
Peer Pressure:

Exerting Malicious Influence on Routers at a Distance

Max Schuchard1, Christopher Thompson2, Nicholas Hopper1, and Yongdae Kim3

1Department of Computer Science and Engineering, University of Minnesota, Twin Cities
2Department of Electrical Engineering and Computer Science, University of California, Berkeley

3Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST)

Abstract—Both academic research and historical incidents
have shown that unstable BGP speakers can have extreme,
undesirable impacts on network performance and reliability.
Large amounts of time and energy have been invested in
improving router stability. In this paper, we show how an ad-
versary in control of a BGP speaker in a transit AS can cause a
victim router in an arbitrary location on the Internet to become
unstable. Through experimentation with both hardware and
software routers, we examine the behavior of routers under
abnormal conditions and come to three conclusions. First, that
unexpected but perfectly legal BGP messages can place routers
into those states with troubling ease. Second, that an adversary
can implement attacks using these messages to disrupt the
function of victim routers in arbitrary locations in the network.
And third, modern best practices do not blunt the force of these
attacks sufficiently. These conclusions lead us to recommend
more rigorous testing of BGP implementations, focusing as
much on protocol correctness as on software correctness.

Keywords-Router; BGP; Security;

I. INTRODUCTION

Routers are a critical piece of the Internet infrastructure.

They provide path discovery and selection services needed

for hosts on the Internet to communicate with each other. We

say that a router is stable when it exhibits three properties:

high up-time, long lived BGP sessions, and a converged view

of the network. It is easy to see that a router meeting these

criteria will be able to provide IP layer forwarding services.

A router demonstrating instability, on the other hand, will

fail to demonstrate one or more of these qualities. It is

well known that routers suffering from instability will be

unable to perform their duties. Historical incidents, such as

the Code Red and Slammer worm events [4, 12, 23], cable

cuts [20], and improper configurations [19, 25], only serve

to emphasize this fact. For the most part, however, these

accidents have been rare and the overwhelming majority of

the time routers on the Internet are stable.

While routers function well under normal conditions,

there is one obvious question: What happens if one router

forces another to operate under abnormal conditions? In this

paper, we will demonstrate that an adversary in control of a

router can cause an arbitrary honest router on the Internet

to fail, even if the adversary is not directly connected to

the victim. We present the results of a collection of experi-

ments on hardware and software routers running the Border

Gateway Protocol (BGP) to illustrate three key points. First,

that unexpected but perfectly legal BGP messages can place

routers into unstable states with troubling ease. Second, that

an adversary can implement attacks using these messages to

disrupt the function of victim routers in arbitrary locations

in the network. And third, that modern best practices do not

blunt the force of these attacks sufficiently.

Through experimentation on hardware and software

routers, we examined what happens when modern routers

find themselves without free memory. In all cases, we

found that routers fail to handle this scenario gracefully. We

witnessed a variety of failure modes, ranging from severe

performance degradation to the unrecoverable failure of all

active routing sessions. Given the negative impact of these

unstable states, one might be tempted to believe that placing

a router in such a state is difficult. Sadly, it turns out that

the opposite is true. We found it relatively easy to send BGP

messages to a router that would directly place it into one

of these states. We focused on exploring corner cases that

are unlikely to be found “in the wild” but are still perfectly

valid in the eyes of BGP. We will examine examples of these

messages later in the paper.

While it is unlikely a router would see any of these mes-

sages normally, they are easily generated by an adversary.

By utilizing these BGP messages, an adversary who controls

a BGP speaker is capable of launching powerful attacks

against other routers. We will show how our adversary can

manipulate honest routers into propagating these malicious

BGP messages across the network, allowing our adversary to

attack routers not directly connected to himself. In addition,

by triggering loop detection mechanisms, the attacker can

contain attack updates so that they are only seen by routers

on paths between the malicious router and victim.

It might be comforting to assume that deployed routers

could be hardened to these attacks via proper configuration.

We demonstrate that the commonly accepted best practices

would do little to slow these attacks. We examine four

options in detail: prefix filtering, prefix aggregation, prefix

limits, and AS path length limits. In each case, we use

observations based on the contents of real world routing

tables to reason about both the extent to which these best

practices are used and the degree to which these practices

could prevent our attacks.

The contributions of this paper are fourfold. First, we pro-

vide experimental evaluations of both hardware and software

routers in abnormal operating conditions. We validate and

expand upon previous work looking at memory issues in

routers and investigate causes of CPU exhaustion. Second,

we examine the response of multiple BGP implementations

to unexpected inputs. We present clear scenarios, along with

experimental evidence, that illustrate the implementation

failings of two commonly used BGP daemons. Third, we

present clear scenarios to underscore how an adversary

might take advantage of these unexpected inputs. Fourth,

we look at why current best practices provide an insufficient

defense against these attacks.

The rest of this paper is organized as follows. In Sec-

tion II, we will discuss background material relevant to

understanding this work. Then, in Section III, we will

examine how an adversary can attack the functionality of

a victim router to which he can directly send messages to.

In Section IV we will expand upon these attacks, showing

how they can be applied not just to directly connected peers,

but to victims located at arbitrary positions in the network.

In Section V, backed up with experimental observations, we

will examine why operator best practices fail to blunt these

attacks.

II. BACKGROUND

A. Routers

Routers are network hosts tasked with building paths to

end destinations in layer three networks, most notably the

Internet. In order to accomplish their task, routers exchange

reachability information with other routers using a routing

protocol. We will discuss BGP, the routing protocol we focus

on in this work, in Section II-B. Routers are often, but not

always, responsible for forwarding data plane traffic using

the paths they have built. Routers can be broadly partitioned

into two categories: hardware routers and software routers.

Hardware routers are constructed using high-performance,

highly specialized components in order to cope with the

task of forwarding millions to billions of packets per sec-

ond. Hardware routers are costly pieces of equipment and

represent a large capital investment by operators. Because

of this, hardware routers typically have little in the way

of spare resources. A clear example of this is the route

processor’s memory. Modern routers generally have between

256 and 4096 MB of memory [2, 11]. In contrast to highly

specialized hardware routers, software routers are built using

commodity hardware, and have access to the same level

of resources any desktop computer does. However, they

lack the high performance line cards and switching fabric

of hardware routers, preventing them from handling packet

volumes typically found on today’s data plane.

B. BGP

Throughout the course of this paper we will focus on

routers running the Border Gateway Protocol, or BGP [15].

BGP is the current de facto standard routing protocol spoken

between a pair of routers in different Autonomous Systems,

or ASes; this key role makes it vitally important. BGP is a

path vector routing algorithm with policies. These policies

are used to augment the route selection process, allowing

decisions to be made based on business relationships rather

than path length.

Neighboring routers connect to each other and establish a

BGP session. A router can advertise a path to any other

router it currently has a BGP session with. To do this,

it sends a BGP UPDATE message containing the block of

IP addresses reached by the path and a collection of path

attributes. The receiving router then stores this information

in a Routing Information Base, or RIB, and recalculates

the best path to the listed block of IP addresses from

available paths. Update messages are required to have certain

attributes: the path (by Autonomous System number) to the

destination, whether the route was learned from a peer inside

or outside of this AS, and the next hop in the path. Updates

can also contain optional attributes, such as Community

Attributes [14].

In order to understand why instability in BGP speakers

is so problematic, we must introduce the concept of conver-

gence. BGP is a distributed routing protocol, meaning that

routers do not have global knowledge; information about

the network, therefore must come from other nodes. When

routers have settled on a consistent view of the network we

call this convergence. When BGP speakers have converged,

network traffic will flow correctly. It is a well-studied fact

that this guarantee does not hold when the network has not

converged. Why this lack of convergence causes the data

plane to fail has been studied extensively in the work of

Feamster et al. [7], Wang et al. [22], Pei et al. [17], and

others. When a BGP session fails, routers are forced to

withdraw all routes learned via that session, remove the

routes from their forwarding tables, recalculate best routes

to affected prefixes, and send out updated advertisements.

In otherwords, when router become instable, the network is

no long er converged, and ceases to function correctly.

III. CRASHING ROUTERS

In this section we will outline the mechanisms an ad-

versary in control of a BGP router can use to disrupt the

functionality of victim routers. We will examine how an

adversary can consume all of a target’s free memory, causing

the target to crash. As covered in Section II-A, routers

have two different types of memory, small amounts of high

speed memory for line card operation, and larger amounts

of general purpose memory for control plane operation. We

are interested in the latter, consequently for the rest of the

paper when we refer to memory we mean general purpose

memory. Previous research by Chang et al. [1] examined

what happens when a router runs out of free memory. They

found that when a router exhausts its free memory, the BGP

process crashes, causing the failure of all BGP sessions and

the halting of data plane operation.

Our observations in this and later sections come from

experiments run on hardware and software routers. The

hardware router we had access to was a CISCO 7603 series

router. It is important to note that in this work we are

experimenting with the behavior of a router’s software, not

its hardware. Our 7603 is an acceptable test router since it

runs the same version of IOS deployed on many larger and

more powerful CISCO routers. For a software router we

selected the Quagga suite. In order to ensure isolation, our

software routers were run on Qemu virtual machines running

Linux. Our experiments in this section were done with a

simple topology where attacking routers, in this case BGP

injectors, were directly connected to the victim router. In

Section IV we will expand to more complicated topologies

to explore how our attacks function on distant targets.

While we will not discuss it here, it should be noted that

in our experimention we also came across several ways to

exhaust the CPU resources of a router. The methods we ex-

perimented with included crafting single updates that, when

propagated through the network, will cause the targeted

router to destroy one or more active BGP sessions with

other honest peers and algorithmic DOS. In both the attacks

against BGP sessions and the algorithmic DoS attacks, we

utilize valid advertisement messages that are designed to

take advantage of slow or buggy code designed to handle

odd “edge cases” found in BGP. Full details of these attacks

can be found in our tech report 1.

A. Available Router Memory

The immediate question that springs to mind is: how

difficult is it to force a router to exhaust its supply of mem-

ory? Clearly this is dependent on how much free memory a

router has. The amount of total memory varies widely based

on exactly what model of router is used and where in the

network it is deployed. As discussed in Section II-A, routers

commonly have between 256 MB to 4 GB of total memory.

However, what we are interested in is the free memory. The

main demand placed on a BGP router’s memory comes from

storage of the Routing Information Bases, RIBs, which are

tables of known valid routes, currently used routes, and

currently advertised routes. It is easy to see now how a

router’s position in the network will alter the demands on

its memory. If a router is located in the dense core of the

1http://www.cs.umn.edu/research/technical reports.php?page=
report&report id=11-030

Internet, where it has a large number of peers, the majority

of which are advertising a global BGP table, it will have

higher memory usage compared to a router that exists on

the fringes of the Internet, where it might only receive one

or two global BGP tables along with a collection of very

small tables.

Because of this diversity, building an exact model of

router memory usage is impossible. We can build a rough

estimate by examining both how much memory a single

global routing table requires and how many of those tables

a router could in theory receive. The first quantity can be

measured directly. We collected global routing tables from

April of 2012 via RouteViews [21] and performed a series

of experiments involving our routers. We advertised global

routing tables to both types of router and measured their

memory usage. The plot of measured memory usage versus

the total number of prefixes can be seen in Figure 1a. We

then examined a sample of representative routers, noting

how many line cards the routers can have, presenting an

upper bound on the number of full tables a router could

receive 2, and their total memory. We can combine this data

and the results in Figure 1a to build an upper bound on the

amount of free memory a router could have as a function of

the fraction of its line cards receiving a global table from a

neighbor, shown in Figure 1c. While this figure does not give

us a definitive target for memory consumption, it does give

us an idea about the state of free router memory. Smaller

routers, like the 7603, will more than likely have little to no

free memory available, while larger, more powerful routers

will not have free memory in abundance, likely no more

than 1 GB.

B. Consuming Memory via Updates

With a ballpark figure in mind, we can examine how an

adversary would consume the memory of a target router.

Our basic approach is simple: an adversary will send BGP

advertisements to the victim router, which will in turn store

those advertised routes in its RIB. The challenge for the

adversary is to craft BGP routes that take up as much

space as possible. It is important to note that the routes

the adversary sends need not be considered the best by

the victim, they need only be considered valid. We set out

to establish what is the maximum amount of memory an

adversary could consume per BGP route accepted. Routes

crafted using various strategies were advertised to the target

router, and its resulting memory load measured.

An starting point for building an update construction

strategy would be to revisit the experiments done by Chang

et al. [1], where injectors simply advertised successive IP

blocks with a single hop AS path. We re-ran their experi-

ments with our CISCO router, the results of which can be

2Routers could in theory have more BGP sessions than they have line
cards, via multi-hop BGP sessions, however these are not commonly used
in practice.

seen in Figure 1b. We estimate that it would take on the order

of 2 million routes in order to exhaust the free memory on

modern routers using their methods, but can an adversary

do better?

The first thing to notice is that all of the AS paths being

advertised in the first set of experiments are identical, simply

the ASN of the advertising router. In an effort to shrink the

memory footprint of RIBs, routers only store identical AS

paths once. In fact, if one compares the memory usage in

Figure 1b, where all AS paths are the same, to the memory

usage from storing real world routes in Figure 1a, where

there is some degree of path distinctness, one can quickly see

that the small amount of path distinctness results in increased

memory load. Therefore, if the adversary can ensure all of

the routes being advertised have distinct paths, we should see

a larger increase in memory usage. Figure 1b shows memory

consumption when routes have distinct AS paths compared

to routes with identical AS paths. This increase in memory

load of 33% is a start, but clearly the adversary still needs to

consume more memory per update for the attack to become

realistic.

The next observation is that we can make the AS paths

longer, forcing the router to spend more memory storing

them. While the BGP RFC allows AS level paths of any

length so long as they are packaged in the update message

correctly, software bugs related to long AS paths and the

practice of limiting AS paths (discussed in Section V-E)

constrain our adversary’s ability to create arbitrarily long

paths. Of course, paths longer than the single hop used by

Chang et al. are still possible. We ran another series of

injections using distinct AS paths of varying lengths. The

per path memory consumption as a function of path length

can be seen in Figure 2a. While the Quagga router allocates

memory proportionally based on AS path length, we can

see that the CISCO router instead allocates memory in a

fixed size block for AS paths longer than 21 and switches

to a proportional allocation only for paths longer than 120.

This means that by advertising AS paths of length 22, the

adversary can consume the same amount of memory he

could by advertising paths of length 120. This is important,

as AS paths of length 22 are smaller than limits imposed

by current best practices, something we will cover in more

detail in Section V-E.

Our last observation is that our simple update, even with

an above normal size path, only takes up a small fraction

of the total available bytes in a BGP update message.

The adversary can fill the remainder of that space with

Community Attributes [14] in an effort to consume more

memory. Community Attributes are well known optional

transitive attributes which allow operators to specify ar-

bitrary path properties. The impact these attributes have

on memory usage are highly similar to AS paths: each

unique community attribute needs to be stored in a receiving

router’s RIB, and increasing the number of community

attributes increases memory consumption. We repeated our

route injection experiments, padding the update messages

with unique community attributes. A plot of memory usage

as a function of accepted routes can be seen in Figure 2b.

Memory values beyond the capacity of our CISCO router,

are extrapolated. We can see that the combination of distinct

AS paths, increased modestly in length, and surrounded with

unique community attributes increases the per route memory

consumption by a factor of 7.48. The change is dramatic.

Instead of needing more than 2.2 million routes to consume

1 GB of memory, 300 thousand routes can accomplish this

task, a fraction of the size of today’s global routing table.

In fact the total memory of our CISCO router could be

consumed with 76 thousand routes.

C. Exhaustion Through I/O

An alternative tactic for exhausting a router’s free memory

is by increasing the demands from its I/O buffers. We

observed crashes that resulted from running out of memory

in our victim router when its neighbors became CPU starved.

To understand why this occurs, we must take a look at

what happens when the rate of incoming updates to a router

exceeds its computational capacity. In this case the receiving

router will have to buffer the unprocessed updates. We found

that both our Quagga and CISCO router will only buffer a

fixed number of BGP messages. When those limits have

been reached, the BGP process will stop fetching packets

from the operating system’s buffers. Network buffers are

of fixed size as well—when the receiving router’s network

buffer is full, it will send TCP ZERO WINDOW messages to

the advertising router, preventing new packets from being

placed on the wire. New packets are then buffered in the

sender’s network buffers. When those fill, the updates are

buffered inside the advertising router’s BGP process. These

buffers are unbounded in size. We term this behavior back

pressure.

We performed a simple experiment to illustrate back

pressure involving three routers: an injector, a victim router,

and a potentially computationally starved peer. The injector

was directly connected to the victim router, as was the

CPU strained router. All routers started with empty tables,

and the injector would proceed to advertise routes taken

from RouteViews to the victim router, which would in

turn attempt to advertise them to its other peer. Runs

were performed when the third peer was both CPU starved

and when it had sufficient computational resources. The

difference in memory loads of the victim router when it’s

peer was CPU strained versus when it was not can be seen

in Figure 2c. The CISCO router experienced an increase in

memory consumption of more than 40 MB, with spikes over

60 MB. Quagga saw an increase of 30 MB by the end of our

experiment. It is important to note that these added memory

costs are per peer, meaning that routers with more peers are

more susceptible to this attack.

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

 0 5 10 15 20 25 30 35

M
em

o
ry

 C
o
n
su

m
ed

 (
M

B
)

Routes Advertised (Ten Thousands)

CISCO

Quagga

(a)

0.0

20.0

40.0

60.0

80.0

100.0

120.0

 0 2 4 6 8 10 12 14 16 18 20

M
em

o
ry

 U
sa

g
e

(M
B

)

Routes Advertised (Ten Thousands)

Same - CISCO

Distinct - CISCO

Same - Quagga

Distinct - Quagga

(b)

0.0

500.0

1000.0

1500.0

2000.0

 0 0.2 0.4 0.6 0.8 1

F
re

e
M

em
o
ry

 (
M

B
)

Fraction Line Cards With Global Table

7603

7606

ASR 1006

(c)

Figure 1: Measured memory consumption of BGP process as a function of the number of real world routes advertised to it in Figure 1a and repeating
the Chang et al. experiments compared to distinct routes in Figure 1b. Figure 1c shows an estimate of the upper bound of free memory in various models
of CISCO router as a function of the number of line cards receiving full global routing tables from peers.

0.5

0.7

0.9

1.1

1.3

1.5

 0 50 100 150 200 250 300
0.0

1.0

2.0

3.0

4.0

5.0

C
IS

C
O

 M
em

o
ry

 /
 R

o
u
te

 (
K

B
)

Q
u
ag

g
a

M
em

o
ry

 /
 R

o
u
te

 (
K

B
)

AS Path Length

CISCO

Quagga

(a)

0

200

400

600

800

1000

1200

1400

 0 5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

7000

C
IS

C
O

 M
em

o
ry

 U
sa

g
e

(M
B

)

Q
u
ag

g
a

M
em

o
ry

 U
sa

g
e

(M
B

)

Routes Advertised (Ten Thousands)

Starting - CISCO

Final - CISCO

Starting - Quagga

Final - Quagga

(b)

-10.0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

 0 500 1000 1500 2000 2500

M
em

o
ry

 (
M

B
)

Time (s)

CISCO

Quagga

(c)

Figure 2: Figure 2a shows the per update memory usage as a function of path length for Quagga and CISCO routers for both unique and identical
sets of paths. Note how Quagga’s memory allocation is always a function of the path length, while CISCO allocates fix size blocks for all paths between
24 and 108 ASes in length. Figure 2b shows the measured memory consumption when applying path distinctness, increased AS path length, and distinct
community attributes compared to Chang et al.’s attack. Figure 2c shows the increase in memory load for a Quagga and CISCO router when advertising
to a CPU starved peer compared to a normal peer, demonstrating exhaustion of memory via I/O backlog.

This increase in memory usage was not the strangest

behavior that resulted from update back pressure. On the

CISCO router, we noticed that if the amount of back pressure

was large enough, the processes controlling BGP I/O started

to fail. Specifically, it ceased interacting correctly with the

peers responsible for the back pressure. The memory-starved

router ceased attempting to send BGP related packets to

these peers. We assumed tearing down the BGP session,

which would result in a new TCP session, would solve this

I/O issue. It did not. While the back pressure causing peers

could complete a TCP handshake, no response to their BGP

OPEN message came from the CISCO router. This I/O issue

was limited to BGP, however, as we could initiate a telnet

console with the CISCO router from the Linux box hosting

the troubled peer. This problem was only fixed when the

CISCO router was restarted.

Of course in order for back pressure to exist a router’s

neighbors need to be in a CPU starved state. This can occur

for a variety of reasons. The most obvious one is as a result

of nearby router failures. As discussed in Section II-B router

failures push the network out of convergence, forcing routers

to spend processing power recomputing the best paths to

large swaths of the IP address space.

IV. ATTACKING DISTANT ROUTERS

The attacks of Section III provide a peek into how a

malicious router can force a victim into a non-functional

state via legitimate BGP messages. However, one might feel

skeptical about these examples, as they were tested with an

adversary that is directly connected to its victim. In this

section, we will provide examples of how an adversary in

control of a router could force other routers at arbitrary

locations in the topology into an unstable state. We will lay

out how our adversary can launch this attack by convincing

honest routers to forward these malicious updates through

the network to the victim while at the same time minimizing

his direct impact on other routers in the system.

A. Threat Model

Our threat model focuses on legitimate BGP speakers in

transit ASes 3 that have become malicious. These adversaries

are the result of either an autonomous system electing to act

in an adversarial manner or an outside entity compromising

one or more BGP routers. We focus on transit ASes since

stub ASes have very limited abilities within the BGP net-

work. Our chosen threat model gives our adversary two key

capabilities.

3By transit AS, we mean any AS that has other ASes as customers.

First, the adversary can send BGP messages to other

routers. The malicious router cannot simply send arbitrary

messages to any router, however; it can only directly send

BGP messages to its legitimate peers. This is an issue for our

attacker, as his previously stated goal is to disrupt arbitrary

routers or BGP sessions, not simply those he is directly

connected to. In order to have malicious update messages

reach arbitrary routers, our adversary will need to convince

honest peers to propagate those updates in such a manner

that the intended victims receive them. We will cover how

our adversary does that in Section IV-B.

The second ability our adversary has is the capacity

to act in a non-standard, or even protocol non-compliant

manner. Our adversary can, for example, locally ignore paths

with loops, use non-standard path selection, not apply best

practices, and advertise paths in a manner that does not

conform to Valley Free Routing. However, our adversary

again runs into the issue that only he can act in this way;

honest nodes will act normally and can use best practices.

We will cover how these attacks work in relation to best

practices in Section V.

B. Propagating Malicious Updates

In our threat model the adversary only has the capacity

to send update messages directly to his legitimate peers.

In order to get malicious updates to targeted routers, the

adversary will need to convince routers that lie on paths

between him and his victim to forward the updates. Honest

routers only re-advertise the routes they consider “best”. This

is an issue for our adversary because, as we have seen in

Section III, some of the malicious updates will have a longer

than average AS path length. Because AS path length is one

of the key path selection metrics, this will make it less likely

that the malicious updates will be considered best if there

is an alternative.

If our attacker could advertise IP blocks that have

no competing paths, the malicious routes would be the

best by default. To do this, our attacker will take

advantage of the fact that BGP considers more spe-

cific IP prefixes to be distinct. For example, BGP

considers the IP block 123.101.0.0/16 to be dis-

tinct from 123.101.128.0/17 and 123.101.0.0/17.

Since these blocks are considered distinct, path selection

for 123.101.128.0/17 will be done separately from

123.101.128.0/16. Our adversary simply couples his

malicious advertisements to highly specific IP blocks (e.g.

123.101.128.0/24) for which there are not pre-existing

routes. Due to this forced de-aggregation, his malicious

updates will have no competition and will be the best. We

discuss how this tactic interacts with best practices such as

aggregation and prefix length filtering in Section V.

C. Building Attack Flows

The adversary cannot blindly send these “best paths” out

to all of his peers in the hope that they eventually reach

his target. Our adversary will take advantage of the fact

that honest routers operate in a predictable manner in order

to construct “flows” of updates from himself to the victim.

When determining whether to propagate a best path to its

neighbors, a router takes into account the customer/provider

relationships it has both with its neighboring routers and

with the route’s next hop. A well known set of policies

called Valley Free Routing [8] are applied based on these

relationships. Valley Free Routing states that a path will be

advertised if and only if: a) the party being advertised to

is the AS’s customer or b) the route was learned from a

customer. While the AS relationships are technically private

information, a large amount of work has been done to

infer them. By building a topology based on a data set of

these relationships between ASes [21] and applying Valley

Free Routing policies to this topology, a model for how

the malicious routes will travel through the network can

be built. Central to this construction is the concept of a

customer cone. An AS’s customer cone is the set of all of

its customers, plus all of its customer’s customers, and so

on.

With this model of path propagation in mind, the adver-

sary can construct a directed graph based on Internet topol-

ogy and inferred AS relationships. The adversary starts with

an edge-less AS graph. The adversary then adds a directed

edge between his AS and every AS he is directly connected

to, this represents his ability to send advertisements to any

peer he is directly connected to. For each of the ASes added

to the connected component containing the adversary that

are part of the adversary’s customer cone, an edge is added

from that node to its customers. This represents the “A”

clause of Valley Free Routing. If instead the AS added to the

connected component is the adversary’s provider, an edge

is added from that AS to all of its customers, peers, and

providers, the “B” clause of Valley Free Routing. If a path

exists from the adversary to the victim, that means that there

is some neighbor of the adversary which, if the adversary

sends an update, will start up a chain of advertisements

that will end with the update reaching the victim. We call

such a path through this directed graph an attack flow. In

a densely connected graph such as the Internet, there will

typically be multiple paths, which will allow the adversary

to load balance his malicious updates. We will examine the

prevalence of attack flows in Section IV-D.

Once attack flows are found, it might be in the attacker’s

interest to contain updates to only their assigned flow.

The adversary must prevent routers that are next to the

attack flows from accepting the malicious routes. To do

this, our attacker can use loop detection to his advantage.

In BGP, loop detection is achieved by scanning the AS

path for the router’s ASN. If the router detects itself in

the path, it considers the route in-feasible, neither storing

it in memory nor propagating it. It is important to note that

when loop detection is triggered it does not result in a BGP

NOTIFICATION. The first step for our adversary is to define

the “borders” of each attack flow. These are all of the nodes

in the directed graph which are not part of the attack flow,

but have an edge leading from a node in the attack flow

to themselves, we call these nodes bystander nodes. These

are the nodes that will see the malicious updates, but have

nothing to do with the actual propagation of the updates to

the victim. He then ensures that the ASNs of all neighbors

of the attack flow are included inside the fabricated AS path

of any update utilizing that flow. Since the neighbors of the

flow will not propagate the malicious updates, the routers

behind those neighbors will never see the updates.

D. Experimental Observations

In order to validate that our attack works, we utilized our

software router test-bed from Section III. Our topology was

a small subset of the AS level topology of the Internet built

by doing an expansion from a node chosen at random. An

example topology including AS relationships can be seen in

Figure 3a. We launched the attack we have just described

from random attackers to random victims and monitored the

memory of routers in the test-bed. We set a goal, based on

our findings in Section III-A, of 1 GB of additional memory

consumption. The routers in the test-bed fall into one of three

different groups. First, there are routers that are on the attack

flows from the adversary to the victim. Those routers will see

increased memory utilization, but not enough to push them

over the 1 GB threshold. Second, there is the victim, who

should see memory consumption over the 1 GB threshold if

the attack is successful. The last group of routers are those

directly connected to the victim or an attack flow, but not

actually part of the flow. Our loop detection technique should

cause them to see no additional memory load.

A collection of memory traces from an example run can

be seen in Figure 3b. In this run two attack flows were used

by the attacker to push malicious updates. The injection of

malicious routes to directly connected neighbors starts at

time 0 and completes at roughly time 2900. As can be seen,

the attack flow routers show an increase in memory that ends

with them having less than the 1 GB barrier, exactly what

we expected to see. The victim router’s memory load lags

behind the average memory load of the attack flow routers, a

result of it being the last router in the chain that the updates

propagate to. At time 5200 we see the victim router cross

the 1 GB threshold. In our case the router did not crash as

the virtual machine had added memory to handle this load.

The last set of routers, those protected by loop detection,

showed zero increased memory load, as all of the incoming

routes were discarded as loops.

1) Counting Attack Flows.: Another interesting question

to ask is how many attack flows an adversary is likely to

have available for a given victim. To answer this question,

we examined the AS level topology (considering only those

ASes that meet the threat model discussed in Section IV-A)

and calculated the attack flows between each pair of ASes,

counting the number of flows. The results of this calculation

appear in Figure 3c.

As the figure shows, in the worst case a random adversary

has a 73.5% chance of possessing multiple attack flows to a

random victim; almost half of all pairs have at least 3 attack

flows. Furthermore, adversaries in the “transit core” of the

Internet are even more advantageously situated: for example,

around 10% of tier 2 routers can access 20 or more attack

flows when targeting a tier 1 router; and if an adversary is in

control of a tier 1 router, at worst he has roughly 60 attack

flows open to him, and on average far more. This supports

our contention that our attacks can indirectly target arbitrary

routers in the AS topology.

V. DEFEATING BEST PRACTICES

In this section, we examine how various “best practices”

interact with the proposed attack of Section IV. We focus

on the following practices: prefix length limits, prefix filters,

prefix aggregation, prefix count limits, and AS path limits.

We will show that each of these fails to disrupt the adver-

sary’s actions to any sizeable extent. A summary can be

seen in Table I. While not covered here, in our tech report 4

we also consider how a global deployment of BGPSec [16]

would impact our adversary.

A. Prefix Length Limits

One commonly applied best practice is to drop updates

for highly specific prefix blocks. Filtering in this manner

is done in an effort to control the size of routing tables.

This policy is an issue for our attacker because, as discussed

in Section IV-B, our adversary relies on advertising very

specific prefix blocks which do not have pre-existing paths.

Two questions are raised because of this practice.

First, how specific of a prefix can our adversary advertise

without it being filtered? To answer this, we examined what

length of prefixes we can actively observe being forwarded

by various Autonomous Systems based on RouteViews data,

the results of which can be seen in Figure 4a. What we

found was straightforward: 88.5% of transit ASes forwarded

prefixes that were /24s or shorter, while 6.8% forwarded

prefixes longer than this. Thus, in the majority of cases, our

adversary can advertise routes containing a /24 or shorter

successfully.

This leads us to our next question: Given that we can

advertise no more specific a prefix than a /24, can our

adversary find enough un-advertised prefixes to complete

his attacks? This can be answered with a quick back of

the envelope calculation. There are approximately 1.6×10
7

prefix blocks of length /24, and of those 98% correspond

to routable IPs (the other 2% are un-routable bogons [5]).

The current size of the full Internet routing table is roughly

4http://www.cs.umn.edu/research/technical reports.php?page=
report&report id=11-030

(a)

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

 0 2000 4000 6000 8000 10000

M
em

o
ry

 U
sa

g
e

(M
B

)

Time (s)

Victim Goal

Attack Flow Routers

Victim

Bystander Routers

(b)

0.0

0.1
0.2

0.3
0.4

0.5

0.6
0.7

0.8
0.9

1.0

 0 20 40 60 80 100 120

C
D

F

Number of Attack Flows

Random

T2 -> T1

T1 -> T1

(c)

Figure 3: A graphical representation of one topology configuration used for our experiments is shown in Figure 3a. AS relationship is represented by
vertical placement. Figure 3b is a trace of memory loads for BGP processes of various classes of routers during an update based memory exhaustion
attack. Memory load for attack flow routers and bystander routers is an average over all routers in that class. Our 1 GB goal is highlighted on the graph
for clarity. A CDF of the number of attack flows existing between various tiers of transit routers based on AS level topology can be seen in Figure 3c.

Best Practice Why It Does Not Help Experimental Evidence

Prefix Length Limits Limits still give the attacker access to /24s advertised by 88.5% of transit
millions of prefixes ASes (Fig 4a)

Prefix Aggregation Not done to routes from transit ASes Observation of hole punches and
non-aggregated IP blocks (Fig 4b)

Prefix Count Limits Malicious updates target receives based on Prefix limits applied on a per connection (Fig 4c)
sum of victim prefix limits basis combined with AS level topology

AS Path Limits Weakened by generous path limits CISCO routers allocate memory in
and how Routers allocate memory fixed size blocks (Fig 2a)

Table I: Summary of best practices we considered, why they fail to stop the attack from Section IV, and what experimental evidence backs each
conclusion.

0.0

0.1
0.2

0.3
0.4

0.5

0.6
0.7

0.8
0.9

1.0

 0 5 10 15 20 25 30

F
ra

ct
io

n
 o

f
A

S
es

 A
d
v
er

ti
si

n
g

Prefix Length

Transit ASes Only

All ASes

(a)

0.0

0.1
0.2

0.3
0.4

0.5

0.6
0.7

0.8
0.9

1.0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Fraction of Advertised Prefixes Deaggregated

(b)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 0.1 1 10 100 1000

C
D

F

Per Flow Prefixes (x 10
3
) to Reach 1 GB

Random

T2 -> T1

T1 -> T1

(c)

Figure 4: The fraction of ASes observed view RouteViews advertising prefixes of a given length can be seen in Figure 4a. Figure 4b is a CDF of the
fraction of prefixes originated by transit ASes that could be aggregated into more general prefixes. Lastly, Figure 4c is a CDF of the number of malicious
updates required per attack flow to reach 1 GB of memory consumption for different classes of attacker and target nodes.

4×10
5 prefixes [10], meaning that if all IP blocks advertised

were /24s then there would still be over 1.5× 10
7 /24s un-

advertised. Clearly this means that our adversary can find a

sufficient number of un-advertised /24 blocks to utilize.

B. Prefix Filtering

Modern routers have the ability to filter incoming updates

based on a combination of the CIDR being advertised and

the AS sending the update. This capability, if widely and

correctly deployed could have an impact on our adversary’s

strategy as outline in Section IV. Sadly, it is not a forgone

conclusion that prefix filtering is deployed in such a manner.

Prefix filtering must be done manually, and changes in filters

requires a reconfiguration of routers. Additionally, establish-

ing exactly what blocks of IP addresses an AS should or

should not advertise is a non-trivial task. Measuring exactly

how many ASes deploy prefix filtering correctly would re-

quire operators to share confidential information, specifically

the active configurations of their routers. However, we can

gain an intuition as to how widely and correctly prefix filters

are deployed by examining several historical incidents of

prefix leaks and hijackings [19, 25, 3] which were only been

possible because prefix filtering is not correctly and widely

used. As an example, in 2010 China Telecom accidently sent

advertisements for 50 thousand blocks of IP addresses that

it did not own.

C. Prefix Aggregation

Tied closely with the subject of filtering long prefixes is

the concept of prefix aggregation. Upstream routers have

the ability to aggregate multiple advertisements from down-

stream peers into a single, less specific, advertisement which

they pass on to their peers. This again presents an issue for

our adversary, as aggregation could cause his attack updates

to be merged into a small number of aggregated routes.

However, this issue is actually a non-factor for our adversary

for several reasons.

First, we have to take into account how, where, and

why aggregation is and is not done. Aggregation must be

manually configured, and while it is fairly straightforward

to aggregate updates from non-transit ASes, as these routes

are essentially static stubs, this is not the case for routes

from transit providers, where our attacker was assumed to

be. In fact, a commonly used traffic engineering trick called

hole punching assumes that transit providers do not forcibly

aggregate each other’s announcements. In hole punching, a

router announces a path to both a prefix and a different

path to a more specific prefix contained in the first. In

this way the router can hint at different policies for this

specific destination or can encourage load balancing. Using

RouteViews data, we observed 569 core transit ASes actively

using hole punching. The fact that hole punching is actively

done is of great value to our adversary, as the way in

which he builds prefixes makes them appear identical to

hole punches.

Moreover, one can examine RouteViews to see exactly

how many ASes aggregate routes at all. By scanning Route-

Views for ASes that advertise easily aggregatable blocks, for

example 1.2.1.0/24 and 1.2.0.0/24, we can quickly

get a sense for how much aggregation is actually done in

practice. We found that 100% of transit providers are ob-

served advertising trivially aggregatable prefixes. Figure 4b

shows a CDF of the fraction of advertised prefixes seen from

transit providers that could be aggregated.

D. Prefix Count Limits

A different best practice that directly impacts our adver-

sary is limiting the number of prefixes one router will accept

from another. While there have been historical incidents

that call into question whether a majority of ASes actually

do this [19], let us assume the best case: that all ASes

follow this practice. While some of the attacks covered in

Section III center around sending a single malicious path to

a target, others require the adversary to send sets of paths.

Therefore, prefix limiting might present an issue for our

attacker: if prefix limits prevent him from sending enough

paths, his attack could fail. However, when examined more

closely, this turns out not to be an issue. There are two

different sets of prefix limits that will interact: those that

the adversary’s neighbors have set for it, and those that

the victim has set with his neighbors. Somewhat counter-

intuitively, the actual number of prefixes the attacker can

push to a victim several hops away can be higher than the

number of prefixes he can push to his neighbors. This is

because the attacker can set up multiple attack paths that

utilize the same first hop. In this case the maximum number

of malicious updates the attacker can send to the victim is

the sum of the victim’s prefix limits. We can examine our

results from Figure 3c, where we examined the estimated

number of attack flows an adversary would have to a given

target, to get an estimation of the number of per BGP

session advertisements an adversary would need to send

for various attackers and targets. The results of this can be

seen in Figure 4c. Even in the topologically worst case of a

randomly chosen attacker and target, the median number of

routes required is less than half of the routes in the current

global routing table. This is well within the resources of our

threat model. In the case of a tier 1 attacker against a tier 1

target, on average only 5000 prefixes per flow are sufficient.

Another reason prefix limits do not have a large impact

on the attacker is how large these prefix limits might be. The

value of prefix limits depends on where the victim sits within

the Internet topology. In general the victim falls into one of

two places: either on the fringe of the network or not. If the

victim is on the fringe of the network, then he is expecting

to receive full BGP tables from a single digit number of

providers, in which case his prefix limits are set at full table

size (on the order of hundreds of thousands of updates). If

the victim is not on the fringe, he might be expecting smaller

amounts of updates from each individual peer, ranging from

tens of thousands of prefixes up to full tables. However,

victims who are not on the fringe of the Internet also have

an increase in their number of peers of an order of magnitude

or more [21] compared to their counterparts in the fringes.

This means that, even if we assume the core victim has

prefix limits on the order of tens of thousands of routes, his

aggregate route acceptance will be equivalent to that of the

fringe victim, since the core victim has more peers. Lastly, it

is advised practice to keep a safety margin of as large as 25%

on prefix limits, so as to not accidentally exceed them [6].

This means our adversary can allow normal operation to

continue, while using that safety margin to advertise his

malicious routes.

E. Path Length Filtering

Recommended best practice is to limit the maximum

accepted AS path length. Again, recent historical incidents

call into question whether this is actually done [25]. Even

if routers set a small AS path length limit (the current

recommendation is 100 or less), we can recall back to

Figure 2a in Section III-B and see that the length of the

path is not a dominating factor for memory consumption

in CISCO routers. With a path length of 22, each update

accepted takes up 0.8 KB of memory. With a full path of

length 253, we only see a marginal improvement to 1.1 KB

of memory per update accepted. In our memory consumption

attack, we cause a much greater memory consumption by

adding community attributes to the updates.

VI. RELATED WORK

Previous works have examined the ability of adversaries

to propagate BGP updates to routers multiple hops away.

Two such examples are Pilosov and Kapela from Defcon

16 [18] and Goldberg et al. from SIGCOMM 2010 [9]. In

these works the authors examine how to propagate updates

for individual IP blocks, which the adversary does not own,

with the goal of hijacking traffic bound for hosts inside those

IP blocks. We share some techniques with each of these

works. For example, Pilsov uses the technique of adding

ASNs to the path in an effort to hide the updates from the

victim AS. We expand upon this idea in Section IV-C, using

prepending ASes to build attack flows. In addition, the goals

of our attacks different greatly from these works. In prior

work the adversary’s goal was to use the accepted routes to

hijack BGP traffic, our adversary’s goal on the other hand

is to use the side effects of the accepted routes to disrupt

the victim router.

Issues with memory load has also been covered from

different perspectives in prior work. As mentioned earlier,

Chang et al. [1] examined the impact of large BGP RIBs

on router functionality. While Chang et al. covered the

direct impacts of a router running out of memory, they

neither examine what makes routers more likely to run

out of memory nor how and adversary can leverage router

memory allocation to induce stability issues. In contrast, our

work examines both of these items in detail. Routing table

growth has also been covered extensively by the networking

community [13]. These works are concerned with the growth

of routing tables by non-malicious means, specifically the

natural expansion of the Internet and traffic engineering

techniques. Our work instead examines how an adversary

can artificially expand routing table size. Possible solutions

to these issues have been proposed as well [24], however

these solutions focus nearly exclusively on line card memory

load, and not the RIB, our adversary’s target.

VII. CONCLUSION

In this paper we demonstrated how an adversary in control

of a BGP router can disrupt victim routers located across

the Internet. We have shown through experimentation with

hardware and software routers three key points. First, that an

adversary in control of a BGP speaker can use unexpected

but perfectly legal BGP messages to crash victim routers.

Second, that such attacks can be launched against victims

located at arbitrary locations in the network by taking

advantage of the natural behavior of honest routers. And

third, modern best practices do not prevent these attacks.

Acknowledgments: This work was supported by NSF

project CNS-1223421.

REFERENCES

[1] D.-F. Chang, R. Govindan, and J. Heidemann. An empirical study of
router response to large BGP routing table load. In Proceedings of

the 2nd ACM SIGCOMM Workshop on Internet measurment, IMW
’02, pages 203–208, New York, NY, USA, 2002. ACM.

[2] CISCO Systems. CISCO Systems - Routers. http://www.cisco.com/
en/US/products/hw/routers/index.html.

[3] J. Cowie. China’s 18-minute mystery. Renesys Corp., http://www.
renesys.com/blog/2010/11/chinas-18-minute-mystery.shtml, 2010.

[4] J. Cowie, A. Ogielski, B. Premore, and Y. Yuan. Global routing
instabilities during Code Red II and Nimda worm propagation, 2001.

[5] T. Cymru. Team Cymru Bogon List. http://www.team-cymru.org/
Services/Bogons/bogon-dd.html.

[6] T. Cymru. Team Cymru Secure BGP Template. http://www.
team-cymru.org/ReadingRoom/Templates/secure-bgp-template.html.

[7] N. Feamster, D. G. Andersen, H. Balakrishnan, and M. F. Kaashoek.
Measuring the effects of Internet path faults on reactive routing. In
Proceedings of the 2003 ACM SIGMETRICS international conference

on Measurement and modeling of computer systems, SIGMETRICS
’03, pages 126–137, New York, NY, USA, 2003. ACM.

[8] L. Gao and J. Rexford. Stable Internet routing without global
coordination. IEEE/ACM Trans. Netw., 9:681–692, December 2001.

[9] S. Goldberg, M. Schapira, P. Hummon, and J. Rexford. How
secure are secure interdomain routing protocols. SIGCOMM Comput.

Commun. Rev., 41:87–98, August 2010.
[10] G. Huston. BGP Routing Table Analysis Reports. http://bgp.potaroo.

net/.
[11] Juniper Networks. Juniper Network Routing Solutions. http://www.

juniper.net/us/en/products-services/routing/.
[12] M. Lad, X. Zhao, B. Zhang, D. Massey, and L. Zhang. An analysis

of BGP update surge during Slammer attack. In Proceedings of 5th

International Workshop on Distributed Computing, 2003.
[13] X. Meng, Z. Xu, B. Zhang, G. Huston, S. Lu, and L. Zhang. Ipv4

address allocation and the bgp routing table evolution. SIGCOMM

Comput. Commun. Rev., 35(1):71–80, Jan. 2005.
[14] Network Working Group. RFC1997 - BGP Communities Attribute.

http://tools.ietf.org/rfc/rfc1997.txt, August 1996.
[15] Network Working Group. RFC4271 - A Border Gateway Protocol 4

(BGP-4). http://tools.ietf.org/html/rfc4271, January 2006.
[16] Network Working Group. BGPSEC Protocol Specification.

https://http://tools.ietf.org/html/draft-ietf-sidr-bgpsec-protocol-04,
July 2012.

[17] D. Pei, X. Zhao, D. Massey, and L. Zhang. A study of BGP path vec-
tor route looping behavior. In Proceedings of the 24th International

Conference on Distributed Computing Systems (ICDCS’04), ICDCS
’04, pages 720–729, Washington, DC, USA, 2004. IEEE Computer
Society.

[18] A. Pilosov and T. Kapela. Stealing the internet. In Defcon 16, 2008.
[19] A. Popescu, B. Premore, and T. Underwood. Anatomy of a leak:

AS9121. Renesys Corp., http://www.renesys.com/tech/presentations/
pdf/renesys-nanog34.pdf, 2005.

[20] A. Popescu, B. Premore, and E. Zmijewski. Middle east meltdown:
A global BGP perspective. Renesys Corp., http://www.renesys.com/
tech/presentations/pdf/apricot-plenary-08.pdf, 2008.

[21] ieee RouteViews. RouteViews Dataset. http://www.routeviews.org/.
[22] F. Wang, Z. M. Mao, J. Wang, L. Gao, and R. Bush. A measurement

study on the impact of routing events on end-to-end Internet path
performance. SIGCOMM Comput. Commun. Rev., 36(4):375–386,
2006.

[23] L. Wang, X. Zhao, D. Pei, R. Bush, D. Massey, A. Mankin, S. F. Wu,
and L. Zhang. Observation and analysis of BGP behavior under stress.
In Proceedings of the 2nd ACM SIGCOMM Workshop on Internet

measurment, IMW ’02, pages 183–195, New York, NY, USA, 2002.
ACM.

[24] X. Zhao, Y. Liu, L. Wang, and B. Zhang. On the aggregatability of
router forwarding tables. In Proceedings of the 29th conference on

Information communications, INFOCOM’10, pages 848–856, Piscat-
away, NJ, USA, 2010. IEEE Press.

[25] E. Zmijewski. Reckless driving on the internet. Renesys Corp., http:
//www.renesys.com/blog/2009/02/the-flap-heard-around-the-worl.
shtml, 2009.

