


CHALLENGES OF VISUAL RECOGNITION

AAppearance

ADOF:; texture, ilumniation, material, shading, ...
AShape

ADOF: object category, geometric pose, viewpoint, ...




CHALLENGE OF FACE DETECTION
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VioLA-JONES FACE DETECTION

Extremely fast and accurate face detection
ARunning at real-time

https://www.youtube.com/watch?v=aTErTqOlkss
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Enabling factors:
AFEfficient feature computation

A Simple filtering operations
AFEfficient feature selection

AMinimal filtering operations
AEfficient inference algorithm

AEarly rejection of non-face patches
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HAAR-LIKE FEATURE

A simple rectangular filter
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A simple rectangular filter
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A simple rectangular filter




HAAR-LIKE FEATURE

Various derivative filters varying location, size, and combinations

# of possible filters for 24x24 patch: ~160k




INTEGRAL IMAGE

Image with values at each pixel that is the sum of pixels above and left inclusive.




INTEGRAL IMAGE

Image with values at each pixel that is the sum of pixels above and left inclusive.
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FEATURE COMPUTATION WITH INTEGRAL IMAGE

Sum of pixels in the area:
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Too0 MANY FEATURES

Various derivative filters varying location, size, and combinations

# of possible filters for 24x24 patch: ~160k




FEATURE SELECTION

Various derivative filters varying location, size, and combinations

# of possible filters for 24x24 patch: ~160k
Can we choose a set of good filters?




FEATURE SELECTION

Various derivative filters varying location, size, and combinations

# of possible filters for 24x24 patch: ~160k

Can we choose a set of good filters?
What defines the good filters?




FEATURE SELECTION: BOOSTING

Boosting is a classifier that combines a set of weak classifiers to build a strong classifier.

I ) bﬁ = 1(l) threshold

/

+1 p f(l) >pg
-1 otherwise

h(1)=

——/D

Each filter can be a weak classifier.

P, [ { —ll} : to change the direction of threshold



FEATURE SELECTION: BOOSTING

Boosting is a classifier that combines a set of weak classifiers to build a strong classifier.
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Ensemble classifier
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h[(l):\ pt ( ) >ptq
-1 otherwise
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P, [ { -ll} : to change the direction of threshold



