IMAGE GRADIENT

HYUN SOO PARK
Image Partial Differential

\[I \]

\[\frac{\partial I}{\partial u} \]

\[\frac{\partial I}{\partial v} \]
Image Gradient

\[\frac{df(x)}{dx} \]
Image Gradient

\[
\frac{df(x)}{dx}
\]

Gradient

\[
\nabla I = \frac{\partial I(x,y)}{\partial x} \mathbf{i} + \frac{\partial I(x,y)}{\partial y} \mathbf{j}
\]

def) a multivariate generalization of the derivative.
Image Gradient

\[
\nabla I = \frac{\partial I(x, y)}{\partial x} \mathbf{i} + \frac{\partial I(x, y)}{\partial y} \mathbf{j}
\]
Image Gradient

\[
\nabla I = \frac{\partial I(x,y)}{\partial x} \mathbf{i} + \frac{\partial I(x,y)}{\partial y} \mathbf{j}
\]

\[
\frac{\partial I}{\partial u} = \frac{\partial I}{\partial v} =
\]

\[
\frac{\partial I}{\partial u} = \frac{\partial I}{\partial v} =
\]
Image Gradient

\[\nabla I = \frac{\partial I(x, y)}{\partial x} \mathbf{i} + \frac{\partial I(x, y)}{\partial y} \mathbf{j} \]

Magnitude of the gradient is proportional to contrast change rate

\[\frac{\partial I}{\partial u} = 0 \quad \frac{\partial I}{\partial v} = c_1 \]

\[\frac{\partial I}{\partial u} = 0 \quad \frac{\partial I}{\partial v} = c_2 \]

\[c_1 < c_2 \]
Image Gradient

\[\nabla I = \frac{\partial I(x,y)}{\partial x} \mathbf{i} + \frac{\partial I(x,y)}{\partial y} \mathbf{j} \]

Direction of the gradient is greatest rate of increase.
Image Gradient

\[\nabla I = \frac{\partial I(x,y)}{\partial x} \mathbf{i} + \frac{\partial I(x,y)}{\partial y} \mathbf{j} \]

Direction of the gradient is greatest rate of increase.

\[\frac{\partial I}{\partial u} = 0 \quad \frac{\partial I}{\partial v} = c_1 \]

\[\frac{\partial I}{\partial u} = c_2 \quad \frac{\partial I}{\partial v} = 0 \]
Image Gradient

\[\nabla I = \frac{\partial I(x,y)}{\partial x} \mathbf{i} + \frac{\partial I(x,y)}{\partial y} \mathbf{j} \]

Direction of the gradient is greatest rate of increase.

\[\frac{\partial I}{\partial u} = 0 \quad \frac{\partial I}{\partial v} = c_1 \]

\[\frac{\partial I}{\partial u} = c_2 \quad \frac{\partial I}{\partial v} = 0 \]
Image Gradient

\[\nabla I = \frac{\partial I(x, y)}{\partial x} \mathbf{i} + \frac{\partial I(x, y)}{\partial y} \mathbf{j} \]

Direction of the gradient is greatest rate of increase.

\[\frac{\partial I}{\partial u} = 0 \quad \frac{\partial I}{\partial v} = c_1 \]

\[\frac{\partial I}{\partial u} = c_2 \quad \frac{\partial I}{\partial v} = 0 \]

\[\frac{\partial I}{\partial u} = c_3 \quad \frac{\partial I}{\partial v} = c_3 \]
Image Gradient Magnitude

\[
\frac{\partial I}{\partial u} \quad \frac{\partial I}{\partial v}
\]

\[
\| \nabla I \| = \sqrt{\left(\frac{\partial I}{\partial u} \right)^2 + \left(\frac{\partial I}{\partial v} \right)^2}
\]
\[\frac{\partial I}{\partial u}, \frac{\partial I}{\partial v} \]

\[\angle \nabla I = \tan^{-1} \left(\frac{\partial I}{\partial v} / \frac{\partial I}{\partial u} \right) \]
\[\angle \nabla I = \tan^{-1} \left(\frac{\partial I}{\partial v} / \frac{\partial I}{\partial u} \right) \]
Image Gradient Direction

Angle with gradient magnitude thresholding
IMAGE GRADIENT DIRECTION

Angle with gradient magnitude thresholding
Image Gradient

I

$\|\nabla I\|$

$\angle \nabla I$
Image Gradient
ILLUMINATION INVARIANT GRADIENT