
IET Information Security
Research Article
Hijacking the Vuze BitTorrent network:
all your hop are belong to us
IET Inf. Secur., 2015, Vol. 9, Iss. 4, pp. 203–208
& The Institution of Engineering and Technology 2015
ISSN 1751-8709
Received on 11th July 2014
Accepted on 24th October 2014
doi: 10.1049/iet-ifs.2014.0337
www.ietdl.org
Eric Chan-Tin1 ✉, Victor Heorhiadi2, Nicholas Hopper3, Yongdae Kim4

1Computer Science Department, Oklahoma State University, Stillwater, OK, USA
2Department of Computer Science, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
3Computer Science & Engineering Department, University of Minnesota, Minneapolis, MN, USA
4Department of Electrical Engineering, KAIST, Daejeon, Republic of Korea

✉ E-mail: chantin@cs.okstate.edu

Abstract: Vuze is a popular file-sharing client. When looking for content, Vuze selects from its list of neighbours, a set of 20
nodes to be contacted; the selection is performed such that the neighbours closest to the content in terms of Vuze ID are
contacted first. To improve efficiency of its searches, Vuze implements a network coordinate system: from the set of 20 to-
be-contacted nodes, queries are sent to the closest nodes in terms of network distance, which is calculated by the
difference in network coordinates. However, network coordinate systems are inherently insecure and a malicious peer
can lie about its coordinate to appear closest to every peer in the network. This allows the malicious peer to bias next-
hop choices for victim peers such that queries will be sent to the attacker, thus hijacking every search query. In our
experiments, almost 20% of the search queries are hijacked; the cost of performing this attack is minimal – less than
$112/month.
1 Introduction

Network coordinate systems [1, 2] assign coordinates to every node
in the network, which allows an accurate prediction of network
latency between any pair of nodes. Network coordinates have been
used in various applications, such as in online game match-making
[3], finding closest nodes to download content from in a
file-sharing network [4], reducing inter-ISP communications [5],
detecting Sybil [6] attackers [7], improving the Tor [8] router
selection algorithm [9], reducing state in Internet routers [10] and
conducting Byzantine leader elections [11]. Network coordinate
systems have been shown to be reasonably accurate in estimating
network latencies [1, 12].

Vuze [4] is a popular, open-source, BitTorrent [13] client, with
over two million concurrent users. It includes an implementation
of Vivaldi [1], a popular and widely-cited network coordinate
system. Vivaldi is turned on by default and is used in the
‘distributed’ portion of Vuze. When searching for content in Vuze,
a user contacts both central servers and its distributed hash table
(DHT) for peer-to-peer downloads. The Vuze DHT is based on the
Kademlia DHT [14]. Vuze uses the Vivaldi network coordinates
in deciding which peers to contact next when searching for
content. A searching peer will first contact peers that are closer to
itself, in terms of network distance, to obtain other peers that are
closer, in ID space, to the content location. A complete description
of Vuze, its DHT and how network coordinates are used in
routing decisions is given in Section 2.

Vuze is an example of an application using a network coordinate
system to improve its performance. The main contribution of this
paper is to show how such an application can be attacked. Instead
of attacking the actual application, the network coordinate system
is targeted so that the eventual outcome of the ‘indirect’ attack is
similar to directly attacking the application. However, the cost of
targeting the network coordinate system is much cheaper than
targeting the application. More specifically, the Vuze DHT routing
uses network coordinates to contact closer (in terms of network
coordinate distance) next-hop peers in an attempt to locate the
content faster. Vuze allows five parallel but not independent
queries for each search. If a malicious peer is contacted on the first
hop, it can advertise that it knows of other (malicious) peers which
hold the content being searched for. Thus, if a malicious peer is
contacted on the first hop, this search is considered to be hijacked
as the malicious peer can return other malicious peers close to the
target, and the attacker can eventually return bogus results. The
bogus results cause a user to waste time performing searches.
Moreover, research applications [15, 16] relying on the correctness
of the Vuze DHT will suffer from such malfunction. Although
attacks [6, 17–20] against distributed hash tables (DHT) [14, 21,
22] to try to hijack searches have been proposed before, this paper
shows that the network coordinate system can be exploited such
that that searches are hijacked more efficiently. Only 32 nodes are
required for our attack to be successful, regardless of the total
number of nodes in the Vuze network. Although [20] is effective
with a fixed number of malicious peers, it requires 12.5 MB/s of
download bandwidth whereas our attack requires only 700 KB/s of
download bandwidth, more than one order of magnitude cheaper.
An estimate of the cost to run the complete attack is less than
$112 per month.

Although it has been shown that existing network coordinate
systems are insecure [23–25], all the attacks were on the actual
network coordinate systems in an attempt to disrupt the network
latency estimations. The proposed attack is on disrupting an
application because it is using an insecure network coordinate
system.

Our attack on the network coordinate system is to appear closer to
all the peers in the network than anybody else. Since a Vuze node
picks closer (in terms of network distance, estimated from the
network coordinates) peers to send its search queries, if an
adversary is very close to every peer, then it will most likely
receive a majority of search queries. The goal of the attacker is to
be among the first peers contacted during a search query. Once the
attacker becomes the first hop, this search is considered to be
hijacked. The attacker’s plan is thus to (1) lie about its network
coordinates such that it appears very close to every peer on the
network, (2) remain online so that it becomes the first hop on
every search query and (3) return other malicious peers whenever
it is queried. A detailed description of our attack is in Section 3.

An attacker, controlling 10% of the peers in the network and
trying to directly attack the DHT routing of Vuze, can capture at
most 2% of all first-hop queries. We show that an attacker
203

Fig. 1 Vuze routing table

Numbers indicate the ID bit match. Grey nodes indicate buckets important to the attack described in Section 3. Black node indicates the bucket where nodes with only first-bit ID match
would reside. Right side of routing table keeps expanding if nodes with more prefix bit matches are found
performing a straightforward implementation of our attack can
capture almost 20% of queries. However, based on a heuristic
analysis, we expect our attack to capture a higher fraction of
queries. The difference is attributed to the instability of the
network coordinates in Vuze. In Section 4.5, we show how to
improve the attack to match the analytical expectations. We expect
to obtain over 50% hijack rate if the experiments were run for a
longer period of time. Section 4 provides more information about
our experimental results.
2 Background

2.1 Network coordinate systems

Every peer in a network coordinate system [1, 2, 26] computes its
network coordinates, in such a way that the difference in network
coordinates between two peers approximates the actual network
latency between these two peers. Vivaldi [1], one of the first
decentralised peer-to-peer network coordinate systems, has been
implemented in many applications [4, 27]. The implementation of
Vivaldi in Vuze [4] is similar to the original Vivaldi paper [1].

2.2 Vuze

Vuze is a popular BitTorrent client with over two million concurrent
users, which supports additional functionality, such as distributed
tracking of torrent files. This is achieved through the use of a
distributed database, which in turn is an implementation of the
Kademlia distributed hash table (DHT) [14]. In the original
BitTorrent specifications, in order to start a download, the user
needs to obtain a torrent file that contains all the necessary
information for the download process. This includes: (i) IP address
of one or more trackers, to obtain information about the swarm
and other peers (ii) information about files, such as number and
size of pieces (iii) info-hash, a hash of the file contents to verify
that the download was successful. Distributed tracking, on the
other hand, allows Vuze clients to start a download without a
torrent file. This is a usability feature as well as a backup option to
locate extra peers in case the tracker is unreachable. To participate
in distributed tracking, Vuze clients register torrents in the DHT
by storing their IP and port under a key. The key is a 160-bit
identifier obtained by computing the SHA-1 hash of the torrent
info-hash.

2.2.1 Routing table: Vuze uses a modified version of the
Kademlia DHT, which differs from the original in several ways,
some of which include Vivaldi coordinate extension, caching
204
along paths and encrypted data transfer. The reader is referred to
[4] for more details on how the routing table works. Each Vuze
client has an 160-bit unique ID, which is simply a SHA-1 hash of
the IP:port pair. The Vuze ID is the main identifier for any node
and is used to store nodes in the routing table. The routing table is
a tree structure that consists of buckets, each bucket corresponds to
a length of Vuze ID prefix matches and contains up to 20 nodes
(see Fig. 1). ‘Closeness’ (in terms of Vuze ID) of any two nodes
in the network or in the routing table is determined by XOR
distance. XOR distance is calculated by performing a bitwise
exclusive OR operation on two given Vuze IDs, and treating the
result as an integer.

A Vuze peer continuously discovers new nodes and updates its
state by sending various types of messages to known peers. The
Vuze message types we are interested in are: ping, findNode, and
findValue. The findNode and findValue message types are used by
Vuze to maintain its routing table and for finding content (Vuze
ID key) in the DHT. Upon receiving a reply to any of these
messages, the node is added to the appropriate bucket in the
routing table and marked alive. If the bucket is full, the node is
added to the replacement list. The replacement list is another
extension to the routing table that allows Vuze to quickly replace
dead nodes in the bucket. Each bucket has a separate replacement
list containing up to 5 alive nodes. Whenever a node in the bucket
fails to respond to a message several consecutive times, it is
marked as dead and another node from the replacement list,
chosen randomly, is put in its place. Nodes discovered as a result
of replies to findNode and findValue messages are marked as
known, but not alive, and a ping message will be sent to them in
order to establish whether they are alive.
2.2.2 Routing: Lookups in Vuze are parallel and iterative; they
work similar to the lookup algorithm in [28]. Here are the exact
steps of performing a DHT lookup for target key T in Vuze

1. Choose 20 nodes closest to T in terms of XOR distance in the
Vuze ID space from the appropriate bucket in the routing table
and add them to the processing list.
2. Sort first 20 nodes in the processing list by XOR distance in the
Vuze ID space to key T.
3. Sort first 10 nodes in the processing list by Vivaldi distance in the
network coordinate space. This is done to improve the search
lookups, as replies are received faster, because of the smaller
network distance which suggests a smaller round-trip time.
4. Send queries to the top 5 nodes.
5. When reply is received, add discovered nodes (usually 10 per
reply) to processing list, and perform sorting operations as
described in steps 2 and 3
IET Inf. Secur., 2015, Vol. 9, Iss. 4, pp. 203–208
& The Institution of Engineering and Technology 2015

Fig. 2 Vuze lookup process

First 10 contacts are sorted by Vivaldi distance in the network coordinate space to the
querier
6. If there are fewer than 5 outstanding queries, send another query.
7. Go to step 5, unless target is reached, no new nodes were
discovered, or a timeout occurs.

Fig. 2 shows how peers are contacted. Regular Kademlia lookup
would contact node G, as it is closer in terms of Vuze ID distance
to node J. However, since network coordinates are used, node C is
contacted first, as C is closer in terms of network coordinate
distance to the querier than node G is.
3 Attack on Vuze

3.1 Overview

Our attack is a practical application of the Closest node attack
described in [25]. The objective of the attack is to capture the
DHT lookups performed by other Vuze clients. With successful
distribution of colluding attacker nodes in the Vuze ID space, it is
possible to capture a majority of lookups, giving us complete
control of the network. To achieve this, we exploit the lookup
mechanism in Vuze, in particular the ordering of nodes according
to the network coordinate distance when choosing the next hop. In
our attack, the attacker claims to be the closest node to the victim
in terms of network coordinate distance, which causes the victim
to send a query for each search lookup to the attacker. It is
important to note that our attack is significantly different from
previous attacks on DHTs, such as Sybil attacks [6] or Eclipse
attacks [17]. This is because of the fact that we do not directly
target the routing layer of the DHT, but rather target the network
coordinate system, which indirectly influences the routing of
lookups. Although the same outcome is obtained, the means and
cost of achieving that outcome is very different.

3.2 Execution

Let us describe a step by step execution of the attack. First, it is
important for the attacker to become a member of the victim’s
routing table. In order to do so, the attacker A sends a ping
message to the victim V to indicate that A is a node in the
network. This achieves two important goals: V adds A to its
routing table (or replacement list) and tells A its current network
coordinates CV in the pingReply message. We know we were
successful in penetrating V’s routing table when V sends a ping
message to the attacker. This happens shortly after V adds A to the
routing table in order to verify that A is still alive. If the attacker
did not receive such message, he simply needs to continue sending
ping messages to the victim, since the attacker might have become
a member of the replacement list and needs to remind V that he is
still alive in the network. This leads us to the second step of the
attack: after receiving a ping message, A replies with falsified
coordinates CA = CV + δ, where δ is a small value, piggybacked on
IET Inf. Secur., 2015, Vol. 9, Iss. 4, pp. 203–208
& The Institution of Engineering and Technology 2015
top of pingReply message to V, making it appear as if A was
indeed close to V. This lie allows the attacker node A to become
the closest peer to V. Now the attacker must continue to perpetuate
the lie. In order to do so, the attacker periodically sends any one
of the messages discussed in Section 2.2.1 to obtain an up-to-date
knowledge of the victim’s network coordinate position. Similarly,
when A receives any such messages from V, he must respond with
newly forged coordinates CA =CV + δ, where CV is the last known
position of V. To hijack the search queries, when the attacker
receives a query, it will reply with other malicious peers closer to
the target key T. The attacker might not be able to return T as the
Vuze ID is a hash of the IP address and port number. The attacker
can return bogus results, and other applications [15, 16] relying on
the correctness of the Vuze DHT will also suffer.

To summarise, below is what the attacker needs to do in order to
hijack search queries for the Vuze network:

1. Send ping messages to each victim to get into their routing table.
2. Once in a victim’s routing table, keep sending ping messages to
get the latest network coordinate of that victim. This allows the
attacker to lie in a more effective manner so that it will always be
the closest node to each victim.
3. Remain active and participate in the Vuze network.
4. When receiving a query, return other malicious peers closer to the
target key T.

3.3 Analysis

Our attack allows the attacker to capture the lookups in Vuze DHT at
a low cost. The execution of the attack does not require a large
number of Sybil identities. The only requirement is that attacker
IDs are uniformly distributed across the 160-bit ID space, to cover
all the buckets in the victim’s routing table. This is easy to
achieve, since changing the TCP port of the attacker node will
result in a new Vuze ID. Our goal is to place the attacker nodes
into the 8 buckets marked in Fig. 1, since 50% of the lookups
performed are for keys that have no first-bit prefix match with the
ID of the searcher. Such placement will allow the attacker to
become the first hop for 50% of the lookups, giving us control of
a large portion of the network. Note that the other 4 parallel
queries have little effect on this attack, since the attacker can
always provide more attacker nodes close to target key T in his
reply, rendering other queries’ responses unappealing. Owing to
the way the Vuze search lookup works (see Section 2.2.2), the
attacker actually needs to have two entries in each top-level
bucket, since each bucket contains 20 Vuze nodes and Vuze sorts
the first 10 nodes by Vivaldi distance. For example, for bucket
0000, the attacker needs to create two Vuze IDs 00001… and
00000…. This ensures that the attacker can hijack all the search
queries in that bucket. With 8 top-level buckets, the attacker needs
to create 16 Vuze IDs. However, it needs to double that number to
also hijack the other half of the Vuze network (the victims with
Vuze IDs with different first bit: 1…). A total of 32 attacker nodes
with carefully crafted Vuze IDs is required to hijack over 50% of
the search queries for the whole Vuze network.
4 Experimental results

4.1 Experimental setup

We downloaded the source code from the Vuze [4] website. We only
made minor modifications to the code to make sure that our
experiments are as close to the regular users’ version as possible.
Thus, our experiments are applicable to the real Vuze network.
The modifications include extra logging and extra code for our
attack. All our experiments were performed on PlanetLab [29].
Although all the Vuze clients were connected to the real Vuze
network, our malicious nodes only attacked the victim PlanetLab
nodes. To simulate search lookups, every 30 minutes, each victim
Vuze node performs a search lookup for a randomly generated
205

Fig. 3 Percentage of hijacked search queries for both the large and small
experiments obtained by analytical measurement, baseline, and our attack

Standard deviation is also shown
target key. The hijacking succeeds if one of the five first-hop queries
for each key is sent to an attacker node.
4.2 Analytical estimates

The success of our attack depends on the malicious nodes being
added to the victims’ routing tables. This is not trivial as a
victim’s routing table, especially the top-level buckets, are usually
full. The malicious peer has to be added to the replacement list of
each bucket first, and then when an entry in the bucket is
considered dead (does not respond to messages), then a random
entry in the replacement list is chosen to replace the dead entry.
Since this is completely random, the only way to get into victims’
routing tables is to keep sending ping messages to them and
hoping to be randomly added at some point. This takes time, but
the attacker can create 32 malicious peers participating in the Vuze
network for months and eventually, all 32 nodes will be added to
every victim’s routing table. As a tradeoff for time, the attacker
can also create more malicious nodes at the beginning, to increase
the chances of getting added to the routing table.

To determine the expected percentage of hijacked search lookups
for a Vuze client V, we need to know the number of attackers added
Fig. 4 Coordinates of three PlanetLab Vuze nodes over time

Graphs show that the coordinates vary over time, making it harder for the attacker to be the c

206
to V’s top-level routing table. If the number is, say, 4, meaning that
the top-level buckets contain four malicious peers, then the attacker
will be able to hijack (4/16) × 100 = 25% of top-level bucket queries.

4.3 Experimental baseline

To determine the efficiency of our proposed attack, we ran an
experiment on PlanetLab with no manipulation of network
coordinates. This would be an attack similar to the Sybil attack
[6], where many malicious peers keep sending ping messages to
the victims in an attempt to be added to their routing table. We
consider this as our baseline. The only difference between this
experiment and our attack experiment is that in the attack
experiment, malicious peers lie about their coordinates when
responding to requests from the victims.

4.4 Results

We ran both the baseline and attack experiments 3 times on
PlanetLab. Each experiment was run for at least five days. We also
had two sizes of experiments: a ‘large’ one which consisted of
rougly 1,000 nodes, and a ‘small’ one consisting of roughly 500
nodes. All the nodes were connected to the real Vuze network but
only the PlanetLab nodes were the victims. For each experiment,
about 10% of the network was malicious, and the rest of the
network were victims.

Fig. 3 shows the results of our experiments. For the small
experiment, the baseline was able to capture 0.83% of search
queries whereas our attack was able to hijack 10.7% of search
queries. This is lower than our theoretical analysis (see Section 4.2
and Section 3.3) of 15.6% of search queries hijacked. Our
theoretical analysis is very conservative as it assumes that every
top-level bucket is full and the Vuze IDs in each bucket evenly
distributed. For the large experiment, the baseline hijacked 1.27%
of search queries and our attack hijacked 18.8% of search queries.
Again, our attack result is lower than our analytical analysis of
37.5% of captured search queries. Our theoretical analysis depends
on the number of attackers that were able to be added to victims’
routing tables. On average, 2.5 out of the 160 routing table entries
for each victim pointed to a malicious node for the small
losest node in terms of Vivaldi distance all the time

IET Inf. Secur., 2015, Vol. 9, Iss. 4, pp. 203–208
& The Institution of Engineering and Technology 2015

experiment. This number increased to 6 for the large experiment,
which explains the higher percentage of hijacked search queries.

The success of our attack depends on (1) the ability to get into
victim’s top-level buckets, and (2) lying to victims about the
network coordinates such that the attacker is the closest peer to
each victim. We reran the small experiment but with 20% of
attackers instead of 10%. As expected, the average number of
malicious entries in the top-level routing table of victims rose to
4.3, which allows the attacker to hijack 16.5% of search queries,
when compared with a theoretical hijack rate of (4.3/16) × 100 =
27%.

4.5 Better attack results

The straightforward implemention of our attack is less effective than
the expected theoretical values. This is because our attacker is not the
closest peer to each victim; thus the first-hop search queries are sent
to other peers. The reason for this can be depicted in Fig. 4. The
figure shows the coordinates of three victim peers over time. Since
it is hard to picture a 3-dimensional coordinate with height, the
figure shows the distance to the origin for each peer. The figure
shows that for all three peers, their coordinates change drastically
over time. Thus, the coordinate reported by a malicious node at
time t to become the closest node to a victim V, is no longer the
best coordinate at time t′ (t′≠ t). The attacker needs to keep lying
about its coordinate. The frequency of possible lies depends on
how often the victim contacts the attacker. Since this is beyond
our control, there are gaps when the attacker node is no longer the
closest peer to the victim. This explains why our attack is less
effective than expected.

In an attempt to improve the effectiveness of our attack, we
implemented a ‘smarter’ version of our attack. Instead of the
attacker nodes reporting themselves to be the closest node to the
victims all the time, they try to position the victim nodes such that
they will be the closest nodes for a long period of time. When an
attacker node receives a ping message from a victim node, it
compares the first bit of its Vuze ID to the first bit of the victim’s
Vuze ID. If the first bits are different, then that means the attacker
node is in the top-level buckets of that victim’s routing table. Then
the attacker replies with a pingReply message with its coordinate
being close to the victim’s coordinate. This is similar to the
original attack. However if the first bits are the same, then the
attacker reports a coordinate far away from the victim in an
attempt to isolate the victim node. In that way, when an attacker
node in the victim’s top-level routing buckets is contacted next,
that attacker node will be the closest node to the victim for a long
time. This is a version of the repulsion/isolation attack [24]. The
repulsion/isolation attack attempts to isolates each victim node to a
network coordinate, far from all other nodes. We ran 3
experiments for three days each; Fig. 5 shows the averaged result.
The percentage of hijacked queries is 11.5% for our attack,
compared with 10.25% for the theoretical result (average of 1.64
attacker nodes in top-level buckets of victims). This variant of the
Fig. 5 Percentage of hijacked search queries obtained by analytical
measurement and our ‘smart’ attack
Standard deviation is also shown

IET Inf. Secur., 2015, Vol. 9, Iss. 4, pp. 203–208
& The Institution of Engineering and Technology 2015
original attack is thus more effective, as the success rate exceeds
the expected success rate. We note that our expected success rate
is very conservative as it assumes the top-level routing table is full
and all the Vuze IDs are evenly distributed.
4.6 Cost of attack

We emphasise that our attack is very efficient. Each attacker only
needs to send one ping message every 2 hours to try to get into
each victim’s routing table. Each ping request is 42 bytes and each
ping reply is 80 bytes. With a two million nodes Vuze network,
that is about 12 KB per second uplink and about 22 KB per
second downlink. Since we need 32 attackers, that translates to
371 KB per second of uploaded bandwidth and 711 KB/s of
download bandwidth. This is much cheaper than the 100 Mb/s
(12.5 MB/s) required for [20]. The cost to maintain the routing
table is also fairly cheap. Each Vuze attacker instance uses around
55 MB of memory and <3% of one core of a quad-core 2.67 Ghz
Intel Xeon W3550 processor. If our attacker were to use Amazon
EC2 [30] to conduct the attack, this would cost less than $112 per
month. Despite its low cost, our attack has serious implications to
those using Vuze for file sharing. As we mentioned above, Vuze
uses DHT lookups to locate a suitable torrent file to start a
download. However, if a user is a victim of our attack, his or her
lookups can be redirected to another malicious node, which will
serve a bogus torrent file causing the user to perform a futile
download. In addition, any research applications [15, 16] relying
on correctness of the Vuze DHT might suffer from such malfunction.

The attack described is conservative; the attacker can perform
additional work to increase the success rate of the attack, such as
running more attacker nodes.
5 Conclusion

Vuze is a popular BitTorrent file-sharing client. It uses a network
coordinate system to improve the efficiency of its search lookups.
However, the network coordinate system implemented is insecure
and can be easily attacked. By becoming the closest peer, in terms
of network coordinate distance, to every victim node in the Vuze
network, an attacker can theoretically hijack every single search
query. Experimentally, we were able to hijack almost 20% of all
search queries. The reason for our lower success rate, when
compared with the theoretical hijack rate, is because of the
instability of the victims’ network coordinates. This difference is
fixed by using a ‘smarter’ version of our attack. We expect over
50% hijack rate, given enough time for the malicious nodes to be
added to the victims’ routing tables. Our attack is directly
applicable to the real Vuze network and can be deployed any time.
Moreover, our attack is very cheap to launch, costing less than
$112 per month.

To mitigate our attack, Vuze should not be using an insecure
network coordinate system in an attempt to improve its
performance, as the network coordinate system actually makes
Vuze more vulnerable to easier and cheaper types of attacks.
However, network coordinate systems are useful and can decrease
the overall latency of the distributed system. Alternatively, Vuze
could implement a secure network coordinate system, such as [31,
32]. Vuze could also modify its lookup algorithm so that one of
the five parallel queries does not use Vivaldi distance. Although a
fix is not hard to implement, the goal of this paper is to show that
a cross-layer attack that is more efficient than previously known
attacks is possible in Vuze.
6 References

1 Dabek, F., Cox, R., Kaashoek, F., Morris, R.: ‘Vivaldi: a decentralized network
coordinate system’. SIGCOMM ’mt04: Proc. of the 2004 Conf. on Applications,
Technologies, Architectures, and Protocols for Computer Communications,
ACM, New York, NY, USA, 2004, pp. 15–26
207

2 Eugene Ng, T.S., Zhang, H.: ‘Predicting internet network distance with
coordinates-based approaches’. IEEE INFOCOM, 2001, pp. 170–179

3 Agarwal, S., Lorch, J.R.: ‘Matchmaking for online games and other
latency-sensitive P2P systems’. SIGCOMM ’mt09: Proc. of the ACM
SIGCOMM 2009 Conf. on Data Communication, ACM, New York, NY, USA,
2009, pp. 315–326

4 Vuze. http://azureus.sourceforge.net
5 Choffnes, D.R., Bustamante, F.E.: ‘Taming the torrent: a practical approach to

reducing cross-isp traffic in peer-to-peer systems’, SIGCOMM Comput.
Commun. Rev., 2008, 38, (4), pp. 363–374

6 Douceur, J.R.: ‘The sybil attack’. IPTPS ’mt01: Revised Papers from the First Int.
Workshop on Peer-to-Peer Systems, Springer-Verlag, London, UK, 2002,
pp. 251–260

7 Bazzi, R.A., Konjevod, G.: ‘On the establishment of distinct identities in overlay
networks’. PODC’05: Proc. of the 24th Annual ACM Symp. on Principles of
Distributed Computing, ACM, New York, NY, USA, 2005, pp. 312–320

8 Tor. http://www.torproject.org
9 Sherr, M., Blaze, M., Loo, B.T.: ‘Scalable link-based relay selection for

anonymous routing’. PETS ’mt09: Proc. of the Ninth Int. Symp. on Privacy
Enhancing Technologies, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 73–93

10 Abraham, I., Malkhi, D.: ‘Compact routing on euclidian metrics’. PODC ‘04: Proc.
of the 23rd Annual ACM Symp. on Principles of Distributed Computing, ACM,
New York, NY, USA, 2004, pp. 141–149

11 Cowling, J., Ports, D., Liskov, B., Popa, R.A., Gaikwad, A.: ‘Census:
location-aware membership management for large-scale distributed systems’.
Proc. of USENIX Annual Technical Conf., 2009

12 Ledlie, J., Gardner, P., Seltzer, M.: ‘Network coordinates in the wild’. Proc. of
USENIX Symp. on Networked Systems Design and Implementation (NSDI)07,
2007

13 BitTorrent. http://bittorrent.com
14 Maymounkov, P., Mazı́eres, D.: ‘Kademlia: A peer-to-peer information system

based on the xor metric’. IPTPS, 2001
15 Geambasu, R., Kohno, T., Levy, A., Levy, H.M.: ‘Vanish: Increasing data privacy

with self-destructing data’. Proc. of the 18th USENIX Security Symp., 2009
16 Geambasu, R., Levy, A., Kohno, T., Krishnamurthy, A., Levy, H.M.: ‘Comet: An

active distributed key/value store’. Proc. of OSDI, 2010
17 Singh, A., Castro, M., Druschel, P., Rowstron, A.: ‘Defending against eclipse

attacks on overlay networks’. EW11, 2004
18 Sit, E., Morris, R.: ‘Security considerations for peer-to-peer distributed hash

tables’. IPTPS, 2002
208
19 Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.S.: ‘Secure routing
for structured peer-to-peer overlay networks’. OSDI, 2002

20 Wang, P., Tyra, J., Chan-Tin, E., et al.: ‘Attacking the kad network’. Proc. of the
Fourth Int. Conf. on Security and Privacy in Communication Netowrks,
SecureComm ‘08, ACM, New York, NY, USA, 2008, pp. 23:1–23:10

21 Stoica, I., Morris, R., Liben-Nowell, D., et al.: ‘Chord: A scalable peer-to-peer
lookup service for internet applications’. ACM Special Interest Group on Data
Communication (SIGCOMM), 2001

22 Rowstron, A.I.T., Druschel, P.: ‘Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems’. Middleware’mt01: Proc. of the IFIP/
ACM Int. Conf. on Distributed Systems Platforms Heidelberg, Springer-Verlag,
London, UK, 2001, pp. 329–350

23 Kaafar, M.A., Mathy, L., Turletti, T., Dabbous, W.: ‘Real attacks on virtual
networks: Vivaldi out of tune’. LSAD ’mt06: Proc. of the 2006 SIGCOMM
Workshop on Large-scale Attack Defense, ACM, New York, NY, USA, 2006,
pp. 139–146

24 Zage, D.J., Nita-Rotaru, C.: ‘On the accuracy of decentralized virtual coordinate
systems in adversarial networks’. CCS’mt07: Proc. of the 14th ACM Conf. on
Computer and Communications Security, ACM, New York, NY, USA, 2007,
pp. 214–224

25 Chan-Tin, E., Feldman, D., Kim, Y., Hopper, N.: ‘The frog-boiling attack:
limitations of anomaly detection for secure network coordinates’. SecureComm,
2009

26 Eugene Ng, T.S., Zhang, H.: ‘A network positioning system for the internet’.
ATEC’mt04: Proc. of the Annual Conf. on USENIX Annual Technical Conf.,
USENIX Association, Berkeley, CA, USA, 2004, p. 11

27 Ledlie, J., Pietzuch, P., Seltzer, M.: ‘Stable and accurate network coordinates’.
ICDCS’mt06: Proc. of the 26th IEEE Int. Conf. on Distributed Computing
Systems, IEEE Computer Society, Washington, DC, USA, 2006, p. 74

28 Kaune, S., Lauinger, T., Kovacevic, A., Pussep, K.: ‘Embracing the peer next door:
Proximity in kademlia’. Proc. of the 2008 Eighth Int. Conf. on Peer-to-Peer
Computing, P2P ’mt08, IEEE Computer Society, 2008, pp. 343–350

29 PlanetLab. http://planet-lab.org
30 Amazon EC2. http://aws.amazon.com/
31 Chan-Tin, E., Hopper, N.: ‘Accurate and provably secure latency estimation with

treeple’. Network and Distributed System Security (NDSS) Symp., 2011
32 Chan-Tin, E., Hopper, N.: ‘KoNKS: Konsensus-style network koordinate system’

(ACM ASIACCS, 2012)
IET Inf. Secur., 2015, Vol. 9, Iss. 4, pp. 203–208
& The Institution of Engineering and Technology 2015

