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ABSTRACT

A network coordinate system assigns coordinates to each
node in a network in such a way that the network latency
between any two nodes can be accurately estimated by the
distance between their coordinates. Although several net-
work coordinate systems have been shown to be accurate
and efficient, nearly all of the systems in the literature are
insecure, in the sense that an attacker with knowledge of
the scheme can cause arbitrary peers to produce inaccurate
distance estimates. This includes several recently proposed
“secure” network coordinate schemes.

We describe a new decentralized network coordinate sys-
tem, KoNKS, and argue that it meets a well-specified se-
curity goal under a realistic threat model. We demonstrate
that KoNKS is as accurate as current network coordinate
systems, does not require any trusted entities, and is resis-
tant against all known attacks, in addition to arguing for its
security against future attacks within our threat model.
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1. INTRODUCTION

A network coordinate system [7,13,14] assigns virtual co-
ordinates (network positions) to every node in the network.
These coordinates are assigned so that the coordinate dis-
tance between two nodes reflects the real network distance
between those two nodes. This allows any peer in the sytem
to accurately estimate the network distance between any
pair of nodes, without having the pair of nodes contact each
other. Network coordinate systems’ ability to predict the
network latency between arbitrary pairs of nodes can be
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used in many applications: finding the closest node to down-
load content from in a content distribution network or route
to in a peer-to-peer system [17], reducing inter-ISP com-
munication [5,12], reducing the amount of state stored in
routers [1], performing byzantine leader elections [6], and
detecting Sybil attackers [2,8].

Several schemes [10,16,18,19] have been developed to pro-
tect network coordinate systems against the attacks in [11],
where malicious peers report randomly chosen coordinates,
report random but consistent coordinates, or add random
delay in their messages to other peers; all of the schemes
were shown to effectively mitigate the known attacks. Re-
cently, however, a new type of attack [3] — the frog-boiling
attack — was introduced, and it was shown that some of these
schemes fail to protect against this attack. The frog-boiling
attacker reports small but consistent lies that are not de-
tected by any of the security mechanisms, but which cumu-
latively introduce unacceptable errors; for example, it was
shown that this technique can randomly partition an over-
lay using a secure network coordinate system [19]. One of
the issues is that the current schemes aimed only to “patch”
against the known attacks. This could lead to an arms race
where new attacks bypass existing security mechanisms, re-
sulting in new improved schemes to defend against the new
attack, and so on.

To avoid this arms race, we evaluate a network coordi-
nate system in terms of an explicit security goal — an invari-
ant that should hold despite the presence and actions of an
attacker — under a concrete threat model that states what
resources the attacker can marshall. The two goals are 1)
an attacker’s influence on either the network distance or co-
ordinate distance between two honest nodes is limited, and
2) the coordinate distance between a malicious peer and an
honest peer cannot be smaller than the true network dis-
tance between these two nodes. The first goal limits an
attacker’s influence on honest nodes’ coordinates while the
second goal prevents an attacker from appearing closer than
it actually is. Our security model will be described in more
detail in Section 2.

Our main contribution is describing a completely decen-
tralized network coordinate system, KoNKS, which is secure
under our stated security model. KoNKS — consensus-style
network coordinate system — modifies the objective function
that each peer follows to update its coordinates. In current
network coordinate systems, a peer’s goal is to minimize the
sum of the prediction errors for all of its neighbors. In con-
trast, using KoNKS, a peer’s goal is to minimize the number
of neighbors whose individual relative error is unacceptable



— KoNKS puts an upper bound on each neighbor’s relative
error. The relative error determines how accurate the coor-
dinate system is, thus when there are no attackers, minimiz-
ing the sum of errors should lead to more accurate distance
predictions. However, minimizing the sum of prediction er-
rors allows each neighbor to have a significant influence on
the position of its peers. This is one of the reasons why the
frog-boiling attack works.

We show in Section 5 that KoNKS is as accurate as Vi-
valdi [7], one of the most popular decentralized network co-
ordinate system (Vivaldi is implemented in Vuze [17] and
is the basis for previous “secure” network coordinate sys-
tems [10,16,19]), and is secure against all the current attacks,
including the network-partition frog-boiling attack. More
specifically, KoNKS puts an upper bound on the amount of
influence an adversary can have on the honest nodes. For
example, 10% of attackers can partition a network using
KoNKS only so much before their lies do not have any ef-
fect anymore because they are outside of the threshold, or
the other honest neighbors’ influence equals the malicious
neighbors’ influence. KoNKS with no attack can achieve a
median relative error as low as 12%, which is comparable to
Vivaldi’s median relative error of 10%. KoNKS also incurs a
very low overhead, similar to Vivaldi as coordinates can be
piggybacked on top of application messages. The processing
overhead of each node updating its coordinates is also small.

2. SECURITY MODEL

The network consists of n nodes, of which 0 < m < %
are malicious. The number of malicious peers needs to be
limited to at most 1/4 of the network so that satisfying a
majority of the nodes guarantees that the median node is
honest. Clearly, a botnet or Sybil attacker [8] could in-
validate this assumption, but dealing with such attacks is
beyond the scope of this paper'. We allow for a powerful
adversary that can compromise any node in the network (up
to 1/4 of the network), but cannot adaptively compromise
nodes, so that if a peer chooses its neighbors randomly, with
high probability only 1/4 of them will be malicious. More-
over, we allow the adversary to have global knowledge of the
network, that is, it knows every peer’s coordinate, real net-
work distance to other peers, and neighbors. The adversary
can also inflate its network distance to other peers by delay-
ing its responses, and can report any coordinate it chooses.
However, we do limit the adversary’s power in the following
sense: we assume that a malicious peer cannot decrease its
real network distance to another peer. This can be achieved
by using an unpredictable unique nonce in every message.
Thus, a malicious peer cannot reply to a message faster than
the network conditions allow.

We next describe how a network coordinate system func-
tions. Every node computes its own k-dimensional Euclidean
coordinates (for simplicity we assume Euclidean space). The
real network distance between any two nodes A and B is
denoted as rtt(A, B), and the coordinate distance between
any two nodes A and B is denoted by distance(A, B). Em-
bedding a higher-dimensional space (pairwise network dis-
tances) into a low-dimensional Euclidean space (for example
5-dimensional Euclidean coordinates) inherently produces
errors, that is, it is in general not possible to obtain a

We note that an adversary controlling a botnet can likely
cause more serious problems for an overlay than disrupting
its network coordinate system.

perfect embedding from a high-dimensional space to a low-
dimensional space. A good embedding minimizes the error
produced. The prediction error between two peers A and B
is defined as |distance(A, B) —rtt(A, B)|. We define the rela-
|distance(A, B)—rtt(
rtt(A, B)

a low prediction error, but the converse is not necessarily
true. We thus use relative error for our evaluation results.
To calculate the accuracy of the whole network, the median
relative error for all the nodes is usually used. The lower the
relative error, the more accurate the network coordinates as
the coordinate distance closely matches the real network dis-
tance. We define the network as having converged when the
median relative error for all the nodes remains unchanged,
that is, peers’ coordinates are relatively unchanged.

We now define the two goals that any network coordinate
system should meet in order to be secure.

. A B . . .
tive error as )l A low relative error implies

1. The attacker cannot cause the median relative error
between pairs of honest peers to exceed the threshold
T.

2. The attacker cannot reduce its apparent distance to an
honest peer by a factor of more than (1 —T).

The first security goal is to prevent a “cascading” effect,
where an attacker can greatly influence one honest node,
which in turn, influences another honest node. T'wo honest
nodes should be able to “embed” each other and calculate
their real coordinate distance even if malicious nodes are
present. If an attacker can affect the coordinate distance
between two honest nodes, then a honest node will not be
able to accurately calculate the coordinate distance to any
other honest node.The second security goal is to ensure that
an adversary cannot appear closer to another peer than it
actually is. This prevents the attacker from being close to
all the peers in the network. In certain applications such as
a peer-to-peer system or closest-server selection, the closest
peer is usually queried.

3. RELATED WORK

Existing secure network coordinate systems use various
methods as security mechanism. An anomaly detection sys-
tem such as the Kalman filter [10] uses a statistical method
to determine if a reported coordinate is acceptable. Outlier
detection mechanisms such as the Mahalanobis distance [19]
reject reported coordinates that do not conform to past ac-
cepted coordinates. Veracity [16] is a distributed reputation
system, where a peer’s coordinate is verified by other peers in
the network. All these schemes have been previously shown
to be insecure by a new attack [3,4].

Treeple [4] is a provably secure and accurate network coor-
dinate system, using centralized and trusted “vantage points”.
Treeple provides strong, worst-case security guarantees against
a realistic adversary model, but requires a set of trusted au-
thorities to achieve these guarantees. In contrast, KoNKS
requires no central authorities and provides average case se-
curity, guaranteeing that each peer will have accurate la-
tency estimates to the majority of its peers. Furthermore,
Treeple generates “positions” that are not Euclidean coordi-
nates whereas KoNKS generates Euclidean coordinates and
can be used in place of the standard insecure schemes for any
application that expects Euclidean network coordinates.

4. KONKS DESIGN

The objective function that each node in a current net-
work coordinate system seeks to minimize is total prediction



error to all nodes. This is required for the network coordi-
nates to be accurate, as a low prediction error implies that
the coordinate distance is close to the network distance. In
these schemes, every node maintains a list of neighbors — a
subset of all the peers in the network. Each node will, reg-
ularly, pick a node from that list of neighbors to “contact”
so as to update its own coordinate. For each coordinate
update, a node will update its coordinate so that it even-
tually minimizes the sum of prediction errors for all
of its neighbors as the end goal. Although this objective
function allows a node to select a coordinate that is accu-
rate (low relative error), it allows for “outliers” in the list of
neighbors. For example, the sum of prediction errors might
be small, with most neighbors’ prediction error being very
small and one neighbor’s prediction error being large. In
trying to minimize the sum of errors, the large error of the
one neighbor can be decreased. However, this might dou-
ble the small errors of all the other neighbors. Thus, an
adversarial neighbor might disproportionately influence the
updated coordinate of a peer.

To mitigate possible attacks and to reduce the influence
of any one neighbor, we modify the objective function so
that each node will minimize the number of neigh-
bors whose individual relative error is greater than
a threshold T'. All the neighbors are considered at each lo-
cation update. However, let’s say a location C' can be chosen
so that most of the neighbors’ individual relative error is less
than T', except one neighbor N whose error is greater than 7.
If another location can be computed such that this neigh-
bor’s (N) error is less than 7', but if this location change
would make other neighbors’ individual error greater than
T, then the previous location C would be chosen instead.
This objective function limits the influence each neighbor
can have on a peer. More specifically, each neighbor has the
same amount of influence as each other.

For each P, € P
Choose N; e N; CP
Define Pair(N;) = (Coordn,, rtt(Pi, Nj))
Procedure SendUpdate(N;):
Send Coordp, to IN;
Procedure ReplyUpdate(N;):
Send Coordp, to IV;
Send rtt(P,-, NJ)
Procedure ReceiveUpdate(N;, Coordn,, rtt(P;, Nj)):
Pair(N;) = (Coordw;, rtt(P;, Ny))
Update()
Procedure Update():
Set bestCoordinate <— null
Set bestNumSat < 0
for C € CoordSpace:

Set numSat <— NumSatisfied(C')

if numSat > best NumSat:

best NumSat <— numSat
bestCoordinate < C

Output: bestCoordinate

Procedure NumSatisfied(coordinate):
Set satisfiedNeighbors < 0
For each N; € N; do:
if relative_error(coordinate, coordn;) < T
Increment satisfiedNeighbors by 1
Output: satisfiedNeighbors

Figure 1: KoNKS algorithm

4.1 Algorithm

Figure 1 shows the algorithm for KoNKS. The set of n
nodes is represented as P. Every node P; € P maintains a
list of neighbors N;. The bottom half of the figure outlines
how a peer will update its coordinate.

4.2 Why is KoNKS Secure?

We argue that KoNKS is secure — it meets our two security
goals from Section 2. We assume that it is possible to obtain
a T-embedding for the honest nodes in the network. This
means that it is possible to assign coordinates to honest
nodes such that the coordinate distance between any pair of
honest nodes will be different from the real network distance
between that pair of nodes by a factor of at most 7. In
other words, the error for the network latency estimate will
be at most T'. In Section 5.2, we show that experimentally,
T = 0.2 is adequate for the Internet. This means that all
honest neighbors can be satisfied — the individual relative
error of every honest neighbor will be less than 7'

KoNKS satisfies the first security goal due to multiple
reasons. First, each peer is influenced by its list of neighbors
and if the attacker is not in that list, it cannot influence the
peer’s coordinate. Second, even if the neighbor list contains
some adversarial nodes, the honest neighbors outnumber the
malicious neighbors. Thus, the influence that the malicious
neighbors can exert on the peer is limited. In the worst case,
1/4 of a peer’s neighbors are malicious. Thus, the peer can
satisfy % of its neighbors. Even if all malicious neighbors
are satisfied, at least half of the honest neighbors are also
satisfied, and thus the median relative error of honest peers
will be less than the threshold T'.

KoNKS also satisfies our second security goal. A dishonest
node N can claim to have coordinates that make its distance
to peer P arbitrarily small. If N is on P’s neighbor list, P
will try to find coordinates that make its relative error to IV
acceptable, while also making its relative error for the other
neighbors acceptable. Thus, N cannot reduce its apparent
network distance to P by a factor of more than 1 — 7.

5. EVALUATION RESULTS
5.1 Setup

We implemented a simulator for our KoNKS algorithm
and evaluated its accuracy and resistance to known attacks.
For our simulation we used the King dataset [9] for latencies
between nodes. Each peer in the network computes its own
5-dimensional coordinate. Every 10 seconds, each node will
randomly select another peer in the network to SendUpdate.
Each peer maintains 50 neighbors. Neighbors are randomly
chosen from all the peers in the network. All attacks start
after time 80 ticks, to allow the network to stabilize — that
is, reach a stable median relative error. This translates to
about 13 minutes. All of our simulations were run on a
quad-core 2.67GHz Intel Xeon W3550 processor.

5.2 Simulation

Picking the threshold T': In the previous section, we men-
tioned the threshold T that all neighbor’s individual relative
error must satisfy. Recall that the relative error between two
peers A and B is defined as |di3tancer(£(’ﬁ?];;tt(A’B)l. A low
relative error means that the system is more accurate. We
now experimentally set the value of T" and explain why this
value produces accurate latency predictions. Figure 2(a)
shows the median relative error for all the nodes in the net-
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Figure 2: (a) The median relative error for Vivaldi and KoNKS with different thresholds. (b) The average percentage

of honest neighbors whose individual relative error is less than T.

(c) The intercluster/intracluster ratio for both

Vivaldi and KoNKS with 0% and 10% of frog-boiling attackers.

work over time. The different lines indicate the different val-
ues of T for KoNKS. The figure shows that decreasing the
threshold improves the accuracy of KoNKS — when 7' = 0.2,
KoNKS’s accuracy is comparable to Vivaldi’s accuracy. This
is expected as the lower the threshold, the lower the neigh-
bor’s relative error, and this implies that the median rela-
tive error should be lower than 7. We note that the median
relative error is much lower than 7. When T = 0.4, the
median relative error converges to 0.15. This means that the
network latency prediction has an error of 15%, that is, the
coordinate distance differs from the real network distance
by 15%. The figure also shows that the lower the threshold,
the longer KoNKS takes to converge to a stable equilibrium.
From these observations, we picked T' = 0.25 as our thresh-
old — each neighbor’s coordinate distance can differ from the
real network distance by a factor of 0.25. Intuitively, a 25%
error when estimating network latencies on the Internet is
acceptable in practice. Moreover, from Figure 2(a), we see
that when T' = 0.25, the median error is actually only 12%.

The median relative error does not show the whole pic-
ture. Figure 2(b) shows the percentage of neighbors satisfied
— their individual relative error is less than 7. The higher
the threshold, the more likely it is to satisfy neighbors, and
the lower the threshold, the harder it is to choose a coordi-
nate that can satisfy all neighbors. At T' = 0.25, 90% of the
neighbors can be satisfied. Although 10% of the neighbors
cannot be satisfied and are not considered when comput-
ing the optimal coordinate, this does not mean that these
neighbors are “bad”. These same peers might be satisfied
neighbors for another node.

5.3 Security

To empirically support our security argument, we imple-
mented three of the previously proposed attacks — the “ran-
dom” attack, the “inflation/deflation” attack, and the frog-
boiling attack [3]. Due to space constraints, we only show
our results for the frog-boiling attacks.

We implemented the frog-boiling attack from [3] in an at-
tempt to partition the KoNKS network into two independent
subnetworks. The malicious nodes pick the first “half” of the
network Np to “move” to the coordinate [—1000, —1000,

— 1000, —1000, —1000] and the second “half” of the network
N3 to move to [1000, 1000, 1000, 1000, 1000]. If successful,
this attack partitions the whole network into two indepen-
dent subnetworks N1 and Ns. The malicious nodes behave
normally and compute their best coordinate just like any
honest peer. However, they lie about their location when

they report it to the honest nodes. When a malicious node
receives a SendUpdate request from an honest node, it will
first determine which “half” that node falls into. If the hon-
est node has not previously contacted the attacker, it will
reply with its current best coordinate. If the honest node
has previously contacted the attacker, it will reply with the
last reported coordinate to that honest node £6 (—¢ if the
honest node falls into N1 and +9 if the honest node falls into
Ns). As [3] showed, each lie is small and not detected by
anomaly detection, but cumulatively, the lies add up such
that the network is effectively partitioned. We set § = 20
in our experiments. The higher ¢ is, the faster the attack,
but the higher the chance of being detected. We expect that
KoNKS will not be affected by this attack.

Figure 2(c) shows the intercluster/intracluster ratio for
both KoNKS and Vivaldi with no attackers and 10% of ma-
licious nodes. The intercluster/intracluster ratio indicates
how far apart the two networks are. A ratio of two means
that on average, nodes are twice as far from the center of
the opposite cluster as they are from the center of their own.
The higher the ratio, the further apart the two networks are.
With no attack, both KoNKS and Vivaldi stabilize to a ratio
of 1.2. The ratio is not 1 as we always use the same partition
of the network to be N; and the same other half to be Ns.
With 10% of attackers, the ratio for Vivaldi keeps increas-
ing over time. Although the intercluster/intracluster ratio
for KoNKS increases from 1.2 to 1.6, the ratio remains stable
over time. This reinforces our argument that the attacker’s
influence on honest KoNKS nodes is limited. The malicious
neighbors can affect their honest peers only so much before
they stop having a malicious effect. Figure 3(a) shows the
corresponding median relative error. Vivaldi’s median rel-
ative error keeps increasing with 10% of malicious nodes,
whereas KoNKS’ median relative error remains mostly un-
changed even under attack. We obtained a similar result for
higher percentages of frog-boiling attackers.

So far, we have shown that KoNKS is secure against all
the known attacks. Figure 2(b) shows the percentage of
neighbors which can be satisfied. We also show that even
under attack, honest KoNKS peers can still satisfy a high
percentage of honest neighbors, while not satisfying the ma-
licious neighbors. Figure 3(b) shows the percentage of hon-
est neighbors satisfied for varying percentages of malicious
nodes in the network. We observe that whichever attack is
used or the percentage of malicious peers, honest KoNKS
peers can still satisfy most honest neighbors.
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Figure 3: (a) The median relative error for both Vivaldi and KoNKS with 0% and 10% of frog-boiling attackers.
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CDF for the time required to complete the search algorithm to find the best coordinate for each update.

5.4 Overhead

As mentioned before, the communication overhead is small.

Coordinates can be piggybacked on top of application mes-
sages. The processing overhead (the search algorithm to find
the optimal coordinate) is also small. Figure 3(c) shows that
the median time for a peer to pick its best coordinate at each
update is 10ms. The code is not multi-threaded, thus it is
expected that the update time can be further reduced.

5.5 Experiments

We also performed our experiments on PlanetLab [15],
with the same implementation details as for the simulator.
Similar results were obtained on PlanetLab and are omitted
due to space constraints.

6. CONCLUSION

Although network coordinate systems can accurately pre-
dict the network latency between two peers, current systems
are not secure in the sense that an adversary can disrupt the
whole network by increasing the error, which in turn means
that the network latency prediction is no longer accurate.
It was previously shown that even the “secure” schemes are
vulnerable to the frog-boiling attack. We introduce a new
decentralized network coordinate system, KoNKS, and ar-
gue that it will be secure not only against known attacks,
but also against future attacks that work within our threat
model. KoNKS aims to achieve consensus among all the
neighbors of a peer, such that, the individual relative error
of each neighbor is less than the threshold T' = 0.2.

We found experimentally that setting the threshold to 0.2
produced a low relative error, comparable to Vivaldi, and
allows the network to converge quickly. The median relative
error for KoNKS with no attacker is 0.12, compared to 0.10
for Vivaldi. This means that the network distance prediction
differs from the real network distance by 12%. With 10%
of malicious nodes, the intercluster/intracluster ratio — a
measure of how far away from each other the two networks
are — increases from 1.2 to 1.6, but remains stable, contrary
to the frog-boiling attack on Veracity or Vivaldi, where the
two networks keep getting further apart over time.
Acknowledgments: This work was supported by the Na-
tional Science Foundation under grant CNS-0716025.
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