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Abstract—Social network-based Sybil defenses exploit the al-
gorithmic properties of social graphs to infer the extent to which
an arbitrary node in such a graph should be trusted. However,
these systems do not consider the different amounts of trust
represented by different graphs, and different levels of trust
between nodes, though trust is being a crucial requirement in
these systems. For instance, co-authors in an academic collabo-
ration graph are trusted in a different manner than social friends.
Furthermore, some social friends are more trusted than others.
However, previous designs for social network-based Sybil defenses
have not considered the inherent trust properties of the graphs
they use. In this paper we introduce several designs to tune
the performance of Sybil defenses by accounting for differential
trust in social graphs and modeling these trust values by biasing
random walks performed on these graphs. Surprisingly, we find
that the cost function, the required length of random walks to
accept all honest nodes with overwhelming probability, is much
greater in graphs with high trust values, such as co-author
graphs, than in graphs with low trust values such as online social
networks. We show that this behavior is due to the community
structure in high-trust graphs, requiring longer walk to traverse
multiple communities. Furthermore, we show that our proposed
designs to account for trust, while increase the cost function of
graphs with low trust value, decrease the advantage of attacker.

I. INTRODUCTION

The Sybil attack is a well-known and powerful attack in

distributed systems, such as sensor networks and peer-to-peer

systems. In the basic form of this attack, a peer representing

the attacker generates as many identities as she can and acts

as if she is multiple peers in the system, which are then

utilized to influence the behavior of the system [1]. The

number of identities that an attacker can generate depends

on the attacker’s resources such as bandwidth, memory, and

computational power. With the sharp hardware growth—in

terms of storage and processing capacities—and the popularity

of broadband Internet, even an attacker who uses “commodity”

hardware can cause a substantial harm to large systems.

Despite being known for long time, this attack lacked

technical defenses and many papers have reported its existence

without suggesting any defense while many proposed defenses

are limited in many aspects [2]. The majority of defenses

proposed in literature to defend against, limit, or mitigate the

Sybil attack can be classified into centralized defenses and

decentralized defenses. In the centralized defenses (e.g., [1],

[3], [4], [5]), a centralized authority is responsible for verifying

the identity of every user in the systems. Because they depend

on a centralized authority, these defenses are ruled out in

many distributed settings. On the other hand, the decentralized

defenses (e.g., [6], [7], [8], [9]) utilize collaborative and

distributed approaches to bind credentials to the identities of

peers, and verify the peers authenticity.

A recent class of the decentralized defenses uses social

networks, where peers in the network are not merely com-

putational entities—the human users behind them are tied to

each other to construct a social network. The social network

is then used for bootstrapping the security and detecting

Sybils under two assumptions: algorithmic and sociological.

The algorithmic assumption is the existence of a “sparse cut

between the Sybil and non-Sybil subgraphs” in the social

network, which implies a limited number of attacker edges;

edges between Sybil and non-Sybil nodes. The sociological

assumption is a constraint on the trust in the underlying

social graph: the social graph used in these defenses needs

to exhibit strong trust as evidenced, for example, by face-

to-face interaction demonstrating social actors’ knowledge of

each other [9], [10]. While the first assumption has been

recently questioned in [11], where it is shown that even honest

subgraphs may have cuts that disrupt the algorithmic property,

the trust—though being a crucial requirement for these designs

to perform well—was not considered carefully. Even worse,

many of these defenses [9], [10], [12], [13]—when verified

against real-world social networks—have considered samples

of online social graphs, which are known to possess weaker

value of social trust.

We have recently measured the mixing time, a concrete

measure of the algorithmic property required in social net-

works, in [14], and demonstrated that it is greater than the

values used in literature. Also, we pointed out that social

graphs with same size have different mixing times implying

that social networks, even algorithmically, cannot be taken

equally for the purpose of these designs (see sec. V). However,

the different mixing times are not arbitrary: social graphs that

exhibit knowledge (e.g., co-authorship) or intensive interaction

(e.g., social blogs) are slower mixing than social graphs that

require less interaction or where edges are less meaningful

(e.g., wiki-vote and online social networks such as Orkut

and Facebook), which suggest that the algorithmic and trust

properties in social graphs are at odds. To this end, we explore

designs to model trust in social graphs in order to base the

performance of the Sybil defenses more accurately on both

assumptions: algorithmic and sociological.

We model the trust exhibited in the social graph as pa-

rameters of modified and biased random walks, as opposed



to the uniform random walks used in Sybil defenses—where

social graphs are presumed to have similar trust value. The

proposed designs use two observations: nodes in the social

graph trust themselves more than they trust others, and they

trust other nodes unequally. We use the first observation to

incur gravitational probability in the random walk – at either

the current or originator node of the walk – and use the

second observation to incur weights on edges between the

different nodes. In the first direction we introduce the lazy and

originator-biased random walks. In the second direction we

introduce the similarity and interaction-biased random walks

to model trust. We investigate their power in modeling trust

and influencing the Sybil defenses.

Contributions: The novel and original contributions of this

paper are as follows. First, motivated by the observed re-

lationship between the quality of the algorithmic property

and hypothesized trust in social graphs, we propose several

designs, each in the form of modified random walk, to model

trust in social networks. Second, we learn the impact of the

different designs on the performance of the Sybil defenses

by comparing them to each other when operated on top of

SyilLimit, a design for defending against the Sybil attack using

social networks. For experiment part, we use several real-world

social graphs that exhibit different levels of knowledge be-

tween nodes. We provide several insights through discussions

that relate to observations on the measurements.

Organization: Some of the related work is reviewed in section

II and preliminaries in section III. In section IV we introduce

several designs to model trust in social networks, which

are used for Sybil defenses. In section V we discuss the

main results, which include experiments on real-world social

networks. In section VI we present implications of the findings

followed by the conclusion and future work in section VII.

II. RELATED WORK

Sybil defenses based on social networks include Sybil-

Guard [10], SybilLimit [9], SybilInfer [12], SumUp [15],

and Whānau [13]. In principle, the performance of these

defenses depends on the quality of the algorithmic property

and assuming strong trust in the underlying social graph.

These studies can benefit from our findings in quantifying their

performance more accurately by making up for variable trust

exhibited in the social graphs which they operate on top of.

A study on analyzing these designs can be seen in [11].

Also, several other studies were introduced in the literature

on using the trust in social graphs. For instance, Daly et

al. [16] used social networks for routing in disconnected delay

tolerant networks. In [17], Marti et al. constructed DHTs over

social networks. In [18], Pai et al. used the trust in social

graphs for bootstrapping trust in ad-hoc networks. The social

capital exhibited in social networks is used in [19] to replace

the tit-for-tat model in peer-to-peer systems. In all of these

studies, trust is considered binary and they can benefit from

our findings though our designs are not intended for them.

Understanding, predicting, and analyzing interactions in

social networks are studied by Viswanathet al. in [20] and

by Wilson et al. in [21]. We use the latter model for our

interaction-biased random walk in this study.

Understanding the negative and positive links in social

networks – which we can base our designs on – are studied by

Leskovec et al. in [22]. The similarity and centralities in social

graphs are studied and evaluated in [23], [24], and [25]. All of

these studies can be further used to derive similarity metrics,

where these metrics can be utilized in our designs.

Influential studies on analyzing the topological structures in

online social networks are in [26] and in [27].

Trust in social networks has been also studied since most

systems built on top of social networks exploit it – samples of

related work on characterizing trust in social networks can be

seen in [28] and [29], which are not clear how to use in the

context of the problem in hand. Finally, the power of social

graphs as good mixers is studied in [30] and [14]. For more

detailed exposition on related work, please see [31].

III. PRELIMINARIES

A. Network Model

We view the social network as an undirected unweighted

graph G = (V,E) where |V | = n, V = {v1 , v2, . . . , vn},

|E| = m, eij ∈ E = vi → vj if vi ∈ V is adjacent to vj ∈ V
for 1 ≤ i ≤ n and 1 ≤ j ≤ n. We refer to A = [aij ]

n×n as

the adjacency matrix where aij = 1 if eij is in E and aij = 0
otherwise. We refer to P = [pij ]

n×n as the transition matrix

pij =

{
1

deg(vi)
eij ∈ E

0 otherwise
, (1)

where deg(vi) is the degree vi, or the row-norm of A:

deg(vi) =
n∑

k=1

Aik. (2)

The set of neighbors of vi is N(vi) and deg(vi) = |N(vi)|.
B. Simple Random Walks and Mixing Time

The “event” of moving from a node to another is captured

by a Markov Chain (MC) which represents a random walk over

G. A random walk of length w over G is a sequence of vertices

in G beginning from an initial node vi and ending at vt, the

terminal node, using the transition matrix (1). The MC is said

to be ergodic if it is irreducible and aperiodic, meaning that

it has a unique stationary distribution π and the distribution

after random walk of length w converges to π as w → ∞. The

stationary distribution of the MC is a probability distribution

that is invariant to the transition matrix P (i.e., πP = π). The

mixing time of the MC, T is defined as the minimal length of

the random walk in order to reach the stationary distribution.

More precisely, Definition 1 states the mixing time of MC on

G parameterized by a variation distance parameter ε.
Definition 1 (Mixing time): The mixing time (parameter-

ized by ε) of a Markov chain is defined as

T (ε) = max
i

min{t : |π − π(i)Pt|1 < ε}, (3)

where π is the stationary distribution, π(i) is the initial

distribution concentrated at vertex vi, Pt is the transition



matrix after t steps, and | · |1 is the total variation distance,

which is defined as 1
2

∑
j |πj−π

(i)
j |. Notice that |·|1 is at most

1. The MC is rapidly mixing if T (ε) = poly(log n, log 1
ε ).

Papers such as [12], [13], [9], [10] refer to this as “fast mixing”

and strengthen the definition by considering only the case of

ε = Θ( 1n ), and requiring T (ε) = O(log n).
Theorem 1 (Stationary distribution): For undirected un-

weighted graph G, the stationary distribution of the MC over

G is the probability vector π = [πvi
] where πvi

= deg vi

2m . This

is, π = [deg(v1)2m
deg(v2)

2m
deg(v3)

2m . . . deg(vn)
2m ].

Theorem 2 (Second largest eigenvalue [32]): Let P be the

transition matrix of G with ergodic random walk, and λi for

1 ≤ i ≤ n be the eigenvalues of P. Then all of λi are real

numbers. If we label them in decreasing order, 1 = λ1 > λ2 ≥
· · · ≥ λn−1 ≥ λn > −1 holds. We define the second largest

eigenvalue modulus (SLEM) as μ = max (|λ2|, |λn−1|). Then,

T (ε) is bounded by μ
2(1−μ) log(

1
2ε ) ≤ T (ε) ≤ log(n)+log( 1

ε )

1−μ .

We observe that the mixing time captures the connectivity

of the graph. Well-connected graphs have small mixing time

while weakly connected graphs have large mixing time [32].

Also, the second largest eigenvalue used for measuring the

mixing time bounds the graph conductance, a measure for the

community structure [11]. In short, the conductance Φ ≥ 1−μ.

C. Social Network based Sybil Defenses

As mentioned in section II, there are several defenses to the

Sybil attack using social networks. Here we limit ourselves to

SybilLimit, which we use to measure our designs.

Unlike SybilGuard which uses one long random route for

verification, SybilLimit [9] uses several shorter instances of

random routes. A verifier as well as the suspect perform

O(
√
m) random routes each of length w = O(log n) to

obtain samples of the honest region – since O(
√
m) = r0

√
m,

SybilLimit fixes r0 = 4 to ensure high intersection probability.

The verifier determines to accept a suspect if he is registered at

one of the tails in his sample. SybilLimit accepts a suspect if

intersection with the verifier happens on a tail, which is the last

edge of the random routes. In SybilLimit, if a tail ends up in

the Sybil region, it will always end-up in it due to the random

routes one-to-one pre-computed permutation structure. Also,

if a tail ends up in the Sybil region, it may advertise many

non-existent intersections with routes initiated by Sybil nodes.

To avoid that, SybilLimit limits the number of intersections

into g ×w ×m intersections on honest tails – where g is the

number of attack edges and w is the random walk length.

This means that SybilLimit accept at most w = O(log n)
Sybil identities per attack edge. SybilLimit greatly depends

on w for its security and uses benchmarking techniques

for estimating it. However, since these techniques are not

provable, underestimating or overestimating the parameters is

problematic. SybilLimit works as long as g ≤ o( n
logn ).

IV. DESIGNS TO ACCOUNT FOR SOCIAL TRUST

In most of the literature that considered social networks

for building Sybil defenses, the simple uniform random walk

vr vx vi vj

1−α
deg (vr)

1−α
deg (vx)

1−α
deg (vi)

ααα α

Fig. 1. An illustration of
the lazy random walk. For
simplicity, α is equal for
each node though it can be
determined by each node
locally to reflect what that
node perceive as the trust
of the network.

highlighted in section III has been used. In this section, we

introduce several designs of modified random walks that con-

sider a “trust“ parameter between nodes. In all of the proposed

modified random walks, the purpose is to assign “trust-driven”

weights and thus deviate from uniform. We do this by either

capturing the random walk in the originator or current node,

as the case of originator-biased and lazy random walks, or

by biasing the random walk probability at each node, as the

case of interaction and similarity-biased random walks, or a

combination of them. The intuition of the lazy and originator-

biased random walk is that nodes trust “their own selves” and

other nodes within their community more than others. On the

other hand, interaction and similarity-biased trust assignments

try to weigh the natural social aspect of trust levels. Given

the motivation for these designs, we now formalize them by

deriving P and π required for characterizing them. We omit

the details for lack of space (see [31] for the complete proofs).

A. Lazy Random Walks

To accommodate for the trust exhibited in the social graph,

we assume a global single parameter α in the network which

is used to characterize this trust level and used in the different

schemes to enforce and apply the trust along with other

parameters used (e.g., driven from the algorithmic property

in the graph). The transition matrix

P′ = αI+ (1− α)P (4)

which yields a transition according to pij defined as follows:

pij =

⎧⎪⎨
⎪⎩

1−α
deg(vi)

vj ∈ N(vi)

α vj = vi

0 otherwise

(5)

We note that for the transition probability defined in (4),

by adding self loops it does not alter the final stationary

distribution from that in Theorem 1. This is, since P′ =
αI+(1−α)P, by multiplying both sides by π, we get πP′ =
π(αI+(1−α)P) = απI+(1−α)πP = απ+ π−απ = π.

B. Originator-biased Random Walk

We incorporate the concept of biased random on the social

graph walks to characterize the bias introduced by the trust

among different social actors (nodes). At each time step,

each node decides to direct the random walk back towards

the node that initiates the random walk, i.e., node vr, with

a fixed probability α or follow the original simple random

walk by uniformly selecting among its neighbors with the

total remaining probability 1 − α. The transition probability

that captures the movement of the random walk, initiated by



a random node vr, and moving from node vi to node vj is

defined according to pij as follows

pij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α j = r, vr �∈ N(vi)

α+ 1−α
deg(vi)

j = r, vr ∈ N(vi)
1−α

deg(vi)
j �= r, vj ∈ N(vi)

0 otherwise

(6)

We note that, unlike the lazy random walks, the transition

probability here considers moving the state back to the origi-

nator of the random walk, a state that may not be connected

to the current state in the social graph. This requires a virtual

connection between each node through the walk – every

node in the graph – and each originator of a random walk.

To mathematically model this transition loop, for each node

vr(1 ≤ r ≤ n), we define Ar as an all-zero matrix with

the exception of the rth row which is 1’s. Using Ar, we

further define the originator-biased transition matrix, for the

walk originated from vr, as

P′ = αAr + (1− α)P. (7)

We can show that P′ is stochastic since each row in it sums

to 1. Furthermore, since P′ depends on the initial state vr,

we observe that the “stationary” distribution is not unique

among all initial states, and so we refer to it as the “bounding

distribution” for the walk initiated from vr. The bounding

distribution in that case is π(vr) = [πi]
1×n where πi is

πi =

{
(1− α)deg(vi)2m vi ∈ V \ {vr}
α+ deg(vi)

2m vi = vr
(8)

We note also that the bounding distribution in (8) is a valid

probability distribution since α + deg(vr)
2m +

∑
vi∈V \{vr}(1 −

α)deg(vi)
2m = α +

∑n
i=1(1 − α)deg(vi)

2m = α + (1 −
α)

∑n
i=1

deg(vi)
2m = α+(1−α) = 1. It is also easy to show that

given distribution bounds the random walk since πP′ = π.

vr vx vi vj

1−α
deg (vr)

1−α
deg (vx)

1−α
deg (vi)

α
α

α

α

Fig. 2. An illustration of the originator biased random walk.

C. Interaction-biased Random Walk

The interaction between nodes can be used to measure

the strength of the social links between nodes in the social

network [21]. In this model, high weights are assigned to

edges between nodes with high interaction and low weights

are assigned to edges between nodes with low interaction.

Formally, let B be the raw interaction measurements between

nodes in G and D be a diagonal matrix representing the

row norm of B, computed as in (2). The transition matrix

P of the random walk based on interaction is then computed

as P′ = D−1B. The stationary distribution of the random

walk on G following to the probability in P′ is π = [πi]
1×n

where πi = (
∑n

j=1

∑n
k=1 bjk)

−1(
∑n

z=1 bzi). We observe that

this distribution makes a valid probability distribution since∑n
i=1 πi = 1 and is a stationary distribution since πP = π.

Wilson et al. [21] introduced a slightly different model to

capture interaction between nodes in the social graph. The

interaction graph G′ = (V,E′) is defined for a social graph

G = (V,E) where E′ ⊆ E and eij ∈ E′ if I(vi, vj) ≥
δ, where I is an interaction measure to assign weights on

edges between vi and vj for all i, j, and δ is a threshold

parameter. The interaction measure used in [21] is the number

of interactions over a period of time. This later model further

simplifies the random walk where the P′ is defined over G′,
as well as the stationary distribution.

D. Similarity-biased random walk

The similarity between social nodes in social networks is

used for measuring the strength of social links and predicting

future interactions [23], [25]. For two nodes vi and vj with sets

of neighbors N(vi) and N(vj), respectively, the similarity is
N(vi)∩N(vj)
N(vi)∪N(vj)

. For ai and aj , two rows in A corresponding

to the entries of vi and vj , we use the cosine similarity

measure given as S(vi, vj) =
vi·vj

|vi|2|vj |2 , where | · |2 is

the L2-Norm. To avoid disconnected graphs resulting from

edge cases, we augment the similarity by adding 1 to the

denominator to account for the edge between the nodes.

Also, we compute the similarity for adjacent nodes only,

so that S = [sij ] where sij = S(vi, vj) if vj ∈ N(vi)
or 0 otherwise. The transition matrix P of a random walk

defined using the similarity is given as P = D−1S where

D is a diagonal matrix with diagonal elements being the

row norm of S. Accordingly, the stationary distribution of

random walks on G according to P is π = [πi]
1×n where

πi = (
∑n

z=1 szi)(
∑n

j=1

∑n
k=1 sjk)

−1.
∑n

i=1 πi = 1).

E. Mixed random walks

It is intuitive and natural to consider a hybrid design

that constitutes more than one of the aforementioned ran-

dom walks. In particular, the interaction and similarity-biased

models “rank” different nodes differently and “locally” assign

weights to them. Though this limits the mixing time of social

graphs as we will see later, it does not provide nodes any

authority on the random walk once they are a “past state”. On

the other hand, benefits of these models are shortcomings in

other models. It’s hence technically promising and intuitively

sound to consider combinations of these designs. Another

potential of a mixed design is to use both the lazy and

originator-biased random walk in a single walk. As we will

see later, in some rapidly mixing social graphs where the

underlying social trust is hypothesized to be weak, the lazy

random walk poorly captures the behavior of the Sybil defense.

V. RESULTS AND DISCUSSION

In this section we outline the results of this study. We first

measure the mixing time of the social graphs used in this

study (in Table I) and highlight its variable nature among



TABLE I
DATASETS, THEIR SIZE AND THEIR SECOND LARGEST EIGENVALUES OF

THE TRANSITION MATRIX. PHYSICS 1, 2, 3 ARE RELATIVITY, HIGH

ENERGY AND HIGH ENERGY THEORY CO-AUTHORSHIP

RESPECTIVELY [33].

Social network Nodes Edges SLEM
Physics 1 [33] 4,158 13,428 0.998133
Slashdot [34] 82,168 582,533 0.987531

Physics 2 [33] 11,204 117,649 0.998221
Physics 3 [33] 8,638 24,827 0.996879
Wiki-vote [22] 7,066 100,736 0.899418

Enron [33] 33,696 180,811 0.996473
Epinion [35] 75,879 13,428 0.998133

DBLP [36] 614,981 1,155,148 0.997494
Facebook A [21] 1,000,000 20,353,734 0.982477
Facebook B [21] 1,000,000 15,807,563 0.992020

Livejournal A [26] 1,000,000 26,151,771 0.999387
Livejournal B [26] 1,000,000 27,562,349 0.999695

Youtube [26] 1,134,890 2,987,624 0.997972

networks with similar size. We follow this by examining the

impact of using proposed models on the mixing time and the

performance of SybilLimit, a well-known Sybil defense. We

limit ourself to this defense scheme though our conclusions

apply to all other schemes that using the mixing time as the

underlying property for their performance.

A. Social graphs—the datasets

The social graphs used in our experiments are in Table I.

These graphs are carefully selected to feature different models

of knowledge between nodes in the social networks. These

networks are categorized as follows. (1) social networks that

exhibit knowledge between nodes and are good for the trust

assumptions of the Sybil defenses; e.g., physics co-authorships

and DBLP. These are slow mixing (see Fig. 3). (2) Graphs

of networks that may not require face-to-face knowledge but

require interaction; e.g., Youtube and Livejournal, which are

slow mixing, but faster than the first category. (3) Datasets that

may not require prior knowledge between nodes or where the

social links between nodes are less meaningful to the context

of the Sybil defenses; e.g., Facebook and wiki-vote, which

are shown to be very fast mixing. While these graphs are

used for demonstrating the first part of the results, measuring

the performance of SybilLimit and the impact of our designs

on the mixing time is done over samples of these graphs.

For feasibility reasons, we sample only 10K nodes, using the

breadth-first search algorithm, from each graph larger than

10K in Table I. The resulting sub-graphs are in Table II. The

diameter is the maximal eccentricity (set of maximal shortest

paths from each source in the graph) and the radius is the

minimal eccentricity. We compute them to show some insight

on the structure of the graphs. For Facebook and Livejoural

datasets, the sub-graphs are from dataset A of each.

B. Measuring the mixing time

While measuring the mixing time using SLEM as explained

in section III requires computing μ, the computed mixing time

might be an overestimation for quality which is necessary in

the Sybil defenses. In principle, the overestimation occurs be-

cause the computed mixing time using SLEM is the maximal,

TABLE II
SOCIAL GRAPHS WITH THEIR SIZE, DIAMETER, AND RADIUS. PHYSICS 1,

2, 3 ARE RELATIVITY, HIGH ENERGY AND HIGH ENERGY THEORY

CO-AUTHORSHIP RESPECTIVELY [33].

Social network Nodes Edges Diameter Radius
Physics 1 [33] 4,158 13,428 17 9

Sdot [34] 10,000 14,6469 6 3
Physics 2 [33] 11,204 117,649 13 7
Physics 3 [33] 8,638 24,827 18 10
Wiki-vote [22] 7,066 100,736 7 4

Enron [33] 10,000 108,373 4 2
Epinion [35] 10,000 210,173 4 2

DBLP [36] 10,000 20,684 8 4
Facebook [21] 10,000 81,460 4 2

Livejournal [26] 10,000 135,633 6 3
Youtube [26] 10,000 58,362 4 2

Rice-cs-grad [37] 501 3255 9 5
Rice-cs-ugrad [37] 1221 43153 6 3

where a few outlier nodes may capture the mixing time of the

entire graph, while the majority of nodes may have relatively

smaller mixing time than these outliers [14]. For that, we limit

ourselves to measuring the mixing time using Definition 1,

and considering a few initial distributions. We classify graphs,

shown in Table I, based on their size into large (> 600, 000
nodes) and small (< 100, 000 nodes) graphs. For each social

graph, we compute the mixing time according to Definition 1

for a sample of 1, 000 initial distributions (nodes). We then

compute the total variation distance for a given walk length w
as the average distance among the 1, 000 nodes. The results

are shown in Fig. 3. In short, two things to observe from these

measurements [14]. First, the mixing time is larger than used

in literature (e.g., 10 to 15 in [8], [9] for 106-node graphs). For

example, for ε ≈ 1/4, which is required for ≈ 99% admission

rate in SybilLimit, w = 30 is required in Physics 1. Second,

we observe that the mixing time is variable among social

graphs with similar size where graphs with meaningful edges

are slower mixing than others with less meaningful links.
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Fig. 3. The average mixing time of a sample of 1000 initial distributions in
each graph in Table I using the sampling method for computing the mixing
time by its definition over P.

C. Implication of the designs on the mixing time

Along with the simple random walk-based design, we

implement three of the proposed designs: lazy, originator, and

similarity biased random walks. We use the simple random

walk-based implementation over the interaction graph of Wil-

son et al.’s [21] to learn the performance of the interaction-

based model. We examine the impact of each design on the

mixing time on some graphs from Table II. The results are

shown in Fig. 4 and Fig. 5. We observe that, while they bound



the mixing time of the different social graphs, the originator-

biased random walk is too sensitive even to a small α. For

example, as in Fig. 5(a) for Facebook social graph in Table II,

ε ≈ 1/4 is realizable at w = 6 with the simple random

walk, w > 10 for both lazy and originator-biased random

walk. However, this happens with α = 0.5 in the lazy against

α ≈ 0.1 in the originator-biased walk. This observation is

made clearer on Fig. 5 which compares the mixing time of

four different social graphs with different characteristics when

using the simple and modified random walks.

We also observe in Fig. 4 and Fig. 5 that the linear

increments in the parameters do not necessarily have linear

effect on the measured mixing time. Furthermore, this behavior

is made clearer in the experiments performed on SybilLimit

and shown in Fig. 6 and Fig. 7. This however is not surprising,

at least with the originator-biased random walk since the

probability of intersection when sampling from the stationary

distribution is ≤ e−8(1−α)4 [31] from which one can see

the exponential effect of α on the admission rate. While

this explains the general tendency in the admission rates of

SybilLimit, it does not answer some inconsistency shown in

Fig. 7(b) for the transition between α = 0.12, 0.16, and 0.20.

One additional explanation for that is the community structure

in this graph, which is shown in [11] to be clear in Physics 1

and problematic for Sybil defenses (results for the same graph

are in Fig. 6(b) and Fig. 7(b)). On the other hand, some graphs

are less sensitive to the same value of these parameters, e.g.,

Facebook with the results shown in figures 4(a), 5(a), 6(d),

and 7(d). One possible explanation for this behavior is that

this graph has less community structure. Reasoning about this

behavior and its quantification is to be our future work.

D. Sybil defense performance over simple random walks

To understand the necessary mixing time quality required

for the operation of SybilLimit, we measure the performance

of SybilLimit using simple random walks, where the evalua-

tion metric is the percent of honest nodes accepted by other

honest nodes. For each walk with length w(0 ≤ w ≤ 30),
we compute the number of accepted nodes as a percent out of

n(n−1)—total verifier/suspect pairs. Since SybilLimit accepts

nodes on edges only, it works for w ≥ 2. The results are shown

in Fig. 8 and the variable mixing time shown earlier is further

highlighted by observing the percent of accepted nodes when

varying w. We observe that, unlike claims in SybilLimit where

one would expect 95% admission rate at w = 4, some graphs

require w = 30; where graphs which admit high percent of

nodes for small w are those with poor trust.

E. Sybil defense performance over modified random walks

Now we study the impact of the modified random walks

on the performance of SybilLimit. We select four datasets

with different characteristics from Table II: DBLP, Facebook,

Facebook (Rice grad), and Physics 1 (relativity theory). We

implement modified SybilLimit versions that consider changes

introduced by the modified random walks and test the admis-

sion rate of honest nodes under different values of α and w.

1) Performance over lazy random walk: we measure the

performance of SybilLimit operating with the lazy random

walks – results are shown in Fig. 6. We vary w from 0 to 30
with steps of 2. We further vary α associated with the lazy

random walk from 0 to 0.80 with steps of 0.16—α = 0 means

simple random walk. While the performance of SybilLimit is

generally degraded when increasing α, we observe that the

amount of degradation varies and depends on the initial quality

of the graph. For example, by comparing DBLP (Fig. 6(c)) to

Facebook (Fig. 6(d)) we observe that for w = 10, DBLP and

Facebook admit about 97% and 100% of the honest nodes

respectively for α = 0. For the same w and α = 0.64, the

accepted nodes in Facebook are still close to 100% while the

accepted nodes in DBLP are only 50% suggesting variable

sensitivity of different graphs to same α. Once we raise α
to 0.80, the number of accepted nodes in Facebook decreases

to 80% while giving only 25% in DBLP. One explanation of

this behavior is what we have discussed in section V-C. Also,

since the ultimiate goal of this model is to characterize trust,

which already differs in these graphs, we know that α should

not necessarily be equal in both cases. For instance, if one is

concerned about achieving same admission rate for the same

w in both cases, one may choose α = 0.48 in DBLP and

α = 0.80 in Facebook where w = 10 in both cases which

yields 80% admission rate in both cases.

2) Performance over originator-biased random walk: The

same settings in section V-E1 are used in this experiment

but here we vary α from 0 to 0.2 with 0.02 steps since the

originator-biased walk is more sensitive to smaller α than the

lazy-random walk. Similar to the lazy walk, the originator-

biased walk, as shown in Fig. 7, influences the performance

of SybilLimit on different graphs differently, and depending

on the underlying graph. However, two differences are specific

to the originator-biased walk over the lazy random walk.

First, the insensitivity shown earlier is even clearer in

the originator-biased model. Second, while the end result of

SybilLimit operating with lazy random walk is identical to the

simple random walk if one allows long enough walk to com-

pensate for the laziness, the behavior of the originator-biased

walk is different. The indirect implication of the originator-

assigned probability to herself is “discontinuity” in the graph

(with respect to each node), where each node gives up some

of the network by not trusting nodes in it. To cover the whole

graph with that same α, w needs to be exponentially large.

To challenge the insensitivity of the fast mixing social graphs,

we extend α beyond the values used in Fig. 7 with Facebook

from Table II and use α(0 ≤ α ≤ 0.5) with 0.1 steps and

compute the admission rate. The result shows (not included

here) that the originator-biased walk limits the number of

accepted nodes, even in fast mixing graphs, but for larger α.

3) Performance over similarity and interaction-biased
walk: The similarity and interaction-biased random walks

as used in this paper are unparameterized. We compute the

similarity for Facebook in Table II, as explained in IV-D. The

similarity is then used to assign weights to edges between

nodes, and bias the transition matrix. We run SybilLimit with
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Fig. 4. The impact of the originator and lazy walks on the mixing time—(a) and (b) are for originator-biased while (c) and (d) are for lazy random walks.
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(d) DBLP

Fig. 5. The mixing time of four different social graphs when using simple vs. lazy, originator, and similarity-biased random walks, for each graph. While
they are similar in size, a mixing time (parameterized by the same ε) is variable.

similarity-biased random walks on Facebook in Table II, where

the result is shown in Fig. 9. In short, the similarity – while

expected to capture some truth about the underlying graph –

has less influence on the behavior of SybilLimit. It is however

worth noting that the impact of the similarity-biased random

walk is clearer on other social graphs, such as DBLP and

Physics, which have clearer community structures.

For the interaction-biased design, we borrow the interaction

graph of Wilson et al. [21] on Facebook (same dataset in Ta-

ble II). The interaction model introduces a richer model than

the mere connections between nodes: it shows how strong are

the links between nodes in the graph. With the same settings

as earlier, we run SybilLimit – as a simple random walks –

over the interaction graph. The results are shown in Fig. 9.

F. All designs: comparative study

Finally, we consider all designs at the same time. Because

we only have interaction measurements for the Facebook

dataset, we limit ourselves to that dataset. The result is shown

in Fig. 9. While the performance of the similarity-biased

random walk produces almost same results as the simple

random-walk, the interaction-biased walk affects the number

of the accepted nodes. Furthermore, the lazy random walk

captures the behavior of model when deviated from the simple

random-walk. As shown for this dataset, the interaction model

behavior is characterized by the behavior of the lazy random

walk for two given parameters (α = 0.48 and α = 0.64)

suggesting that the interaction model can be further modeled

as a lazy random walk where the problem is to find the proper

parameters to match its behavior. Note that the value of α
works for this dataset in particular. However, other datasets

may be characterized by other values. We also find that the

number of escaping tails per node is also decreased using

our design, as shown in Fig. 10. In this last experiment,

we compute the average escaping tails per 100 honest node

samples, and by running the experiment 5 times, independently
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with a the given attackers edges for which nodes are selected

uniformly at random from the honest region. In the experiment

of Fig. 10, and for the interaction model, we assume that the

attacker may infiltrate the social graph but cannot produce

meaningful interactions, and thus the number of escaping tails

to the attacker is always zero. It would be interesting in the

future to generalize this model to an attacker with limited

budget of interactions, and see how this changes the number

of escaping tails with varying budgets. Finally to understand

the impact of the different random walks on the accepted

Sybil nodes per attack edge, we experiment with the same

dataset (Facebook) and for varying g. The results are shown

in Figure 11. Similar to above, our designs outperform the

uniform design (more experiments are in [31]).

VI. IMPLICATIONS OF FINDINGS

To sum up, we find in this study that one can control the

behavior of the social network-based Sybil defenses by incor-

porating parameters for trust. For this purpose, we introduced
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Fig. 6. The performance of SybilLimit measured for accepted honest nodes when using different lengths of lazy random walk for different social graphs.
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Fig. 7. The performance of SybilLimit depends on the underlying social graph, where different graphs require different walk lengths to ensure the same
number of accepted nodes. The originator-biased random walk can further influence the number of nodes accepted in each graph.
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and experimented the behavior of four designs. In graphs that

are empirically-proven to be fast mixing and well-performing

for the utility of the Sybil defense – though having poor value

of trust – we have shown that one can select the necessary

parameters to account for trust and make the performance of

the defense on that graph equivalent to stronger and richer

version of the same graph – e.g., the case of the interaction-

based model versus the mere connections on the Facebook

dataset. With these designs being intuitive in characterizing

trust, the results being in agreement one another, and with

this paper being the first of its own type in this direction, we

believe that this study is a first step in the direction of bringing

well-received theoretical results into practice. The implications

of our findings can be summarized as follows.

First, the mixing time and utility of the Sybil defense

depend on the underlying graph. Through measurements, we

supported our hypothesis that the quality of the social graph

depends on the characteristic of the social links between the

nodes. On one hand, social links that are easier to make result

in well-enmeshed graphs but are bad in principle for the Sybil

defense since they already tolerate bad edges. However, these

are shown to provide good honest nodes acceptance rate even

with shorter random walks. On the other hand, social links

that are harder to make result in graphs with more community

structure, which are bad for the detection (as shown in [11])

and require longer walks to operate for the honest nodes.
Second, it is now possible for the Sybil defense operator,

when given multiple options of social graphs, to further derive

the utility of the Sybil defense using several criteria. Our

study empowers the operators by an additional dimension that

influences the behavior of the Sybil defense: trust.
Third, our findings answer a recently called for question

in [11] of studying the behavior of Sbyil defenses when

operated on the interaction-based model rather than the mere

social connections, which are sometimes less meaningful. In

short, our study shows that the interaction model can influence

the behavior of the Sybil defense, by requiring longer random

walk for the defense to work for honest nodes. However, this

finding also suggests that a more community-structure is in the

interaction model than in the mere social graph. This implies

that, while the original social graph does not possess clear

community structure, the use of the interaction model would

add sensitivity for the detection part of the defense and result

in weaker detection. However, the underlying graphs in both

cases are different and the interpretation of the results should

also consider the trust value in the interaction model, which

is a better fit to the trust required in the Sybil defense.
Finally, online social graphs are known to possess weaker

value of trust [29]. However, their potential for being used

for Sybil defenses is very high since alternatives are limited,



too expensive, and may not fit into the Sybil defense settings.

For example, co-authorship social graphs which are known

for their trust value may not necessarily include most users

of a particular online system that tries to deploy the Sybil

defense. On the other hand, given the popularity of online

social networks, Sybil defenses may benefit from them, across

systems and networks. To this end, the main finding of the

paper is to open the door wide open for investigating trust, its

modeling, and quantification for these systems.

VII. CONCLUSION AND FUTURE WORK

In conclusion, we propose several designs to capture the

trust value of social graphs in social networks used for Sybil

defenses. Our designs filter weak trust links and successfully

bound the mixing time which controls the number of accepted

nodes using the Sybil defenses to account for variable trust.

Our designs provide defense designers with parameters to

model trust and evaluate Sybil defenses based on the “real

value” of social networks.
Several directions are worth investigation in the near future.

First, we would like to investigate generalized node-wise

parameterized designs that consider different parameters for

different users, or categories of them. Second, we would

like to theoretically formulate the behavior of the different

designs considering other features of the underlying graph,

e.g., its eigenvalues, mixing time, etc. Finally, we would like to

investigate the applicability of these designs in other contexts

where the trust of social networks is used. For more on open

problems and further work, please see [31].
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