RANSAC

Hyun Soo Park
RECALL: LOCAL FEATURE MATCHING
RECALL: ROBUST FILTERING
Line Fitting

Given points: \((u_1, v_1), \ldots, (u_n, v_n)\)

Find the best line:

\[
\begin{align*}
v_1 & \approx mu_1 + d \\
\vdots & \vdots \\
v_n & \approx mu_n + d
\end{align*}
\]

\[
\begin{bmatrix}
u_1 \\
\vdots \\
u_n
\end{bmatrix}
\begin{bmatrix}
m \\
d
\end{bmatrix}
=
\begin{bmatrix}
v_1 \\
\vdots \\
v_n
\end{bmatrix}
\]
Line Fitting

Given points: \((u_1, v_1), \ldots, (u_n, v_n)\)

Find the best line: \[v_1 \approx m u_1 + d \]

\[\vdots \]

\[v_n \approx m u_n + d \]

Least squares solution: \[x = (A^T A)^{-1} A^T b \]
Outlier

Data
Ground truth
Least squares

\[
\begin{bmatrix}
u_1 & 1 \\
u_n & 1 \\
\end{bmatrix}
\begin{bmatrix}
m \\
d \\
\end{bmatrix}
=
\begin{bmatrix}
v_1 \\
v_n \\
\end{bmatrix}
\]
Outlier

\[
\begin{bmatrix}
 u_1 & 1 \\
 u_n & 1 \\
\end{bmatrix}
\begin{bmatrix}
 m \\
 d \\
\end{bmatrix} =
\begin{bmatrix}
 v_1 \\
 v_n \\
\end{bmatrix}
\]
Outlier Sensitivity

\[y = mx + d \]

\[(u, v_{1}) \]

\[|v_{1} - mu_{1} - d| \]

Quadratic magnification of error of outliers

Outlier

Least squares solution:

\[x = \left(A^{T}A \right)^{-1} A^{T}b \]
Outlier Rejection Strategy

Outlier rejection strategy:
To find the best line that explains the maximum number of points.

Assumptions:
1. Majority of good samples agree with the underlying model.
2. Bad samples does not consistently agree with a single model.
RANSAC: RAndom SAmple Consensus
1. Random sampling

RANSAC: RRandom SAmple Consensus
RANSAC: RAndom SAmple Consensus

1. Random sampling
2. Model building
RANSAC: RRandom SAmple Consensus

1. Random sampling
2. Model building
3. Thresholding
RANSAC: RAndom SAmple Consensus

1. Random sampling
2. Model building
3. Thresholding
4. Inlier counting

of inliers: 7
RANSAC: RAdom SAmple Consensus

1. Random sampling
2. Model building
3. Thresholding
4. Inlier counting
1. Random sampling
2. Model building
3. Thresholding
4. Inlier counting

RANSAC: RAramd SAmple Consensus
1. Random sampling
2. Model building
3. Thresholding
4. Inlier counting

RANSAC: RAndom SAmple Consensus
RANSAC: RAndom SAmple Consensus

1. Random sampling
2. Model building
3. Thresholding
4. Inlier counting

of inliers: 10
1. Random sampling
2. Model building
3. Thresholding
4. Inlier counting

RANSAC: RAndom SAMple Consensus
RANSAC: RRandom SAmple Consensus

1. Random sampling
2. Model building
3. Thresholding
4. Inlier counting
RANSAC: RRandom SAmple Consensus

1. Random sampling
2. Model building
3. Thresholding
4. Inlier counting
1. Random sampling
2. Model building
3. Thresholding
4. Inlier counting

of inliers: 23
Maximum number of inliers

RANSAC: Random Sample Consensus
Required number of iterations with p success rate:

$\text{Prob. of success} > \text{Prob. of desired success} \quad p$
Required number of iterations with p success rate:

Prob. of success > Prob. of desired success P

Prob. of success: $1 - (1 - \text{prob. of success per trial})^k$
Required number of iterations with p success rate:

\[\text{Prob. of success} > \text{Prob. of desired success} \quad p \]

\[\text{Prob. of success: } 1 - (1 - \text{prob. of success per trial})^k \]

\[\text{Prob. of success per trial: } w^n \]

where \[w = \frac{\# \text{ of inliers}}{\# \text{ of samples}} \]

and n is the number of samples to build a model.
Required number of iterations with p success rate:

Prob. of success > Prob. of desired success P

Prob. of success: $1 - (1 - \text{prob. of success per trial})^k$

Prob. of success per trial: w^n

where $w = \frac{\# \text{ of inliers}}{\# \text{ of samples}}$

and n is the number of samples to build a model.

Prob. of success: $1 - (1 - w^n)^k$
Required number of iterations with p success rate:

Prob. of success > Prob. of desired success P

Prob. of success: $1- (1-$prob. of success per trial$)^k$

Prob. of success per trial: w^n

where $w = \frac{\text{# of inliers}}{\text{# of samples}}$

and n is the number of samples to build a model.

Prob. of success: $1- \left(1- w^n\right)^k$

$$k = \frac{\log(1- \rho)}{\log\left(1-w^n\right)}$$
Recall: Homography Computation

\[\begin{bmatrix}
 u_1 & v_1 & 1 & 0 & 0 & 0 & -u_1u'_1 & -v_1u'_1 \\
 0 & 0 & 0 & u_1 & v_1 & 1 & -u_1v'_1 & -v_1v'_1 \\
 u_4 & v_4 & 1 & 0 & 0 & 0 & -u_4u'_4 & -v_4u'_4 \\
 0 & 0 & 0 & u_4 & v_4 & 1 & -u_4v'_4 & -v_4v'_4 \\
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 1 \\
\end{bmatrix} = \begin{bmatrix}
 u'_1 \\
 v'_1 \\
 u'_4 \\
 v'_4 \\
\end{bmatrix} \]

\[Ax = b \quad \rightarrow \quad x = \left(A^T A \right)^{-1} A^T b \]
Homography from 4 random correspondences
Inlier counting

Number of inliers: 5
Homography from 4 random correspondences
Inlier counting

Number of inliers: 8
Homography from 4 random correspondences
Inlier counting

Number of inliers: 25
Homography from 4 random correspondences
Inlier counting

Number of inliers: 76
Homography from 4 random correspondences
Inlier counting

Number of inliers: 83
RECALL: ROBUST FILTERING
RECALL: PARAMETRIC MODEL
RECALL: IMAGE WARPGING