
the stack traces of the CVE IDs on our instrumented target
program; 3) compare the vulnerability type and the top three
stack traces between the CVE IDs and the vulnerabilities found
by each fuzzer; and 4) record the published CVE IDs found
by each fuzzer. Since no fuzzer triggers any published CVE
ID on infotocap and w3m, we show the triggered CVE IDs
for the remaining target programs. The results can be found in
Table IV, from which we have the following observation. EMS
achieves the best CVE discovery performance compared
to other fuzzers. Specifically, EMS finds 19 unique CVE
IDs in total on 7 programs, and finds the most CVE IDs
on pdfimages, nasm, mujs, and mp3gain, respectively.
These CVEs seriously threaten the security of the program. For
instance, CVE-2018-1000876 triggered by EMS publishes an
integer overflow vulnerability in objdump that can result in a
heap overflow. Thus, the results demonstrate the validity and
efficiency of EMS on serious vulnerability discovery. As for
the other vulnerabilities that do not match the stack traces of
the published CVE IDs, we have reported them to the vendors
in order to patch the unexpected unique crashes.

Line coverage. The results of line coverage discovered by
each fuzzer are shown in Fig. 7, from which we have the
following conclusions. As shown in Fig. 7, the line coverage
achieved by EMS is in the front rank on most programs. For
instance, the median of EMS is significantly higher than other
fuzzers on objdump and w3m. As for the mean line coverage,

Fig. 9: The discovered region coverage growth over 24 hours
evaluated on FuzzBench. Each coverage interval with a differ-
ent color shows the mean and confidence interval for a fuzzer.
Y-axis: the number of discovered region coverage.

EMS achieves the top two on 6 out of 9 programs. Therefore,
the results in Fig. 7 demonstrate the significant line coverage
performance of EMS on most target programs.

Furthermore, we record the line coverage growth of each
fuzzer over 168 hours on pdftotext, objdump, mujs,
and mp3gain, which is shown in Fig. 8. Then, we have the
observation that the line coverage of EMS grows faster than
others on these 4 programs over the 168 hours. For instance,
the mean of EMS is significantly higher than others on mujs
and objdump. Although the line coverage of AFL++ grows
rapidly in the first 72 hours when fuzzing pdftotext, it
is eventually surpassed by EMS. Thus, a relatively long time
duration to evaluate the coverage performance of a fuzzer on
these real world programs is recommended.

D. Evaluation on FuzzBench

To further evaluate fuzzers’ performance with the acknowl-
edged benchmark, we utilize FuzzBench, one of the most
famous standardized benchmarks, to evaluate AFL, MOPT,
AFL++, and EMS on harbuzz, bloaty, openssl, and
zlib. Each evaluation lasts for 24 hours and is repeated 10
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Fig. 10: The boxplot of region coverage generated from 10 trials on FuzzBench, where ‘4’ and ‘—’ represent the mean and
median, respectively. The fuzzer with the highest median coverage is on the left. Y-axis: the region coverage found in each trial.
TABLE V: The total number of unique vulnerabilities of each fuzzer reported by ASan, LSan, MSan, and UBSan after
deduplication in 16 trials with three different initial seed sets.

100 seeds 10 seeds empty seed
AFL QSYM MOPT MOPT-dict EcoFuzz AFL++ EMS AFL QSYM MOPT MOPT-dict EcoFuzz AFL++ EMS AFL QSYM MOPT MOPT-dict EcoFuzz AFL++ EMS

ASan
pdfimages 2 3 4 5 7 13 15 2 2 7 10 11 7 16 0 0 0 0 0 0 0
infotocap 0 0 6 6 3 7 7 1 0 5 5 4 6 6 3 1 5 5 4 5 6
w3m 0 0 0 1 2 0 8 0 1 4 1 2 0 10 0 2 3 2 1 0 6
total 2 3 10 12 12 20 30 3 3 16 16 17 13 32 3 3 8 7 5 5 12

LSan
pdfimages 1 2 6 4 8 10 10 1 1 9 8 6 5 7 0 0 0 0 0 0 0
infotocap 0 0 2 3 1 3 2 1 0 2 2 2 3 2 1 0 2 2 1 2 2
w3m 0 0 0 5 1 0 11 0 1 4 5 3 0 8 0 1 1 3 1 0 6
total 1 2 8 12 10 13 23 2 2 15 15 11 8 17 1 1 3 5 2 2 8

MSan
pdfimages 3 4 6 5 9 13 11 3 3 9 10 6 9 9 0 0 0 0 0 0 0
infotocap 0 0 3 4 1 4 5 1 0 1 2 1 5 3 1 0 2 3 1 2 3
w3m 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1
total 3 5 10 10 11 18 17 4 4 11 13 8 14 13 1 1 3 4 2 2 4

UBSan
pdfimages 4 6 8 9 16 21 18 4 5 15 16 16 13 18 0 0 0 0 0 0 0
infotocap 0 0 2 2 1 2 2 1 0 2 2 2 2 2 1 0 2 2 1 2 2
w3m 0 0 0 3 1 0 11 0 0 4 5 3 0 8 0 0 1 2 1 0 5
total 4 6 10 14 18 23 31 5 5 21 23 21 15 28 1 0 3 4 2 2 7

times to reduce the randomness. The results are shown in Fig.
9 and Fig. 10, from which we have the following conclusions.

• The results in Fig. 9 show the rapid growth of EMS’s
coverage. For instance, the confidence interval of EMS is
above that of other fuzzers at the beginning of the testing
on harbuzz. The mean of EMS is higher than AFL++ and
AFL on bloaty during the fuzzing process. Therefore, with
a higher probability EMS can find more coverage faster than
other fuzzers.

• EMS achieves better region coverage performance com-
pared to other fuzzers on FuzzBench as shown in Fig. 10. For
instance, the mean and median of EMS are higher than other
fuzzers on harbuzz. The median of EMS is higher than
others on openssl and zlib. The results demonstrate the
significant coverage performance of EMS on a standardized
benchmark.

E. Performance Analysis under Different Scenarios

In this subsection, we evaluate the fuzzing performance
of different fuzzers on pdfimages, infotocap and w3m
under different scenarios. To be specific, we follow the guid-
ance of [38] to further construct new fuzzing experiments with
different initial seed sets and different sanitizers.

On one hand, we construct the following two initial seed
sets: 1) 10 well-formed seed files for each program, and 2)
an empty seed file containing a letter ‘a’. To obtain the well-
formed seed files, we first collect enough input files with the
correct format for each program. Then, we employ afl-cmin
[3] to remove the input files with duplicate edge coverage.
Finally, we randomly select 10 from the remaining files as the
initial seed set of the corresponding program.

On the other hand, we not only use ASan to find unique
vulnerabilities as aforementioned, but also employ the follow-

ing sanitizers to detect different types of vulnerabilities found
by each fuzzer.

• LeakSanitizer (LSan): LSan is a run-time memory leak
detector to detect specific vulnerability types such as
stack overflow, memory leaks and segmentation viola-
tions. Without ASan’s instrumentation, LSan may find
different vulnerabilities compared to ASan’s results.

• MemorySanitizer (MSan): MSan is used to detect unini-
tialized memory reads, e.g., stack- or heap-allocated
memory is read before it is written. Note that MSan and
ASAN cannot work simultaneously due to their respective
instrumentations and mechanisms.

• UndefinedBehaviorSanitizer (UBSan): UBSan is a detec-
tor to catch various kinds of undefined behavior vulnera-
bilities during program execution.

Therefore, combining with the seed file and sanitizer set-
ting in Section V-A, we have three sets of seed files and four
kinds of sanitizers. In total, there are 12 different experimental
scenarios with different combinations of seed file set and
sanitizer. Since we evaluate each fuzzer on four programs,
there are 36 results in total for each fuzzer.

Each new experiment still lasts for 168 hours and is re-
peated 16 times under the same experiment settings in Section
V-A. The number of unique vulnerabilities after deduplication
in 16 trials under 12 different scenarios is shown in Table V.

1) Performance Analysis with Different Initial Seed Sets:
We have the following conclusion according to the vulnera-
bility results with the different initial seed sets in Table V.
EMS finds the most vulnerabilities with different initial
seed sets. For instance, when employing 10 well-formed seed
files as the initial seed set, EMS finds the most vulnerabilities
on 3 targets reported by ASan, LSan and UBSan. EMS also
finds significantly more vulnerabilities than other fuzzers in
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TABLE VI: The vulnerability discovery and edge coverage contributed by the PBOM operator. P and T represent the mutations
provided by the PBOM operator and traditional mutation operators shown in Fig. 3, respectively.

pdfimages

Trial Unique vulnerabilities
found by T

Unique vulnerabilities
found by P + T Contribution Edge coverage

triggered by T
Edge coverage

triggered by P + T Contribution

1 2 3 1 1,825 2,303 +26.2%
2 1 2 1 1,766 2,281 +29.2%
3 2 2 0 1,747 2,234 +27.9%
4 3 3 0 1,659 2,170 +30.8%
5 3 5 2 1,836 2,344 +27.7%
6 2 2 0 1,776 2,289 +28.9%
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Fig. 11: The boxplot of the number of unique vulnerabilities
reported by ASan in 16 trials, when using 10 well-formed
seed files as the initial seed set. ‘◦’ and ‘– –’ represent the
mean and median, respectively. Y-axis: the number of unique
vulnerabilities discovered in each trial.
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Fig. 12: The boxplot generated by the number of unique
vulnerabilities reported by ASan in 16 trials, when using an
empty seed as the initial seed set. ‘◦’ and ‘– –’ represent the
mean and median, respectively. Y-axis: the number of unique
vulnerabilities discovered in each trial.

most results when using an empty seed as the initial seed set.

Furthermore, we construct the boxplot to show the distri-
bution of number of unique vulnerabilities reported by ASan
in each trial. As shown in Fig. 11, the results demonstrate that
EMS outperforms other fuzzers on average when using 10
well-formed files as the initial seed set to fuzz pdfimages,
infotocap and w3m. When using empty seed as the initial
seed set, the mean and median of EMS are higher than others
on infotocap and w3m, which is shown in Fig. 12.

The aforementioned results demonstrate that EMS has
efficient vulnerability discovery performance with different
initial seed sets.

2) Performance Analysis with Different Sanitizers: The
results in Table V also show the following conclusion about the
vulnerability discovery reported by different sanitizers. EMS
finds more vulnerabilities reported by different sanitizers
than other fuzzers in total. For instance, EMS finds the
most vulnerabilities reported by UBSan on 3 targets with the
different initial seed sets. EMS also finds significantly more
unique vulnerabilities reported by ASan and LSan than other
fuzzers. Only AFL++ finds one more vulnerability reported by
MSan than EMS on 3 targets when using 100 seeds and 10
seeds as the initial seed set, respectively.

Overall, EMS achieves the best performance of vulnerabil-

ity discovery in a total of 12 experimental scenarios, which in-
volve different initial seed sets and different sanitizers. Except
for the 11 results that most fuzzers perform the same, EMS
finds the most vulnerabilities on 18 of the remaining 25 results.
This demonstrates that EMS outperforms other fuzzers in
discovering vulnerabilities under different experimental
scenarios.

VI. FURTHER ANALYSIS

A. PBOM Contribution Analysis

Directly comparing the performance of EMS and MOPT
can only demonstrate the effectiveness of the PBOM operator
at a high level. Thus, to perform a fine-grained analysis on the
efficacy of the PBOM operator, we implement a customized
version of EMS, namely EMS-test, to measure the effec-
tiveness of the PBOM operator in place. Specifically, EMS-
test skips the deterministic stage, and mutates test cases with
the traditional and PBOM operators in the havoc and splicing
stages. When constructing a test case from a seed test case in
the queue, EMS-test records the mutations from the traditional
mutation operators but ignores the mutations from the PBOM
operator. Suppose the mutated test case triggers a unique
path or crash. In that case, EMS-test additionally constructs
a shadow version of the mutated test case by replaying the
recorded mutations at the same locations of the same seed
test case. Thus, the shadow version is obtained without the
contribution of the PBOM operator. Both the original mutated
test case and its shadow version are stored locally to find
the unique vulnerabilities reported by ASan and evaluate edge
coverage reported by afl-cmin [3]. By comparing the resulting
vulnerabilities and edge coverage of the original test cases and
the shadow ones, we can show the contribution of the PBOM
operator.

We employ EMS-test to fuzz pdfimages. Each evalu-
ation lasts for 5 hours and is repeated 6 times to reduce the
randomness. The experiment settings are the same as in Section
V-A. We present the discovered unique vulnerabilities reported
by ASan and the edge coverage reported by afl-cmin of each
evaluation in Table VI, and have the following conclusions.

• When the mutations of the PBOM operator are removed,
there are three possible situations about vulnerability discovery
as follows: 1) the shadow test case cannot trigger any vulner-
ability; 2) the shadow test case triggers the same vulnerability
found by other shadow ones; and 3) the shadow test case
triggers a unique vulnerability that has never been found
before. To figure out the contribution of the PBOM operator,
we utilize ASan to find the unique vulnerabilities triggered by
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TABLE VII: The number of the same efficient mutation strategies and the number of different ones collected from two different
programs under the different fuzzing durations.

Program A Duration Nn1 (pct.) Nn2 (pct.) Ny (pct.) Nt Nn1 (pct.) Nn2 (pct.) Ny (pct.) Nt Program B

pdfimages

5 hours 2,755 (33.0%) 565 (6.8%) 5,020 (60.2%) 8,340 5,971 (37.6%) 4,876 (30.7%) 5,020 (31.6%) 15,867

nasm1 day 3,331 (29.4%) 821 (7.3%) 7,168 (63.3%) 11,320 8,021 (36.9%) 6,553 (30.1%) 7,168 (33.0%) 21,742
2 days 2,824 (25.7%) 754 (6.9%) 7,400 (67.4%) 10,978 9,388 (38.1%) 7,861 (31.9%) 7,400 (30.0%) 24,649
7 days 2,906 (28.5%) 525 (5.1%) 6,775 (66.4%) 10,206 9,098 (39.2%) 7,361 (31.7%) 6,775 (29.2%) 23,234

objdump

5 hours 3,977 (53.2%) 2,007 (26.9%) 1,487 (19.9%) 7,471 2,446 (50.3%) 925 (19.0%) 1,487 (30.6%) 4,858

infotocap1 day 3,941 (50.8%) 1,795 (23.2%) 2,015 (26.0%) 7,751 3,530 (50.9%) 1,394 (20.1%) 2,015 (29.0%) 6,939
2 days 3,645 (51.0%) 1,294 (18.1%) 2,210 (30.9%) 7,149 4,878 (53.6%) 2,010 (22.1%) 2,210 (24.3%) 9,098
7 days 5,732 (54.5%) 2,049 (19.5%) 2,733 (26.0%) 10,514 5,176 (53.7%) 1,722 (17.9%) 2,733 (28.4%) 9,631

cflow

5 hours 1,637 (44.8%) 844 (23.1%) 1,174 (32.1%) 3,655 3,566 (37.8%) 4,678 (49.7%) 1,174 (12.5%) 9,418

w3m1 day 1,576 (37.9%) 902 (21.7%) 1,676 (40.4%) 4,154 4,337 (33.6%) 6,894 (53.4%) 1,676 (13.0%) 1,2907
2 days 1,802 (44.5%) 649 (16.0%) 1,598 (39.5%) 4,049 3,701 (29.5%) 7,226 (57.7%) 1,598 (12.8%) 12,525
7 days 1,661 (44.0%) 733 (19.4%) 1,385 (36.6%) 3,779 3,550 (31.4%) 6,367 (56.3%) 1,385 (12.3%) 11,302

the original test cases and the shadow ones, and analyze the
contributions of vulnerability discovery caused by the muta-
tions of the PBOM operator. The results are shown in Table
VI. Interestingly, the original mutated test cases find 1, 1 and
2 more unique vulnerabilities than the shadow ones in 3 trials,
respectively. After removing P (the mutations provided by the
PBOM operator) in these four (1 + 1 + 2) original test cases, we
get their shadow versions which cannot trigger any of the four
vulnerabilities on pdfimages. Therefore, the contribution to
trigger the four unique vulnerabilities indeed comes from P
(the mutations from the PBOM operator). This demonstrates
that the PBOM operator can improve the performance of
vulnerability discovery.

• As for the edge coverage, we utilize afl-cmin [3] to collect
unique edge coverage of original test cases and shadow ones on
pdfimages, respectively. The results are shown in Table VI.
The edge coverage increases significantly in all 6 trials with the
mutations from the PBOM operator. For instance, the original
test cases find 511 more unique edges than the shadow ones in
the 4th trial. Therefore, the PBOM operator can significantly
improve the edge coverage.

To eliminate the concern that the aforementioned results
might be due to that the traditional operators only contribute a
small portion of the total number of mutations, we analyze the
number of mutations from the PBOM operator and traditional
operators in each fuzzing round, and obtain the following
results. 1) Because of the random operator selection in the
havoc stage, not all the test cases contain the mutations from
the PBOM operator. Overall 6 trials, there are around 74.83%
and 49.22% interesting test cases containing the mutations
from the PBOM operator in the unique crash discovery and
unique path discovery, respectively. Thus, many shadow ver-
sions of the mutated test cases remain the same. 2) For each
mutated test case, the average number of mutations from the
PBOM operator is 2.98, which is significantly smaller than that
from the traditional operators (46.11). Therefore, the shadow
test cases are obtained by keeping the most mutations after
removing the mutations from the PBOM operator.

In summary, the PBOM operator provides the key muta-
tions to find more unique vulnerabilities and edges faster.
This demonstrates the effectiveness of the collected mutation
strategies in inter- and intra-PBOMs.

TABLE VIII: The similarities and differences of the efficient
mutation strategies between 7 days of execution and other
durations of execution on the same program.

Program Similarities and differences 7 days

Duration Nn1 (pct.) Nn2 (pct.) Ny (pct.) Nt Nt

pdfimages
5 hours 1,907 (22.9%) 315 (3.8%) 6,118 (73.4%) 8,340 10,206
1 day 3,535 (31.2%) 530 (4.7%) 7,255 (64.1%) 11,320 10,206
2 days 3,092 (28.2%) 636 (5.8%) 7,250 (66.0%) 10,978 10,206

objdump
5 hours 3,034 (40.6%) 531 (7.1%) 3,906 (52.3%) 7,471 10,514
1 day 2,717 (35.1%) 749 (9.7%) 4,285 (55.3%) 7,751 10,514
2 days 2,293 (32.1%) 397 (5.6%) 4,459 (62.4%) 7,149 10,514

infotocap
5 hours 1,835 (37.8%) 403 (8.3%) 2,620 (53.9%) 4,858 9,631
1 day 2,129 (30.7%) 1,060 (15.3%) 3,750 (54.0%) 6,939 9,631
2 days 3,475 (38.2%) 1,112 (12.2%) 4,511 (49.6%) 9,098 9,631

cflow
5 hours 873 (23.9%) 405 (11.1%) 2,377 (65.0%) 3,655 3,779
1 day 1,051 (25.3%) 576 (13.9%) 2,527 (60.8%) 4,154 3,779
2 days 1,178 (29.1%) 289 (7.1%) 2,582 (63.8%) 4,049 3,779

nasm
5 hours 3,711 (23.4%) 839 (5.3%) 11,317 (71.3%) 15,867 23,234
1 day 6,720 (30.9%) 1,517 (7.0%) 13,505 (62.1%) 21,742 23,234
2 days 8,491 (34.4%) 1,455 (5.9%) 14,703 (59.6%) 24,649 23,234

w3m
5 hours 2,922 (31.0%) 631 (6.7%) 5,865 (62.3%) 9,418 11,302
1 day 5,122 (39.7%) 1,021 (7.9%) 6,764 (52.4%) 12,907 11,302
2 days 4,569 (36.5%) 1,403 (11.2%) 6,553 (52.3%) 12,525 11,302

B. Efficient Mutation Strategy Analysis

We analyze the similarities and differences between the
efficient mutation strategies learned on different programs
to verify the effect of inter-trial history. Specifically, we
spend different time, including 5 hours, 1 day, 2 days and
7 days, conducting fuzzing experiments on six programs (i.e.,
pdfimages, nasm, objdump, infotocap, cflow, and
w3m) to collect their efficient mutation strategies, respectively.
Then, we remove the mutation strategies whose frequencies are
less than 3, since these strategies are less useful for a program
as they rarely trigger unique paths and crashes. Finally, to
show the effect of inter-trial history on different programs,
we count the number of common mutation strategies found in
two different programs and the number of unique strategies
in each program. To show the observations more clearly, we
define the following parameters.

• Nt: The total number of efficient mutation strategies
collected from the current experiment.

• Nn1: The number of mutation strategies whose input
byte values and length (in, L) appear in both experi-
ments, while their output byte values and mutation types
(out, type) only appear in the respective experiment.

• Nn2: The number of mutation strategies whose (in, L)
are unique in the current experiment and do not appear
in the other experiment.

• Ny: The number of mutation strategies in which both
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TABLE IX: The average number of executions and executions per second of MOPT and EMS over 8 trials.

Program MOPT EMS
Average # of executions Executions per second Average # of executions Executions per second Decrease

cflow 8,593,562.63 198.93 8,246,698.25 190.90 -4.04%
nasm 8,749,619.00 202.54 8,537,833.00 197.64 -2.42%
sassc 6,009,008.00 139.10 5,826,812.00 134.88 -3.03%
w3m 1,033,043.00 23.91 1,032,240.00 23.89 -0.08%
total 24,385,232.63 564.47 23,643,583.25 547.31 -3.04%

(in, L) and the corresponding (out, type) appear in the
two experiments.

• (pct.): The percentage of Nn1, Nn2 or Ny in Nt.

The results are shown in Table VII, from which we have
the following observations.

• The proportion of the same efficient mutation strategies
found from two different programs cannot be negligible. As
shown in Table VII, there are more than 60% of efficient
mutation strategies of pdfimages also triggering unique
paths and crashes on nasm in all four experiments. Around
35% of cflow’s efficient mutation strategies also overlap
with the mutation strategies on w3m. This demonstrates the
validity of applying inter-PBOM learned from one program
to other programs.

• Nn1 and Nn2 show the interesting findings as follows.
On one hand, the large proportion of Nn1 and Ny illustrates
that EMS triggers a large number of unique paths and crashes
on two different programs by mutating the same input byte
values, even though the input formats of the two programs
and the initial input files used to fuzz them are different.
The aforementioned result indicates that when utilizing inter-
trial history for fuzzing, prioritizing the mutations on the byte
values appeared in the history could also be useful. On the
other hand, Nn2 is the number of unique mutation strategies
that only work on a program itself. As shown in Table VII,
the Nn2 of pdfimages, infotocap and cflow is around
6.5%, 19.8% and 20.1%, respectively. These efficient mutation
strategies can be useful when fuzzing the same program.

Therefore, we further analyze the similarities and differ-
ences of the collected efficient mutation strategies between 7
days of execution and other time of execution on the same
program. The results are shown in Table VIII. The observation
is as follows. The same mutation strategies account for
the majority between the results of 7 days and other
results on the same program. For instance, Ny is larger than
64.1%, 60.8% and 52.3% on pdfimages, cflow and w3m,
respectively. The large proportion of Nn1 and Ny shown in
Table VIII once again indicates that it may improve fuzzing
performance by prioritizing the mutations on the byte values
appeared in the inter-trial fuzzing history. Furthermore, the
small proportion of Nn2 demonstrates that most mutation
strategies in the inter-trial history can be useful on the same
program. These results demonstrate the validity of applying
inter-PBOM on the same program.

C. Algorithm Overhead Analysis

In order to evaluate the algorithm overhead of EMS more
accurately, we need to control the impact of each test case’s
mutation time and the impact of the execution speed of each
test case on the overall execution speed. Thus, we construct a

TABLE X: The target programs from the same vendor evalu-
ated in the experiments.

Source Target Input format Test instruction

xpdf-4.02
pdfimages pdf @@ /dev/null
pdftotext pdf @@ /dev/null
pdfinfo pdf @@

binutils-2.28
objdump binary -S @@
addr2line binary s -e @@
objcopy binary --debugging -p -D @@ /dev/null

specific version of MOPT and EMS as follows: Both MOPT
and EMS only enter the havoc stage, randomly select the
mutation operators for a fixed number of times, and mutate
the same test case across the entire fuzzing process. Then,
we construct the evaluation of each fuzzer on cflow, nasm,
sassc and w3m. Each evaluation lasts for 12 hours and is
repeated 8 times to reduce the randomness. Finally, we collect
the total execution times of each fuzzer to calculate the average
execution times over 8 trials. The results are shown in Table
IX, from which we learn the following conclusion.

The average execution time and executions per second
show the low overhead of EMS. For instance, the number of
EMS’s executions on cflow reduces by 4.04% on average
over 8 trials. The total executions per second of EMS on
4 targets reduces by 3.04% compared to MOPT, which is
caused by the mutation process, the data collection process and
the fine-tuning process of PBOMs. However, according to the
results in Section V-C, although the execution speed of EMS
is a bit slower than MOPT, it discovers more unique vulnera-
bilities and line coverage than MOPT on most programs. This
demonstrates that the overhead of EMS is acceptable.

D. Performance of EMS with Different Inter-PBOMs on Dif-
ferent Programs From the Same Vendor

In order to analyze the contribution of the inter-trial
history on different programs from the same vendor, we
evaluate the fuzzing performance of EMS on target programs
from xpdf-4.02 and binutils-2.28, which are the
two source codes containing multiple binary programs in our
benchmark. The setting of each target program is shown in
Table X. For the programs from xpdf-4.02, we utilize the
inter-trial history collected from pdfimages to construct
the inter-PBOM. On the other hand, we utilize the inter-trial
history collected from objdump to construct the inter-PBOM
for the programs from binutils-2.28. Furthermore, to
evaluate the fuzzing performance of different inter-PBOMs,
we construct EMS without inter-PBOM, or with the inter-
PBOM trained based on 5 hours, 24 hours and 48 hours of
training data, which are represented by EMS empty, EMS 5h,
EMS 24h, and EMS 48h, respectively. Each fuzzer is eval-
uated 5 times on a target program, each of which lasts for

14



0 4 8 16 20 24
0

1

2

3

4

 

12

MOPT
AFL++ 
EMS_empty 
EMS_5h 
EMS_24h 
EMS_48h

pdfimages 0 4 8 16 20 24
0

1

2

3

4

12

MOPT
AFL++
EMS_empty
EMS_5h
EMS_24h
EMS_48h

pdftotext
0 4 8 16 20 24
0

1

2

3

4

5

…

12 

MOPT
AFL++ 
EMS_empty 
EMS_5h 
EMS_24h 
EMS_48h

pdfinfo

0 4 8 16 20 24
0
1
2
3
4
5
6

…

12 

MOPT
AFL++ 
EMS_empty 
EMS_5h 
EMS_24h 
EMS_48h

objdump 0 4 8 16 20 24
0

2

4

6

8

10

 

12

MOPT
AFL++ 
EMS_empty 
EMS_5h 
EMS_24h 
EMS_48h

addr2line
0 4 8 16 20 24
0

2

4

6

8

10

…

12 

MOPT
AFL++ 
EMS_empty 
EMS_5h 
EMS_24h 
EMS_48h

objcopy
Fig. 13: The growth of the number of unique vulnerabilities discovered by each fuzzer over 24 hours. Each coverage interval with
a different color shows the mean and 95% confidence interval for a unique fuzzer. Y-axis: the number of the unique vulnerabilities
reported by ASan.
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Fig. 14: The line coverage growth discovered by each fuzzer over 24 hours. Each coverage interval with a different color shows
the mean and 95% confidence interval for a unique fuzzer. Y-axis: the number of covered code lines.

24 hours. Each MOPT-based fuzzer utilizes ‘-L 0’ as the
configuration in this evaluation. The experiment settings are
the same as in Section V-A. The results are shown in Fig. 13
and Fig. 14, from which we have the following conclusions.

• EMS with different inter-PBOMs can find more unique
vulnerabilities quickly over 24 hours. For instance, the mean of
EMS 48h is higher than other fuzzers on objcopy as shown
in Fig. 13. The confidence interval of EMS 24h is above
others on objdump, which represents the higher probability
for EMS 24h to discover more unique vulnerabilities. The
results demonstrate the contribution of the inter-PBOM trained
from different programs developed by the same vendor.

• Each fuzzer performs closely on the line coverage growth
as shown in Fig. 14. For instance, EMS 5h performs well on
pdfimages while it performs poorly on objcopy. AFL++
performs well on addr2line while it performs poorly on
pdftotext. We infer the reason as follows. A 24-hour
fuzzing duration is not long enough to differentiate the line
coverage performance of the evaluated fuzzers on these real
world programs. As shown in Fig. 14, the line coverage of
each fuzzer is still growing on most programs after the 24-
hour duration. The mutators of each fuzzer still work and
can find unique code lines. However, the line coverage results
shown in Fig. 8 demonstrate the significant line coverage
performance of EMS on objdump and pdftotext in the
168-hour evaluation. Thus, relatively long time duration to
evaluate the coverage performance of a fuzzer on these real
world programs is recommended. Note that the different line

coverage performance of MOPT-based fuzzers in Appendix
VI-D and Section V-C is caused by the different configurations
of ‘-L’. Following the guidance in [7], [44], we use ‘-L 5’ in the
168-hour evaluation and use ‘-L 0’ in the 24-hour evaluation.

• Interestingly, EMS achieves better vulnerability discov-
ery with the inter-PBOMs collected from the different durations
compared to EMS empty. For instance, the means of the
number of unique vulnerabilities discovered by EMS 5h,
EMS 24h and EMS 48h are higher than that of EMS empty
on most programs as shown in Fig. 13. The results demonstrate
the contribution of the inter-PBOM trained by the program
from the same vendor, which is consistent with the analysis
in Section III-A2. From another aspect, EMS empty finds
more unique vulnerabilities than MOPT and AFL++ on most
programs as shown in Fig. 13. This simultaneously shows
the significant vulnerability discovery performance of EMS
without the inter-PBOM, and demonstrates the contribution of
the intra-PBOM.

VII. DISCUSSION AND LIMITATION

In this section, we discuss several topics related to our
design and implementation.

A. Mutation Operator Development

In our implementation of EMS, we utilize the efficient
mutation strategies that trigger unique paths and crashes to
update the inter- and intra-PBOMs as the mutation operators,
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which significantly improve the vulnerability discovery and
line coverage. In addition, the efficient mutation strategies
can be classified to construct different fine-grained mutation
operators. For instance, we can classify the efficient strategies
into several types, e.g., the ones that trigger specific vulner-
abilities and the ones that trigger rare execution paths, and
then construct the corresponding operators. More fine-grained
mutation operators can be developed to enhance the utilization
of different types of fuzzing history in future work.

B. Mutation Location Selection

In the design of EMS, the fuzzing history is used primarily
for extracting efficient mutation strategies to mutate seed test
cases. On the other hand, the mutation locations can also
be guided by the fuzzing history. In our implementation,
we utilize the intra-trial history to probabilistically select the
recorded locations where the mutations lead to interesting
test cases, i.e., the favorite_list described in Section
IV. More fine-grained mutation location information may be
concluded according to the intra- and inter-trial fuzzing history,
e.g., analyzing the impact of mutation locations on some
specific branching behaviors according to the past fuzzing
results.

C. Application of Machine Learning Algorithms

For a history-driven solution, it is intuitive to consider
employing machine learning algorithms to learn from fuzzing
history. Indeed, we have tried to implement EMS with the
sequence-to-sequence (seq2seq) model. However, although it
performs the best on several target programs, the machine
learning-based EMS requires more CPU and GPU compu-
tational cost, leading to slower execution speed. Thus, the
overall fuzzing performance is weakened. Therefore, in this
paper we develop EMS based on the lightweight probabilistic
model PBOM. In summary, machine learning algorithms are
not suitable to be employed as the mutation operators, as
they will be invoked frequently and thus will slow down the
execution speed. On the contrary, for a target program with
high latency of executing a test case, e.g., fuzzing a service,
machine learning algorithms may have more potential because
of their high fitting ability.

VIII. RELATED WORK

A. Mutation-based Fuzzing

AFL is one of the most prevalent mutation-based fuzzers
and establishes the framework for fuzzing [3]. In recent years,
plenty of works have focused on improving the fuzzing per-
formance. For instance, AFLFast [13] develops a better energy
allocation strategy and improves the coverage by prioritizing
low-frequency paths. Further, Yue et al. employed a variant
of the adversarial multi-armed bandit model to optimize the
energy allocation strategy, and presented an adaptive energy-
saving fuzzer named EcoFuzz [71].

One solution to improve the fuzzing performance is to
integrate fuzzing with other technologies, such as taint tracing,
concolic execution and gradient descent algorithms. Several
works employ dynamic taint analysis, program analysis and
symbolic analysis techniques to improve the fuzzing perfor-
mance [15], [28], [33], [66]. Recently, Yun et al. presented

a fast concolic execution engine named QSYM and provided
a better hybrid fuzzing for AFL [72]. Angora employs the
gradient descent algorithm to solve path constraints without
concolic execution [17]. Matryoshka further solves the deeply
nested conditional statements [18]. Zhao et al. presented a
novel dispatch strategy to better utilize the concolic execution
during the hybrid fuzzing [74]. FuzzGen utilizes a whole
system analysis to improve the fuzzing performance on the
complex libraries [35]. Gan et al. presented a lightweight
fuzzing-driven taint technique to guide fuzzing, and provided
a data flow sensitive fuzzing solution named GreyOne [23].

Coverage-based fuzzing is another solution to improve the
fuzzing performance [40], [54]. T-Fuzz utilizes a dynamic
tracing based technique to remove the checks in a program and
improves the code coverage [50]. CollAFL mitigates coverage
collisions and provides more accurate edge coverage [24].
Recently, Lyu et al. analyzed the fuzzing performance of dif-
ferent mutation operators, and presented MOPT to adaptively
optimize the selection probability distribution of operators
[44]. Aschermann et al. employed input-to-state correspon-
dence and presented REDQUEEN to solve the roadblocks
in the targets, such as magic bytes and checksum tests [9].
ProFuzzer automatically detects the critical input fields of test
cases, and adaptively adjusts the mutation strategy on these
fields to trigger vulnerabilities [70].

Different from the papers above, EMS considers reusing
the efficient mutation strategies collected from the inter trials,
and improves the fuzzing performance with the help of inter-
PBOM. EMS with inter-PBOM performs significantly better
than other fuzzers on our multiple benchmarks, and can be
helpful in the fuzzing scenarios like parallel fuzzing and
continuous fuzzing. Furthermore, one of the goals in this
paper is to trigger similar branching behavior in different
execution paths, which can be caused by the same immediate
operands used in different instructions and the shared basic
blocks in the paths. To achieve this, EMS reuses efficient
mutation strategies, which include interesting mutation values
and different mutation types, at different locations of seed files.
As a result, EMS can serve as a new mutator in most mutation-
based fuzzers.

B. Generation-based Fuzzing

Most of the generation-based fuzzers utilize data-driven
techniques to generate the test cases with specific input formats
[20], [25], [31], [45]. Skyfire utilizes probabilistic context-
sensitive grammar to learn syntax and semantic rules, and
generates the test cases with the formats of XML and XSL
[64]. Han et al. presented a novel generation algorithm named
semantics-aware assembly, which can generate the test cases
with semantical and syntactical correctness [30]. Nautilus
combines the use of grammars with code coverage feedback,
which generates the test cases with a higher probability to
have semantical and syntactical correctness [8]. Lee et al.
presented a neural network language model-guided fuzzer
named Montage to find JavaScript engine vulnerabilities [39].

C. Machine Learning-based Fuzzing

In recent years, multiple works have focused on improving
fuzzing performance with machine learning techniques [10],

16



[14], [26], [43], [48], [59], [61]. Augmented-AFL utilizes
neural networks to predict the locations in a test case that
can trigger unique paths and crashes with a higher probability
[53]. NEUZZ employs a neural network model to learn the
real-word program’s branching behaviors, and then utilizes the
program smoothing technique to locate the bytes in a test case
that influence the branching behaviors [60].

D. Other Fuzzing Strategies

Many works with diverse motivations are proposed re-
cently, including the ones that provide better initial seed
sets and provide more comprehensive metrics for evaluating
fuzzing performance [38], [55], [67]; the ones that present
effective kernel fuzzers [19], [29], [36], [37], [49], [62], [68];
the ones that provide directed fuzzing at specific locations
[12], [16], [75]; the ones that protect binaries from fuzzing
attacks and improve hypervisor fuzzers [27], [57], [58]; and
the ones that focus on algorithmic complexity vulnerabilities
and improve the fuzzing execution speed [11], [42], [47], [52],
[69].

IX. CONCLUSION

In this paper, we discover that both intra- and inter-
trial fuzzing history contain rich knowledge of key mutation
strategies that lead to the discovery of unique paths or crashes.
These mutation strategies implicitly carry partial path con-
straint solutions and can be used to accelerate the discovery of
new paths or crashes sharing similar partial path constraints.
Motivated by this insight, we propose PBOM, a lightweight
and efficient model, to capture the mutation strategies that
trigger unique paths and crashes from the intra- and inter-trial
history. We present a novel history-driven mutation framework
EMS that employs PBOM as one of the mutation operators
to probabilistically provide the desired mutation byte values
and mutation types according to the input ones. We evaluate
EMS against AFL, QSYM, MOPT, MOPT-dict, EcoFuzz, and
AFL++ on 9 real world programs. The results show that
EMS discovers more unique vulnerabilities and has higher
line coverage than other fuzzers on most of the programs.
EMS also achieves superior coverage performance on the
standardized benchmark FuzzBench, and performs the best
on discovering different types of vulnerabilities with different
initial seed sets. In addition, we conduct further analysis to
demonstrate the validity and low overhead of EMS. The
performance of EMS with different inter-PBOMs demonstrates
the contribution of the inter-trial fuzzing history on different
programs from the same vendor. Overall, EMS can serve as
a new direction to improve the coverage and vulnerability
discovery of mutation-based fuzzers.
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