

Camera Geometry

Camera Geometry

Ground plane

Camera GEometry

Ground plane

Recall camera projection matrix:

$$
\lambda\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{lll}
f & & p_{x} \\
& f & p_{y} \\
& & 1
\end{array}\right]\left[\begin{array}{l}
X \\
y \\
Z
\end{array}\right]
$$

Camera intrinsic parameter : metric space to pixel space

Camera Geometry

Ground plane

Recall camera projection matrix:

$$
\lambda\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{lll}
f & & p_{x} \\
& \boldsymbol{K} & p_{y} \\
& & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]
$$

Camera intrinsic parameter : metric space to pixel space

Camera Geometry

Recall camera projection matrix:

$$
\begin{aligned}
& \lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{lll}
f & & p_{x} \\
& \mathbf{K} & p_{y} \\
& & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \\
& \text { 2D image (pix) } \\
& \text { 3D world (metric) }
\end{aligned}
$$

Ground plane

CAMERA GEOMETRY

Ground plane

Recall camera projection matrix:

$$
\lambda\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{lll}
f & & p_{x} \\
& \mathbf{K} & p_{y} \\
& & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

2D image (pix) 3D world (metric)

$$
\rightarrow \lambda \mathbf{K}^{-1}\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\mathbf{x}_{c}
$$

Camera Geometry

Recall camera projection matrix:

$$
\lambda\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{lll}
f & & p_{x} \\
& \mathbf{K} & p_{y} \\
& & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

2D image (pix) 3D world (metric)

$$
\begin{aligned}
\boldsymbol{\rightarrow} \boldsymbol{\lambda} \boldsymbol{K}^{-1}\left[\begin{array}{c}
u_{1} \\
v_{1} \\
1
\end{array}\right]=\left[\begin{array}{l}
X_{1} \\
Y_{1} \\
Z_{1}
\end{array}\right]=\mathbf{x}_{\mathrm{c}_{1}} \\
\boldsymbol{\lambda} \boldsymbol{K}^{-1}\left[\begin{array}{c}
u_{2} \\
v_{2} \\
1
\end{array}\right]=\left[\begin{array}{l}
X_{2} \\
Y_{2} \\
Z_{2}
\end{array}\right]=\boldsymbol{x}_{\mathrm{c}_{2}}
\end{aligned}
$$

World Coordinate

Camera

Origin at world coordinate 2 D image (pix) 3D world (metric)
Ground plane
Recall camera projection matrix:

$$
\lambda\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
f & & p_{x} \\
& \boldsymbol{K} & p_{y} \\
& & 1
\end{array}\right]\left[\begin{array}{l}
x \\
\mathbf{x} \\
z
\end{array}\right]
$$

Point Rotation

2D rotation

Point Rotation

2D rotation

$$
\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

COORdInATE TransForm (Rotation)

2D coordinate transform:

COORDINATE TRANSFORM (ROTATION)

2D coordinate transform:

$$
\left[\begin{array}{l}
x_{c} \\
y_{c}
\end{array}\right]=\quad ? \quad\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

COORDINATE TRANSFORM (Rotation)

2D coordinate transform:

$$
\left[\begin{array}{l}
x_{c} \\
y_{c}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Coordinate transformation: Inverse of point rotation

COORDINATE TRANSFORM (Rotation)

2D coordinate transform:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{c} \\
y_{c}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
& \operatorname{det}\left(\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\right)=\cos ^{2} \theta+\sin ^{2} \theta=1
\end{aligned}
$$

COORDINATE TRANSFORM (Rotation)

2D coordinate transform:

$$
\left[\begin{array}{l}
x_{c} \\
y_{c}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta \mathbf{r}_{x} & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$r_{x}: x$ axis of camera seen from the world

COORDINATE TRANSFORM (Rotation)

2D coordinate transform:

$$
\left[\begin{array}{l}
x_{c} \\
y_{c}
\end{array}\right]=\left[\begin{array}{c}
\cos \theta \mathbf{r}_{x} \sin \theta \\
-\sin \mathbf{r}_{y} \\
\cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$r_{x}: x$ axis of camera seen from the world
r_{y} : y axis of camera seen from the world

COORDINATE TRANSFORM (Rotation)

2D coordinate transform:

$$
\left[\begin{array}{l}
x_{c} \\
y_{c}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\mathbf{r}_{1} \theta & \mathbf{r}_{2} \\
-\cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$r_{1}: x$ axis of world seen from the camera
r_{2} : y axis of world seen from the camera

COORDINATE TRANSFORM (ROTATION)

Camera ${ }^{{ }^{\mathrm{a}} \mathbf{R}_{w}}$

Coordinate transformation from world to camera:

$$
X_{0}=\quad ? \quad X
$$

Origin at world coordinate
Ground plane

COORDINATE TRANSFORM (ROTATION)

Coordinate transformation from world to camera:

$$
\mathrm{X}_{\mathrm{c}}=\quad ? \quad \mathrm{X}
$$

Origin at world coordinate
Ground plane

COORDINATE TRANSFORM (ROTATION)

Camera

Coordinate transformation from world to camera:

$$
\mathbf{X}_{\mathrm{c}}=\left[\begin{array}{lll}
r_{\mathrm{x} 1} & r_{\mathrm{x} 2} & r_{\mathrm{x} 3} \\
r_{\mathrm{y} 1} & r_{\mathrm{y} 2} & r_{y 3} \\
r_{z 1} & r_{z 2} & r_{z 3}
\end{array}\right] \mathbf{X}={ }^{\mathrm{C}} \mathbf{R}_{\mathrm{w}} \mathbf{X}
$$

Origin at world coordinate

Ground plane

Camera Projection (Pure Rotation)

Coordinate transformation from world to camera:

$$
\mathbf{x}_{\mathrm{C}}=\left[\begin{array}{lll}
r_{\mathbf{x}} & r_{\mathbf{r}_{2}} & r_{\mathrm{x}_{8}} \\
\mathbf{r}_{11} & \mathbf{r}_{2} & \mathbf{r}_{3} \\
r_{21} & r_{22} & r_{23}
\end{array}\right] \mathbf{x}={ }^{\mathrm{C}} \mathbf{R}_{\mathbf{w}} \mathbf{x}
$$

Camera projection of world point:

$$
\lambda\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
f & & p_{x} \\
& \mathbf{k} & p_{y} \\
& & 1
\end{array}\right]\left[\begin{array}{l}
X_{c} \\
y_{c} \\
Z_{c}
\end{array}\right]
$$

Camera Projection (Pure Rotation)

Coordinate transformation from world to camera:

$$
\mathbf{X}_{\mathrm{C}}=\left[\begin{array}{ccc}
r_{11} & r_{\mathrm{r}_{2}} & r_{\mathrm{x}} \\
\mathbf{r}_{11} & \mathbf{r}_{2} & \mathbf{r}_{3} \\
r_{21} & r_{22} & r_{23}
\end{array}\right] \mathrm{X}={ }^{\mathrm{C}} \mathbf{R}_{\mathrm{w}} \mathrm{X}
$$

Camera projection of world point:

$$
\begin{aligned}
\lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right] & =\left[\begin{array}{lll}
f & & p_{x} \\
& \mathbf{K} & p_{y} \\
& & 1
\end{array}\right]\left[\begin{array}{l}
X_{c} \\
Y_{c} \\
Z_{c}
\end{array}\right] \\
& =\left[\begin{array}{rrr}
f & p_{x} \\
& f & p_{y} \\
& & 1
\end{array}\right]\left[\begin{array}{lll}
r_{x 1} & r_{x 2} & r_{x 3} \\
r_{y 1} & r_{y 2} & r_{y 3} \\
r_{z 1} & r_{z 2} & r_{z 3}
\end{array}\right]\left[\begin{array}{c}
x \\
Y \\
Z
\end{array}\right]
\end{aligned}
$$

EUCLIDEAN TRANSFORM (Rotation+Translation)

Camera

Ground plane

World

Euclidean Transform (Rotation+Translation)

Camera

World

Euclidean Transform (Rotation+Translation)

2D coordinate transform:

$$
\left[\begin{array}{l}
x_{c} \\
y_{c}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Coordinate transformation: Inverse of point rotation

Euclidean Transform (Rotation+Translation)

2D coordinate transform:

Euclidean Transform (Rotation+Translation)

2D coordinate transform:

EUCLIDEAN TRANSFORM (Rotation+Translation)

World

Euclidean Transform (Rotation+Translation)

Camera

World

Coordinate transformation from world to camera:

$$
\mathbf{X}_{\mathrm{C}}={ }^{\mathrm{C}} \mathbf{R}_{W} \mathbf{X}+{ }^{\mathrm{C}} \mathrm{t}
$$

where ${ }^{c} \boldsymbol{t}$ is the world orgin seen from camera.

Euclidean Transform (Rotation+Translation)

Coordinate transformation from world to camera:

$$
\mathbf{X}_{\mathrm{C}}={ }^{\mathrm{C}} \mathbf{R}_{\mathrm{w}} \mathbf{X}+{ }^{\mathrm{C}} \mathbf{t}=\left[\begin{array}{llll}
r_{\mathrm{x} 1} & r_{\mathrm{x} 2} & r_{\mathrm{x}} & t_{\mathrm{x}} \\
r_{\mathrm{y} 1} & r_{\mathrm{y} 2} & r_{\mathrm{y} 3} & t_{\mathrm{y}} \\
r_{z 1} & r_{z 2} & r_{z 3} & r_{z}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
1
\end{array}\right]
$$

where ${ }^{c} \boldsymbol{t}$ is the world orgin seen from camera.

Geometric Interpretation

Camera

World

Coordinate transformation from world to camera:

$$
\mathbf{X}_{\mathrm{C}}={ }^{\mathrm{C}} \mathbf{R}_{\mathrm{w}} \mathbf{X}+{ }^{\mathrm{C}} \mathbf{t}=\left[\begin{array}{llll}
r_{\mathrm{x} 1} & r_{\mathrm{x} 2} & r_{\mathrm{x} 3} & t_{\mathrm{x}} \\
r_{\mathrm{y} 1} & r_{\mathrm{y} 2} & r_{\mathrm{y} 3} & t_{\mathrm{y}} \\
r_{z 1} & r_{z 2} & r_{z 3} & t_{\mathrm{z}}
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
1
\end{array}\right]
$$

where ${ }^{c} \boldsymbol{t}$ is the world orgin seen from camera.
Rotate and then, translate.

GEOMETRIC Interpretation

Coordinate transformation from world to camera:

$$
\mathbf{X}_{\mathrm{C}}={ }^{\mathrm{C}} \mathbf{R}_{\mathrm{w}} \mathbf{X}+{ }^{\mathrm{C}} \mathbf{t}=\left[\begin{array}{llll}
r_{\mathrm{x} 1} & r_{\mathrm{x} 2} & r_{\mathrm{x} 3} & t_{\mathrm{x}} \\
r_{\mathrm{y} 1} & r_{\mathrm{y} 2} & r_{\mathrm{y} 3} & t_{\mathrm{y}} \\
r_{z 1} & r_{z 2} & r_{z 3} & r_{z}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]
$$

where ${ }^{c} \mathbf{t}$ is the world orgin seen from camera.
Rotate and then, translate.
cf) Translate and then, rotate.
$\mathbf{X}_{\mathrm{C}}={ }^{c} \mathbf{R}_{\mathrm{w}}(\mathbf{X}-\mathbf{C})=\left[\begin{array}{lll}r_{\mathrm{x} 1} & r_{\mathrm{x} 2} & r_{\mathrm{x} 3} \\ r_{y 1} & r_{y 2} & r_{\mathrm{y} 3} \\ r_{21} & r_{z 2} & r_{z 3}\end{array}\right]\left[\begin{array}{llll}1 & & & -C_{\mathrm{x}} \\ & 1 & & -C_{y} \\ & & 1 & -C_{z}\end{array}\right]\left[\begin{array}{l}\mathbf{x} \\ 1\end{array}\right]$
where C is the camera location seen from world.

Camera Projection Matrix

World

Coordinate transformation from world to camera:

$$
\mathbf{X}_{\mathrm{C}}==^{\mathrm{C}} \mathbf{R}_{\mathbf{w}} \mathbf{X}+{ }^{\mathrm{C}} \mathbf{t}=\left[\begin{array}{llll}
r_{\mathrm{x} 1} & r_{\mathrm{x} 2} & r_{\mathrm{x} 3} & t_{\mathrm{x}} \\
r_{\mathrm{y} 1} & r_{\mathrm{y} 2} & r_{\mathrm{y} 3} & t_{\mathrm{y}} \\
r_{21} & r_{z 2} & r_{23} & r_{\mathrm{z}}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]
$$

Camera projection of world point:

$$
\begin{aligned}
\lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right] & =\left[\begin{array}{lll}
f & & p_{x} \\
& \mathbf{K} & p_{y} \\
& & 1
\end{array}\right]\left[\begin{array}{l}
x_{c} \\
r_{c} \\
Z_{c}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
f & p_{x} \\
& \mathbf{K} & p_{y} \\
& & 1
\end{array}\right]\left[\begin{array}{llll}
r_{X 1} & r_{X 2} & r_{x 3} & t_{x} \\
r_{y 1} & { }^{c} \mathbf{R}_{\mathbf{W}} & r_{r_{3}} & \mathbf{t}_{\mathbf{t}} \\
r_{21} & r_{22} & r_{23} & t_{2}
\end{array}\right]\left[\begin{array}{c}
X \\
\gamma \\
Z \\
1
\end{array}\right]
\end{aligned}
$$

Inverse of Camera Projection Matrix

Camera

$\lambda\left[\begin{array}{l}u \\ v \\ 1\end{array}\right]=\mathbf{K X}_{C}$

Ground plane

Inverse of Camera Projection Matrix

Camera

$$
\begin{aligned}
\lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right] & =\mathbf{K X}_{c} \\
& =\mathbf{K}^{c}\left(\mathbf{R}_{w} \mathbf{X}+{ }^{c} \mathbf{t}\right)=\mathbf{K}^{c} \mathbf{R}_{w}(\mathbf{X}-\mathbf{C})
\end{aligned}
$$

Ground plane

Inverse of Camera Projection Matrix

Camera

$$
\begin{aligned}
\lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right] & =\mathbf{K X}_{c} \\
& =\mathbf{K}^{c}\left(\mathbf{R}_{\mathbf{w}} \mathbf{X}+{ }^{c} \mathbf{t}\right)=\mathbf{K}^{c} \mathbf{R}_{w}(\mathbf{X}-\mathbf{C})
\end{aligned}
$$

Ground plane

$$
\longrightarrow \mathbf{X}=\lambda\left(\mathbf{K}^{c} \mathbf{R}_{w}\right)^{-1}\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]+\mathbf{C}
$$

3D ray direction 3D ray origin

Cheirality

where $\lambda>0$

Full Perspective Model

Perspective camera model:

$$
\lambda\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\mathbf{P}\left[\begin{array}{c}
\mathbf{x} \\
1
\end{array}\right]=\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]
$$

Strong perspectiveness

Affine Model

Perspective camera model:

$$
\lambda\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\mathbf{P}\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]=\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]
$$

Affine camera model:

$$
\begin{aligned}
& {\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\mathbf{P}_{A}\left[\begin{array}{l}
\mathbf{X} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{23} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
1
\end{array}\right]} \\
& \longrightarrow\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{23}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
1
\end{array}\right]
\end{aligned}
$$

Strong perspectiveness

Affine Model

Perspective camera model:

$$
\lambda\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\mathbf{P}\left[\begin{array}{c}
\mathbf{x} \\
1
\end{array}\right]=\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]
$$

Affine camera model:

$$
\begin{aligned}
& {\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\mathbf{P}_{A}\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{23} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
1
\end{array}\right]} \\
& \longrightarrow\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{23}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x} \\
1
\end{array}\right]
\end{aligned}
$$

Orthographic Model

Affine camera:

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{23}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
1
\end{array}\right]
$$

Orthographic camera:

$$
\begin{aligned}
& f=1 \quad p_{\mathrm{x}}=p_{\mathrm{y}}=0 \\
& {\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & t_{x} \\
r_{21} & r_{22} & r_{23} & r_{y}
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
1
\end{array}\right]}
\end{aligned}
$$

Camera Anatomy

Lens configuration (internal parameter)

Spatial relationship between sensor and pinhole (internal parameter)

Camera body configuration (extrinsic parameter)

Radial Distortion Model

Assumption: Lens distortion is a function of distance from the principal point.

Radial Distortion Model

Assumption: Lens distortion is a function of distance from the principal point.

$$
\begin{aligned}
& \overline{\mathrm{u}}_{\text {distorted }}=L(\rho) \overline{\mathbf{u}}_{\text {undistorted }} \\
& \text { where } \quad \rho=\left\|\overline{\mathbf{u}}_{\text {distorted }}\right\| \\
& \quad L(\rho)=1+k_{1} \rho^{2}+k_{2} \rho^{4}+\cdots
\end{aligned}
$$

Radial Distortion Model $\overline{\mathbf{u}}_{\text {distorted }}=L(\rho) \overline{\mathbf{u}}_{\text {undistorted }}$
 $$
L(\rho)=1+k_{1} \rho^{2}+k_{2} \rho^{4}+\cdots
$$

$k_{1}<0$
$k_{1}>0$

