CSCI 5561: Assignment #4
Convolutional Neural Network

1 Submission

• Assignment due: Apr 19 (11:55pm)
• Individual assignment
• Up to 2 page summary write-up with resulting visualization (more than 2 page assignment will be automatically returned).
• Submission through Canvas.
• Skeletal codes can be downloaded from:
 https://www-users.cs.umn.edu/~hspark/csci5561/HW4_code.zip It contains the following four codes:
 - main_slp_linear.m
 - main_slp.m
 - main_mlp.m
 - main_cnn.m
• List of submission codes:
 - GetMiniBatch.m
 - FC.m
 - FC_backward.m
 - Loss_euclidean.m
 - TrainSLP_linear.m
 - Loss_cross_entropy_softmax.m
 - TrainSLP
 - ReLu.m
 - ReLu_backward.m
 - TrainMLP.m
 - Conv.m
 - Conv_backward.m
 - Pool2x2.m
 - Pool2x2_backward.m
 - Flattening.m
 - Flattening_backward.m
 - TrainCNN.m
CSCI 5561: Assignment #4

Convolutional Neural Network

• A list of MAT files that contain the following trained weights:
 – slp_linear.mat: w, b
 – slp.mat: w, b
 – mlp.mat: w1, b1, w2, b2
 – cnn.mat: w_conv, b_conv, w_fc, b_fc

• DO NOT SUBMIT THE PROVIDED IMAGE DATA

• The function that does not comply with its specification will not be graded.

• You are allowed to use MATLAB built-in functions except for the ones in the Computer Vision Toolbox and Deep Learning Toolbox. Please consult with TA if you are not sure about the list of allowed functions.
2 Overview

You will implement (1) a multi-layer perceptron (neural network) and (2) convolutional neural network to recognize hand-written digit using the MNIST dataset.

The goal of this assignment is to implement neural network to recognize hand-written digits in the MNIST data.

MNIST Data You will use the MNIST hand written digit dataset to perform the first task (neural network). We reduce the image size (28 × 28 → 14 × 14) and subsample the data. You can download the training and testing data from here: http://www.cs.umn.edu/~hspark/csci5561/ReducedMNIST.zip

Description: The zip file includes two MAT files (mnist_train.mat and mnist_test.mat). Each file includes im_* and label_* variables:

- im_* is a matrix (196 × n) storing vectorized image data (196 = 14 × 14)
- label_* is n × 1 vector storing the label for each image data.

n is the number of images. You can visualize the i^{th} image, e.g., imshow(uint8(reshape(im_train(:,i), [14,14]))).
CSCI 5561: Assignment #4
Convolutional Neural Network

3 Single-layer Linear Perceptron

Figure 2: You will implement a single linear perceptron that produces accuracy near 30%. Random chance is 10% on testing data.

You will implement a single-layer linear perceptron (Figure 2(a)) with stochastic gradient descent method. We provide main_slp_linear where you will implement GetMiniBatch and TrainSLP_linear.

function [mini_batch_x, mini_batch_y] = GetMiniBatch(im_train, label_train, batch_size)
Input: im_train and label_train are a set of images and labels, and batch_size is the size of the mini-batch for stochastic gradient descent.
Output: mini_batch_x and mini_batch_y are cells that contain a set of batches (images and labels, respectively). Each batch of images is a matrix with size 194 × batch_size, and each batch of labels is a matrix with size 10 × batch_size (one-hot encoding). Note that the number of images in the last batch may be smaller than batch_size.
Description: You may randomly permute the the order of images when building the batch, and whole sets of mini_batch_* must span all training data.

function y = FC(x, w, b)
Input: x ∈ R^m is the input to the fully connected layer, and w ∈ R^{n×m} and b ∈ R^n are the weights and bias.
Output: y ∈ R^n is the output of the linear transform (fully connected layer).
Description: FC is a linear transform of x, i.e., y = wx + b.

function [dLdx dLdw dLdb] = FC_backward(dLdy, x, w, b, y)
Input: dLdy ∈ R^{1×n} is the loss derivative with respect to the output y.
CSCI 5561: Assignment #4

Convolutional Neural Network

Output: $dLdx \in \mathbb{R}^{1 \times m}$ is the loss derivative with respect the input x, $dLdw \in \mathbb{R}^{1 \times (n \times m)}$ is the loss derivative with respect to the weights, and $dLdb \in \mathbb{R}^{1 \times n}$ is the loss derivative with respect to the bias.

Description: The partial derivatives w.r.t. input, weights, and bias will be computed. $dLdx$ will be back-propagated, and $dLdw$ and $dLdb$ will be used to update the weights and bias.

function \[L, dLdy\] = Loss_euclidean(y_tilde, y)
Input: $y_{\text{tilde}} \in \mathbb{R}^m$ is the prediction, and $y \in 0, 1^m$ is the ground truth label.
Output: $L \in \mathbb{R}$ is the loss, and $dLdy$ is the loss derivative with respect to the prediction.
Description: $\text{Loss}_\text{euclidean}$ measure Euclidean distance $L = \|y - \tilde{y}\|^2$.

function \[w, b\] = TrainSLP_linear(mini_batch_x, mini_batch_y)
Input: mini_batch_x and mini_batch_y are cells where each cell is a batch of images and labels.
Output: $w \in \mathbb{R}^{10 \times 196}$ and $b \in \mathbb{R}^{10 \times 1}$ are the trained weights and bias of a single-layer perceptron.
Description: You will use FC, FC_backward, and $\text{Loss}_\text{euclidean}$ to train a single-layer perceptron using a stochastic gradient descent method where a pseudo-code can be found below. Through training, you are expected to see reduction of loss as shown in Figure 2(b). As a result of training, the network should produce more than 25% of accuracy on the testing data (Figure 2(c)).

Algorithm 1 Stochastic Gradient Descent based Training
1: Set the learning rate γ
2: Set the decay rate $\lambda \in (0, 1]$
3: Initialize the weights with a Gaussian noise $w \in \mathcal{N}(0, 1)$
4: $k = 1$
5: for ilter = 1 : nIters do
6: At every 1000^{th} iteration, $\gamma \leftarrow \lambda \gamma$
7: $\frac{\partial L}{\partial w} \leftarrow 0$ and $\frac{\partial L}{\partial b} \leftarrow 0$
8: for Each image x_i in k^{th} mini-batch do
9: Label prediction of x_i
10: Loss computation l
11: Gradient back-propagation of x_i, $\frac{\partial l}{\partial w}$ using back-propagation.
12: $\frac{\partial L}{\partial w} = \frac{\partial L}{\partial w} + \frac{\partial l}{\partial w}$ and $\frac{\partial L}{\partial b} = \frac{\partial L}{\partial b} + \frac{\partial l}{\partial b}$
13: end for
14: $k++$ (Set $k = 1$ if k is greater than the number of mini-batches.)
15: Update the weights, $w \leftarrow w - \gamma \frac{\partial L}{\partial w}$, and bias $b \leftarrow b - \gamma \frac{\partial L}{\partial b}$
16: end for
4 Single-layer Perceptron

Figure 3: You will implement a single perceptron that produces accuracy near 90% on testing data.

You will implement a single-layer perceptron with soft-max cross-entropy using stochastic gradient descent method. We provide main_slp where you will implement TrainSLP. Unlike the single-layer linear perceptron, it has a soft-max layer that approximates a max function by clamping the output to $[0, 1]$ range as shown in Figure 3(a).

\[\text{function } \left[L, dLdy \right] = \text{Loss_cross_entropy_softmax}(x, y) \]
\[\text{Input: } x \in \mathbb{R}^m \text{ is the input to the soft-max, and } y \in \mathbb{R}^m \text{ is the ground truth label.} \]
\[\text{Output: } L \in \mathbb{R} \text{ is the loss, and } dLdy \text{ is the loss derivative with respect to } x. \]
\[\text{Description: } \text{Loss_cross_entropy_softmax} \text{ measure cross-entropy between two distributions } L = \sum_{i}^m y_i \log \tilde{y}_i \text{ where } \tilde{y}_i \text{ is the soft-max output that approximates the max operation by clamping } x \text{ to } [0, 1] \text{ range:} \]
\[\tilde{y}_i = \frac{e^{x_i}}{\sum_{i} e^{x_i}}, \]
where \(x_i \) is the \(i \)th element of \(x \).

\[\text{function } \left[w, b \right] = \text{TrainSLP}(\text{mini_batch_x}, \text{mini_batch_y}) \]
\[\text{Output: } w \in \mathbb{R}^{10 \times 196} \text{ and } b \in \mathbb{R}^{10 \times 1} \text{ are the trained weights and bias of a single-layer perceptron.} \]
\[\text{Description: } \text{You will use the following functions to train a single-layer perceptron using a stochastic gradient descent method: FC, FC_backward, Loss_cross_entropy_softmax} \]

Through training, you are expected to see reduction of loss as shown in Figure 3(b). As a result of training, the network should produce more than 85% of accuracy on the testing data (Figure 3(c)).
5 Multi-layer Perceptron

Figure 4: You will implement a multi-layer perceptron that produces accuracy more than 90% on testing data.

You will implement a multi-layer perceptron with a single hidden layer using a stochastic gradient descent method. We provide `main_mlp`. The hidden layer is composed of 30 units as shown in Figure 4(a).

function \[y \] = ReLu(x)
\textbf{Input:} x is a general tensor, matrix, and vector.
\textbf{Output:} y is the output of the Rectified Linear Unit (ReLu) with the same input size.
\textbf{Description:} ReLu is an activation unit \((y_i = \max(0,x_i))\). In some case, it is possible to use a Leaky ReLu \((y_i = \max(\epsilon x_i, x_i))\) where \(\epsilon = 0.01\).

function \[dLdx \] = ReLu_backward(dLdy, x, y)
\textbf{Input:} dLdy \(\in \mathbb{R}^{1 \times z}\) is the loss derivative with respect to the output \(y \in \mathbb{R}^z\) where \(z\) is the size of input (it can be tensor, matrix, and vector).
\textbf{Output:} dLdx \(\in \mathbb{R}^{1 \times z}\) is the loss derivative with respect to the input \(x\).

function \[[w1, b1, w2, b2] = TrainMLP(mini_batch_x, mini_batch_y) \]
\textbf{Output:} \(w1 \in \mathbb{R}^{30 \times 196}, b1 \in \mathbb{R}^{30 \times 1}, w2 \in \mathbb{R}^{10 \times 30}, b2 \in \mathbb{R}^{10 \times 1}\) are the trained weights and biases of a multi-layer perceptron.
\textbf{Description:} You will use the following functions to train a multi-layer perceptron using a stochastic gradient descent method: FC, FC_backward, ReLu, ReLu_backward, Loss_cross_entropy_softmax. As a result of training, the network should produce more than 90% of accuracy on the testing data (Figure 4(b)).
6 Convolutional Neural Network

Figure 5: You will implement a convolutional neural network that produces accuracy more than 92% on testing data.

You will implement a convolutional neural network (CNN) using a stochastic gradient descent method. We provide main_cnn. As shown in Figure 4(a), the network is composed of: a single channel input \((14 \times 14 \times 1)\) → Conv layer \((3 \times 3\) convolution with 3 channel output and stride 1) \(\rightarrow\) ReLu layer \(\rightarrow\) Max-pooling layer \((2 \times 2\) with stride 2) \(\rightarrow\) Flattening layer \((147\) units) \(\rightarrow\) FC layer \((10\) units) \(\rightarrow\) Soft-max.

\[
\text{function } [y] = \text{Conv}(x, w_{\text{conv}}, b_{\text{conv}}) \\
\text{Input: } x \in \mathbb{R}^{H \times W \times C_1} \text{ is an input to the convolutional operation, } w_{\text{conv}} \in \mathbb{R}^{H \times W \times C_1 \times C_2} \text{ and } b_{\text{conv}} \in \mathbb{R}^{C_2} \text{ are weights and bias of the convolutional operation.} \\
\text{Output: } y \in \mathbb{R}^{H \times W \times C_2} \text{ is the output of the convolutional operation. Note that to get the same size with the input, you may pad zero at the boundary of the input image.} \\
\text{Description:} \text{ This convolutional operation can be simplified using MATLAB built-in function } \text{im2col}.
\]

\[
\text{function } [dLdw, dLdb] = \text{Conv_backward}(dLdy, x, w_{\text{conv}}, b_{\text{conv}}, y) \\
\text{Input: } dLdy \text{ is the loss derivative with respect to } y. \\
\text{Output: } dLdw \text{ and } dLdb \text{ are the loss derivatives with respect to convolutional weights and bias } w \text{ and } b, \text{ respectively.} \\
\text{Description:} \text{ This convolutional operation can be simplified using MATLAB built-in function } \text{im2col}. \text{ Note that for the single convolutional layer, } \frac{\partial L}{\partial x} \text{ is not needed.}
\]

\[
\text{function } [y] = \text{Pool2x2}(x) \\
\text{Input: } x \in \mathbb{R}^{H \times W \times C} \text{ is a general tensor and matrix.} \\
\text{Output: } y \in \mathbb{R}^{\frac{H}{2} \times \frac{W}{2} \times C} \text{ is the output of the } 2 \times 2 \text{ max-pooling operation with stride 2.}
\]
function \([dLdx] = \text{Pool2x2_backward}(dLdy, x, y)\)
Input: \(dLdy\) is the loss derivative with respect to the output \(y\).
Output: \(dLdx\) is the loss derivative with respect to the input \(x\).

function \([y] = \text{Flattening}(x)\)
Input: \(x \in \mathbb{R}^{H \times W \times C}\) is a tensor.
Output: \(y \in \mathbb{R}^{HWC}\) is the vectorized tensor (column major).

function \([dLdx] = \text{Flattening_backward}(dLdy, x, y)\)
Input: \(dLdy\) is the loss derivative with respect to the output \(y\).
Output: \(dLdx\) is the loss derivative with respect to the input \(x\).

function \([w_{\text{conv}}, b_{\text{conv}}, w_{\text{fc}}, b_{\text{fc}}] = \text{TrainCNN}(\text{mini_batch_x}, \text{mini_batch_y})\)
Output: \(w_{\text{conv}} \in \mathbb{R}^{3 \times 3 \times 1 \times 3}, b_{\text{conv}} \in \mathbb{R}^3, w_{\text{fc}} \in \mathbb{R}^{10 \times 147}, b_{\text{fc}} \in \mathbb{R}^{147}\) are the trained weights and biases of the CNN.
Description: You will use the following functions to train a convolutional neural network using a stochastic gradient descent method: \text{Conv}, \text{Conv_backward}, \text{Pool2x2}, \text{Pool2x2_backward}, \text{Flattening}, \text{Flattening_backward}, \text{FC}, \text{FC_backward}, \text{ReLU}, \text{ReLU_backward}, \text{Loss_cross_entropy_softmax}. As a result of training, the network should produce more than 92% of accuracy on the testing data (Figure 5(b)).