IMAGE PYRAMID

HYUN SOO PARK
Salvador Dali, Abraham Lincoln
Salvador Dali, Abraham Lincoln
RECALL: OBJECT RECOGNITION WITH HOG
Fourier Transform

Time signal

\[x(t) \]
Fourier Transform

Time signal

\[x(t) \]

Frequency response

\[|X(f)| \]

\[-f \quad f \]
Fourier Transform

Time signal: $x(t)$

Guassian filter: $g(t)$

Frequency response: $|X(f)|$

$|G(f)|$

$x(t) * g(t) = X(f) G(f)$
Fourier Transform

Time signal

\[x(t) \]

Guassian filter

\[g(t) \]

\[X(f) \] \[G(f) \]

\[X(f) G(f) \]

Frequency response

\[|G(f)| \]

\[|X(f)| \]
Fourier Transform

![Graph showing time signal and Gaussian filter with Fourier Transform and Inverse Fourier Transform](image)

- Time signal: $x(t)$
- Gaussian filter: $g(t)$

$$X(f) \cdot G(f)$$

Frequency response:
- $-f$ to f
GAUSSIAN FILTERING ~ LOW-PASS FILTERING
GAUSSIAN FILTERING ~ LOW-PASS FILTERING

$g(\sigma = 2)$
GAUSSIAN FILTERING ~ LOW-PASS FILTERING

$g(\sigma = 8)$
GAUSSIAN FILTERING ~ LOW-PASS FILTERING

\[g(\sigma = 32) \]
SUBSAMPLING

\[x(t) \]
Subsampling

\[x(t) \]

Subsampling → \[\downarrow x(t) \]
SUBSAMPLING WITH G. FILTERING
SUBSAMPLING WITH G. FILTERING

\[x(t) \ast g(t) \]
Subsampling with G. Filtering

\[x(t) \]
Naïve Subsampling

\[x(t) \]
Nyquist’s theorem

\[f_{\text{sampling}} \geq 2f_{\text{signal}} \]
Aliasing

Naïve subsampling

Smoothing and subsampling: eliminating aliasing effects.
GAUSSIAN FILTERING ~ LOW-PASS FILTERING ~ IMAGE BLURRING
GAUSSIAN FILTERING AND THEN SUBSAMPLING
IMAGE RECONSTRUCTION: UPSAMPLING AND GAUSSIAN BLURRING
Naïve Image Subsampling and Upsampling
MULTI-DIMENSIONAL IMAGE REPRESENTATION
Gaussian Image Pyramid

Memory consumption

\[|I| \left(1 + \frac{1}{4} + \frac{1}{16} + \cdots\right) = \frac{4}{3} |I| \]
Composition of Gaussian Filters

![Diagram showing the composition of Gaussian filters](image)

- Time signal: $x(t)$
- Gaussian filter: $g(t; \sigma_1) * g(t; \sigma_2)$
- Frequency response: $X(f) * G(f)$

Equations:

- Fourier Transform (FT): $X(f) = \mathcal{F}\{x(t)\}$
- Inverse Fourier Transform (Inverse FT): $x(t) = \mathcal{F}^{-1}\{X(f)\}$

Relationship:

$X(f) = x(t) * g(t; \sigma_1) * g(t; \sigma_2)$
Composition of Gaussian Filters

Time signal \(x(t) \)
Gaussian filter \(g(t; \sqrt{\sigma_1^2 + \sigma_2^2}) \)

\[X(f) G(f) G(f) \]
Composition of Gaussian Filters

Time signal \(x(t) \) \(* g(t, \sqrt{\sigma_1^2 + \sigma_2^2}) \) Gaussian filter

\[X(f) G(f) G(f) \]

Frequency response

\[X(f)G(f)G(f) \]
Gaussian Image Pyramid

Memory consumption:
\[|I| (1 + \frac{1}{4} + \frac{1}{16} + \cdots) = \frac{4}{3} |I| \]
\[
I_{1/2} + I_{1/2} + I_{1/2} = \frac{4}{3} |I|
\]
REDUNDANT REPRESENTATION OF GAUSSIAN PYRAMID
Fourier Transform

\[X(f) = \mathcal{F}\{x(t)\} \]

\[G(f; \sigma) = \mathcal{F}\{g(t; \sigma)\} \]

\[g(t; \sigma) \ast x(t) \rightarrow \mathcal{F} \rightarrow G(f; \sigma_1) \rightarrow X(f) \mathcal{F} \rightarrow G(f; \sigma_2) \rightarrow \mathcal{F}^{-1} \rightarrow g(t; \sigma_2) \]

Scale dependent freq. band

Redundant freq. band
Difference of Gaussian (DoG) ~ Band-pass Filter

\[
x(t) \ast g(t) \Rightarrow \mathcal{F}\{x(t)g(t)\} = X(f)G(f)
\]
Difference of Gaussian (DoG) ~ Band-pass Filter

\[x(t) \ast (g(t;\sigma_1) - g(t;\sigma_2)) \]

\[X(f)(G(f;\sigma_1) - G(f;\sigma_2)) \]
Difference of Gaussian (DOG) ~ Band-pass Filter

\[x(t) * (g(t; \sigma_1) - g(t; \sigma_2)) \]

\[X(f)(G(f; \sigma_1) - G(f; \sigma_2)) \]
Difference of Gaussian (DoG) ~ Band-pass Filter

$$x(t) \ast \left(g(t;\sigma_1) - g(t;\sigma_2) \right) = X(f) \left(G(f;\sigma_1) - G(f;\sigma_2) \right)$$
Laplacian of Gaussian (LOG) ~ DoG

$$\mathcal{F}(x(t) * (g(t;\sigma_1) - g(t;\sigma_2))) \approx \nabla \cdot \nabla g$$

Laplacian of Gaussian
Laplacian of Gaussian (LoG) ∼ DoG
IMAGE LAPLACIAN

I
$I - I \ast G$
$I \ast G$
IMAGE LAPLACIAN

$I \ast G$

$I \ast G - I \ast G \ast G$

$I \ast G \ast G$
Difference of Gaussian (DoG) ~ Band-pass Filter

\[x(t) \ast (g(t; \sigma_1) - g(t; \sigma_2)) \]

\[X(f)(G(f; \sigma_1) - G(f; \sigma_2)) \]
Signal Reconstruction \(-\text{LoG} + \text{G. Filtering}\)

\[
l(t) = x(t) * \left(g(t; \sigma_1) - g(t; \sigma_2) \right)
\]

\[
x(t) * g(t; \sigma_1) = l(t) + x(t) * g(t; \sigma_2)
\]

Signal reconstruction with laplacian

\[
L(f) = X(f) \left(G(f; \sigma_1) - G(f; \sigma_2) \right)
\]

\[
X(f)G(f; \sigma_1) = L(f) + \frac{X(f)G(f; \sigma_2)}{\text{LoG}}
\]

Smother signal
Image Reconstruction