Covert Two-Party Computation

Luis von Ahnt, Nicholas J. Hoppét and John Langford

L Carnegie Mellon University (biglou@cs.cmu.edu)
2 University of Minnesota (hopper@cs.umn.edu)
3 Toyota Technological Institute (jl@tti-c.org)

Abstract. We introducecovert two-party computatigra stronger notion of security than standard secure two-
party computation. Like standard secure two-party computation, covert two-party computation allows Alice and
Bob, with secret inputs 4 andz g respectively, to compute a functigi{z 4, z5) without leaking any additional
information about their inputs. In addition, covert two-party computation guarantees that even the existence of a
computation is hidden from all protocol participants unless the value of the function mandates otherwise. This
allows the construction of protocols that retuftwa,zz) only when it equals a certain value of interest (such

as “Yes, we are romantically interested in each other”) but for whieither party can determine whether the

other even ran the protocol whenevgfz a,z) is not a value of interesSSince existing techniques for secure
function evaluation always reveal that both parties participate in the computation, covert computation requires the
introduction of new techniques based on provably secure steganography. We introduce security definitions for covert
two-party computation and show that this surprising notion can be achieved by a protocol given the Decisional
Diffie-Hellman assumption in the “honest but curious” model. Using this protocol as a subroutine, we present
another protocol which is fair and secure against malicious adversaries in the Random Oracle Model — unlike
most other protocols against malicious adversaries, this protocol does not rely on zero-knowledge proofs (or similar
cut-and-choose techniques), because they inherently reveal that a computation took place. We remark that all our
protocols are of comparable efficiency to protocols for standard secure two-party computation.

1 Introduction

Secure two-party computation (or SFE, for secure function evaluation) allows Alice and Bob to evaluate
a function of their secret inputs so that neither learns anything other than the output of the function. A
real-world example often used to illustrate the applications of this primitive is when Alice and Bob wish to
determine if they are romantically interested in each other. Secure two-party computation allows them to do
so without revealing their true feelingmless they are both attracteBy securely evaluating the AND of

the bits representing whether each is attracted to the other, both parties can learn if there is a match without
risking embarrassment: if Bob is not interested in Alice, for instance, the protocol does not reveal whether
Alice is interested in him.

However, although often used to illustrate the concept, this example is not entirely logical. The very use
of two-party computation already reveals possible interest from one party: “would you like to determine if
we are both attracted to each other?”

A similar limitation occurs in a variety of other applications where the very use of the primitive raises
enough suspicion to defeat its purpose. To overcome this limitation we intradweet two-party compu-
tation, which, unless the output of the function is favorable to both pattidgs the fact that a computation
even took placeThe computation is hidden in that each party cannot determine if the other went along
with the computation or simply was communicating as they normally do. More specifically, for a given
setY of interesting values, covert two-party computation guarantees the following (in addition to leaking
no additional knowledge about the individual inputs): (A) no outside eavesdropper can determine whether
the two parties are performing the computation or simply communicating as they normally do; (B) When
flza,xzp) € Y, the result of the computation is revealed; but (C) neither party can determine whether the
other even ran the protocol whenev&ir 4, z5) ¢ Y. Thus whether or not a computation took place is
revealed based on the output of the function.

1.1 Some Applications

Among the many applications of covert two-party computation we mention the following as examples:

— Covert Authentication. Imagine that Alex works for the CIA and Bob works for Mossad (the Israeli
intelligence agency). Both have infiltrated a single terrorist cell but neither knows that the other is also
an undercover agent. If they can discover their “mutual interest” they could pool their efforts; thus both
should be looking for potential collaborators. On the other hand, suggesting something out of the ordi-
nary is happening to a normal member of the cell would likely be fatal. Running a covert computation in

which both parties’ inputs are their signed credentials and the result is revealed only if they are allies will
allow Alex and Bob to authenticate each other. If Bob is NOT an ally, he will not know that Alex was
even asking for authentication, and vice-versa. Furthermore, the authentication would happen without
anybody else being able to notice that something out of the ordinary happened.

It is important thatthe existence of the computation is revealed only after the parties are mutually
authenticategdsince asking Charlie, a terrorist, to execatey SFE protocol could result in Alex being
killed. (Similar situations occur in, e.g., planningaup d’etator constructing a zombie network.)

— Dating. As hinted above, covert two-party computation can be used to properly determine if two people
are romantically interested in each other. It allows a person to approach another and perform a compu-
tation hidden in their normal-looking messages such that: (1) if both are romantically interested in each
other, they both find out; (2) if none or only one of them is interested in the other, neither will be able to
determine that a computation even took place.

Of course, ordinary social interactions do not require such discfetRut if the computation further
involves comparing some “unusual” dating preferences or if one of the parties is already involved with
somebody else, it could be embarrassing or detrimental to reveal the need to run the protocol at all.

To prevent one party from lying to determine if the other is interested, Alice and Bob could use a function
which outputs a non-repudiable “certificate” of mutual interest; but even in this case it is important to
guarantee thaboth obtain the result. If one of the parties can get the result while ensuring that the
other one doesn', this party would be able to learn the other’s input by pretending he is romantically
interested; there would be no harm for him in doing so since the other would never see the result. Two-
party computation protocols in which either both parties get the result at roughly the same time or neither
of them does are called “fair.” We will present a protocol for fair covert two-party computation.

— Cooperation between competitorsimagine that Alice and Bob are competing online retailers and
both are being compromised by a sophisticated hacker. Imagine also that because of the volume of their
logs, neither Alice nor Bob can draw a reliable inference about the location of the hacker, and statistical
analysis indicates that about twice as many attack events are required to isolate the hacker. Thus if Alice
and Bob were to compare their logs, they could solve their problem. But if Alice admits she is being
hacked and Bob is not, he will certainly use this information to overtake her customers, and vice-versa.
Using covert computation to perform the log analysis online can break this impasse.

If Alice is concerned that Bob might fabricate data to try and learn something from her logs, the com-
putation could be modified so that when an attacker is identified, the output is both an attacker and a
signed contract stating that Alice is due a prohibitively large fine (for instance, $1 Billion US) if she can
determine that Bob falsified his log, and vice-versa.

Similar situations occur whenever cooperation might benefit mutually distrustful competitors. For ex-
ample: negotiations for a merger, contract negotiations including terms which are illegal, etc.

— Cheating in card games.Suppose two parties playing a card game want to determine whether they
should cheat. Each of them is self-interested, so cheating should not occur unless both players can
benefit from it. Using covert two-party computation with both players’ hands as input allows them to
compute if they have an opportunity to benefit from cheating while guaranteeing that: (1) neither player
finds out whether the other attempted to cheat unless they can both benefit from it; (2) none of the other
players can determine if the two are secretly planning to collude.

Hiding the desire to cheat (i.e., hiding that the function is being evaluated) is especially useful because
such desire is greatest when a player has a weak hand, so even revealing this desire already reveals
something about the player’s input.

This list of “colorful” applications is not intended to be exhaustive; we assume that the reader can see the
potential benefit of this new primitive.

1.2 Synchronization

A natural question to ask about covert computation is, “Don’t the parties have to reveal that they want to
use a covert protocol anyway?” This, however, is not the case: a protocol specification can include a public

4 except for the very shy

and well-known method for how and when to initiate the protocol. An example of such “synchronization”
information could be: “if we will determine whether we both like each other, the computation will start with

the first message exchanged after 5pm.” Since such details are published as part of the protocol specification,
there is no need for either party to indicate that they wish to compute anything at all: if Alice is interested in
computing with Bob, she starts the protocol with her first message after 5pm.

Who knows what? Given the guarantees that covert computation offers, it is important to clarify what the
parties know and what they don’t. We assume that both parties know a common circuit for the function that
they wish to evaluate, that they know which role they will play in the evaluation, and that they know when to
start evaluating the circuit if the computation is going to occur. Finally, we assume adversarial parties know
all such details of the protocols we construct.

1.3 Contributions and Organization

The primary contribution of this paper is to introduce a new cryptographic primitivegrt computation

and to show that this primitive is feasible by giving a construction which can covertly realize any func-
tionality. The existence of such a primitive is in itself surprising — you could be computing something
without knowing if the other party is going along with the computation — and cannot be accomplished
using standard techniques. We outline the technical obstacles in this section.

Hiding the Computation vs. Hiding the Function. Notice that covert computation is not about hiding

what functionAlice and Bob are interested in computing, which could be accomplished via standard SFE
techniquesCovert computation hides the fact that Alice and Bob are interested in computing a function at
all. This point is vital in the case of, e.g., covert authentication, where expressing a desiantgtiagout

of the ordinary could result in the death of one of the parties. In fact, we assume that the specific function
to be computed (if any) is known to all parties. This is analogous to the difference in security goals between
steganography (where the adversary is assumed to know which message, if any, is hidden and simply has
to determine whether such a hidden message exists) and encryption, where the adversary is trying to decide
what the hidden message is.

Can covert two-party computation be achieved by trivial composition of SFE protocols with steganog-
raphy? No. Steganographically encoding all messages of a standard secure computation protocol would
yield a protocol for which no outside observer can determine whether it is being run, but maiuddar-

antee that the participating parties themselves cannot tell that the protocol is being run. Covert two-party
computation guarantees that the computation remains hidden from the participating parties (except for cer-
tain output values of the function being computed). Provably secure steganography [17], however, is an
important step towards making covert two-party computation conceivable.

Security against malicious adversaries without Zero Knowledge .Our basic protocol uses Yao’s “gar-

bled circuit” construction for SFE as a subroutine. Unfortunately Yao’s protocol is either inherently unfair
(only one party can obtain the result) or insecure against malicious adversaries (because the functionality
of the circuit is concealed). Previous techniques for simultaneously obtaining security against malicious ad-
versaries and fairness rely on zero-knowledge proofs (or similar cut-and-choose techniques) to prove that
the “garbled” circuit computes the agreed-upon function. Such techniques cannot be applied in the case of
covert computation, because they inherently reveal the computation.

Our solution uses a form of “reactive computation” in which the basic, unfair protocol is invoked many
times as a subroutine; each time it gives an output which appears random but carries state forward to the
next invocation. Since our final protocol is fair, this technique may be of independent interest; in some
situations it is more efficient than any previous fair protocol for general SFE. In particular, suppoke that
is a security parameter, is the size of the inputs;;(n) is the size of a circuit to evaluate the functign
cn(k,n) is the size of a circuit to evaluate a cryptographic hash functiomer{k, n} bits, andc.(k,)
is the communication complexity @72 with [-bit strings and security parameter Then Yao’s (unfair)
protocol has communication complexi®y(kc¢(n) + ncq(k, k)); our solution can be implemented with

3

communication complexit@ (kcg(n) + ke (k,n) + (k? +n)cq (k, k)); and the most efficient protocol for

fair secure two-party computation known prior to our work has compleSl(t}yQCf(n) + neg(k, k2)) [21]

(we remark, however, that this protocol is secure in the standard model whereas our security proof is in the
random oracle model).

Roadmap. The high-level view of our presentation is as follows. First, we define “ordinary” or “innocent-
looking” communications. Our protocols will generate messages that are indistinguishable from “ordinary”
communications — so nobody can tell if the parties are performing a computation or just communicating
innocently. The first protocol we present is a modification of Yao’s “garbled circuit” two-party protocol. We
show how to instantiate the encryption and oblivious transfer primitives in Yao’s protocol to yield a complete
protocol for two-party secure function evaluation that generates messages indistinguishable from uniform
random bits. We then use provably secure steganography to transform this into a protocol that generates
messages indistinguishable from “ordinary” communications. The protocol thus constructed, however, is
not secure against malicious adversaries nor is it fair (since neither is Yao’s protocol by itself). We therefore
construct another protocol, which uses our modification of Yao’s protocol as a subroutine, that satisfies
fairness and is secure against malicious adversaries, in the Random Oracle Model.

Related Work. Secure two-party computation was introduced by Yao [22]. Since then, there have been
several papers on the topic and we refer the reader to a survey by Goldreich [12] for further references.
Constructions that yield fairness for two-party computation were introduced by Yao [23], Galil et al. [11],
Brickell et al. [6], and many others (see [21] for a more complete list of such references). The notion of
covert computation, however, is completely new.

Notation. We say a functionu : N — [0, 1] is negligibleif for every ¢ > 0, for all sufficiently largek,
wu(k) < 1/k¢. We denote the length (in bits) of a string or integeby |s| and the concatenation of string
s1 and stringss by s1||s2. We letUy, denote the uniform distribution ok bit strings. If D is a distribu-
tion with finite supportX, we define theninimum entropyf D as H,, (D) = min,ex {logy(1/ Prplz])}.
The statistical distancédetween two distribution§ andD with joint supportX is defined byA(C, D) =
(1/2) > ,cx | Prp[z] — Prelz]|. Two sequences of distribution$Cy }, and {Dy},, are calledcompu-

tationally indistinguishablewritten C ~ D, if for any probabilistic polynomial-timeA, Advép(k:) =
|[Pr[A(C) = 1] — Pr[A(Dy) = 1]| is negligible ink.

2 Bidirectional Channels

We hide the communication patterns of two-party computation protocols in “ordinary” or “innocent-looking”
messages. We define ordinary communication patterns and messages in a manner similelnaoréls
used by [17, 2, 9]. The main difference is that our channel is shared among two participants and messages
sent by each participant might depend on previous messages sent by either one of them. To emphasize this
difference, we use the terbidirectional channel

Messages are drawn from a €ebf documentsFor simplicity we assume that time proceeds in discrete
timestepsEach partyP € { Py, P, } maintains a history.p, which represents a timestep-ordered list of all
documents sent and received ByWe call the set of well-formed histori@g. We associate to each paify
a family of probability distributionss” = {B}’}, _,, on D.

The communication over a bidirectional chaniiel= (D, H, B, BP1) proceeds as follows. At each
timestep, each partf receives messages sent to them in the previous timestep, upgatesordingly,
and draws a document «— B,f’ (the draw could result in the empty messagesignifying that no action
should be taken that timestep’i. The documegistthen sent to the other party ahd is updated. We assume
for simplicity that all messages sent at a given timestep are received at the next one. Deﬁﬁ;e;b;t

the distributionB; conditioned on not drawing.. We will consider families of bidirectional channels
{Bj}1~(such that: (1) the length of elements i), is polynomially-bounded irk; (2) for eachh € H,
and partyP, eitherPr[B) =1] = 1 or Pr[B}) =1] < 1 — §, for constan®; and (3) there exists a function
(k) = w(log k) so that for each € Hy, Hoo(BE)), #L) > £(k) (that is, there is some variability in the
communications).

We assume that part§ can draw frome for any historyh, and that the adversary can draw from
B{f for every partyP and historyh. We assume that the ability to draw from these distributions does not
contradict the cryptographic assumptions that our results are based on. In the rest of the paper, all commu-
nications will be assumed to conform to the bidirectional channel structure: parties only communicate by
sending documents fro to each other and parties not running a protocol communicate according to the
distributions specified b. Parties running a protocol strive to communicate using sequences of documents
that appear to come froi. As a convention, whe#$ is compared to another random variable, we mean
a random variable which draws from the procsthe same number of documents as the variable we are
comparing it to.

3 Covert Two-Party Computation Against Semi-Honest Adversaries

We now present a protocol for covert two-party computation that is secure against semi-honest adversaries
in the standard model (without Random Oracles) and assumes that the decisional Diffie-Hellman problem
is hard. The protocol is based on Yao’s well-known function evaluation protocol [22].

We first define covert two-party computation formally, and we then describe Yao’s protocol and the
necessary madifications to turn it into a covert computation protocol. The definition presented in this section
is only against honest-but-curious adversaries and is unfair in that only one of the parties obtains the result. In
Section 4 we will define covert two-party computation against malicious adversaries and present a protocol
that is fair: either both parties obtain the result at roughly the same time or neither of them does. The protocol
in Section 4 uses the honest-but-curious protocol presented in this section as a subroutine.

3.1 Definitions

Formally, a two-partyp-round protocol is a paifl = (P, P;) of programs. The computation &f proceeds
as follows: at each roundy, is run on its inputz, the security parametér, a states,, and the (initially
empty) history of messages exchanged so far, to produce a new messagkan internal statey. The
messagen is sent toP;, which is run on its input, the security parameteéf, a states;, and the history of
messages exchanged so far to produce a message that is sent Backih a state; to be used in the next
round. Denote by Py (z), P1 (1)) thetranscriptof the interaction of, with inputxy andP; with inputz; .
This transcript includes all messages exchanged betwgand P; along with the timestep in which they
were sent. After rounds, each part® € {P,, P, } halts with an output, denoted Wyp(xo, z1) = I[Ip(Z).
We say thatl/T correctly realizes the functionality if for at least oneP € { Py, P, }, Pr[IIp(z) = f(Z)] >
1 — v(k), wherev is negligible.

Foro € {0,1}, we denote by/;;° (o, x1) theviewof party P, on inputz, when interacting withP; _
on inputz;_,. The view includesP,’s input x,,, private random bits, and all messages senPpnand P;.
We saylI securely realizes the functionalifyif 17 correctly realizeg and, for anyP, andz;_., there is a

simulator P! and anc,, such thatP! (f(xo, z1)) ~ Vgc/’ (x0,21). Notice that givery (x¢, z1), P, could just
useP’ to simulate his interaction witf; _, without actually running7. Thus if IT securely implementg,
neither party learns more from the interaction than could be learned frorfi(jugtz).

Define the view of party? interacting in protocol7 up through round by VI’;j (z). When partyP, is
not executing// but is drawing fromB instead, we denote this “protocol” by : B, .

Definition 1. (Covert two-party protocol against honest-but-curious adversaries) We sayrannd, two-
party protocol(Py, P;) covertly realizes the functionality for bidirectional channeB if it securely realizes
f and if it has the following additional properties:

1. (External covertness): For any inpat (FPo(xo), Pi(z1)) =~ B.

2. (Internal covertness): For any inpat V% (2) ~ V)% . (z) andV,i,_|(2) ~ V][5 1 (Z).

3. (Final Covertness): For every PPID there exists a PPD’ and a negligible- such that for any:; and
any distributionXy, Advgp1 (k) < AT x, 2000 (F) + v(E).

IS
T (X0,11)7VH:1BO (Xo,71)

In other words, until the final round, neither party can distinguish between the case that the other is running
the protocol or just drawing fron; and after the final messagg, still cannot tell, while; can only
distinguish the cases ff(xo, 1) andU,, are distinguishable.

We will slightly abuse notation and say that a protocol which has messages indistinguishable from
random bits (even given one party’s view)csvert for the uniform channél.

3.2 Modifying Yao’s Protocol For Two-Party Secure Function Evaluation

Yao’s protocol [22] securely (not covertly) realizes any functionafithat is expressed as a combinatorial
circuit. The protocol is run between two parties, thput OwnerA and theProgram OwnerB. The input

of A is a valuez, and the input ofB is a circuit to compute the functiofi. At the end of the protocold
learnsf (x) (and nothing else aboyf) and B learns nothing about. At a high level view, the protocol and
its modification work as follows (we describe all the details in the Appendix):

— B first produces a “garbled” version of the circuit by assigning to every wire of the circuit two random
k-bit strings to denote the values 0 and 1.

— B then uses a semantically secure encryption scheme to produce a description of the circuit such that
given the garbled input values corresponding tal can compute the garbled output.

— A and B then perform|x| executions of 1-out-of-2 oblivious transfe®{?) in which A learns the
garbled input values correspondingat@and nothing else. In the Appendix, we show how to modify a
OT? protocol from [19] so that it is covert for the uniform channel:

Lemma 1. Under the Decisional Diffie-Hellman assumption, there exists a protocol which covertly re-
alizesOT? for the uniform channel.

— Finally, B sendsA the encrypted description of the circuit and an interpretation table that aloies
interpret the garbled output values.

Lemma 2. Itis possible to instantiate Yao's protocol so that the garbled circuit and interpretation table
are indistinguishable from uniform bits

For completeness, we describe the full protocol in the Appendix, where we also prove:

Theorem 1. Any functionalityf can be covertly realized for the uniform chanbél

3.3 Steganographic Encoding

We use provably secure steganography to transform the above protocol into a covert two-party protocol for
any bidirectional channé} satisfying the properties mentioned in Section 2. We also use steganography as a
building block for all other covert protocols presented in this paper. For completeness we state a construction
that has appeared in various forms in [7, 17, 2].

Let HASH denote a family of hash functiorf$: D — {0, 1}¢ which ispairwise independent.et D
denote an arbitrary probability distribution @h The functions in Protocol 1 hide and recoweuniformly-
chosen bits in a distribution indistinguishable fr@when H., (D) = w(log k) andm = O(log k).

Protocol 1 (Basic steganographic encoding/decoding routines)

ProcedureEncode?: ProcedureDecode:

Input: H € HASH, c € {0,1}™ Input: H € HASH,s € D
Letj =0 setc = H(s)

repeat: Output: ¢

samples < D, increment;j
until H(s) =cOR(j > k)
Output: s

Proposition 1. Let H < HASH. ThenA ((H,Encode P(H,Uy,)), (H, D)) < 2~ (¢k)—m)/2+1

The result follows from the Leftover Hash Lemma ([16], Lemma 4.8). Intuitively, it guarantedSrbate (c)
will be (statistically) indistinguishable from the messages exchanged in a bidirectional channel wlkenever
is a uniformly chosen bit string. (When we referEmcode with only a single argument, we implicitly
assume that an appropriagtehas been chosen and is publicly accessible to all parties.)

Thus, to guarantee covertness for charhele will ensure that all our protocols generate messages that
are indistinguishable from uniformly chosen random bits and then encode these messadgawodid .
Formally, supposél = (P, P;) is an arbitrary two-party protocol which securely realizes the functionality

f. We will construct a protocab ! = (Séjo, Sfl) which has the property thatif]];b (z) is indistinguishable
from uniformly chosen bits (that i$] covertly realized for the uniform channel), theB’” covertly realizes
the functionalityf for channel5. We assume tha®,, P, have the property that, given a partial input, they
return the string, indicating that more bits of input are needed. TlSéDh has the following round function
(which simply use€ncode andDecode to encode and decode all messages exchangéy bpd P,):

Protocol 2 (Transformation to a covert protocol)

Procedure S,

Input: historyh € H, state , documents € D

drawd «— B,I:b

if (state .status= “receiving”) then
setstate.msg = state.msg||Decode(s); setc = P,(state.msg)
if (c # ¢) setstate .status= “sending”; setstate.msg = ¢

if (state .status= “sending” andd #.1) then

P
setc, state.msg = state.msg, where|c| = m; setd = E‘.ncodewiLb’u)(c)
if state.msg =" set state .status = “receiving”

Output: message, state

Theorem 2. If IT covertly realizes the functionalitg for the uniform channel, the®’! covertly realizesf
for the bidirectional channeB.

Proof. Let k¢ be an upper bound on the number of bits{#y(zg), Pi(z1)). Then X! transmits at most
2k¢/m (non-empty) documents. Suppose there is a distinguishier ng (z) from VES;bBl,,,(f) with sig-
nificant advantage. ThenD can be used to distinguidhj;* (z) from Vgﬁulib(i), by simulating each round
as in X to produce a transcrigl; If the input is uniform, thenA(T, B) < (k¢/m)22-(R)-m)/2 — k),

and if the input is from/7, thenT is identical tovgb (z). Thus D’s advantage in distinguishingy from
IT : Uy is at leask — v(k).

IMPORTANT: For the remainder of the paper we will present protoddlghat covertly realizef for U.
It is to be understood that the final protocol is meant ta*Hé, and that when we state thafl*covertly
realizes the functionality” we are referring ta>’’ .

3.4 Combining The Pieces

We can combine Lemma 1 along with Theorem 1 to construct a protocol which covertly realizes any two-
party functionality. The final protocol, which we calbvERTYAO, is simple: assume that both parties know

a circuit C'y computing the functionalityf. Bob first uses the modified Yao’s protocol to create a garbled
circuit for f(-,xp). Alice and Bob performjz 4| modified oblivious transfers for the garbled wire values
corresponding to Alice’s inputs. Bob sends the garbled gates to Alice, along with the information necessary
to de-garble the outputs. Finally, Alice output§c 4, x).

Theorem 3. TheCOVERTYAO protocol covertly realizes the functionaliffy

7

Notice that as the protoc@OVERT-YAO is described, it isiecessaryhat Bob does not learn the output,
because a malicious Bob could give Alice a garbled circuit with different operations in the gates, which could
actually output some constant message giving away Alice’s participation even when thef ¢ajue;)

would not.

4 Fair Covert Two-party Computation Against Malicious Adversaries

The protocol presented in the previous section has two serious weaknesses. First, because Yao’s construction
conceals the function of the circuit, a malicious Bob can garble a circuit that computes some function other
than the result Alice agreed to compute. In particular, the new circuit could give away Alice’s input or output
some distinguished string that allows Bob to determine that Alice is running the protocol. Additionally, the
protocol isunfair: either Alice or Bob does not get the result.

In this section we present a protocol that avoids these problems. In particular, our solution has the
following properties: (1) If both parties follow the protocol, both get the result; (2) If Bob cheats by garbling
an incorrect circuit, neither party can tell whether the other is running the protocol, except with negligible
advantage; and (3) Except with negligible probability, if one party terminates early and computes the result
intime 7', the other party can compute the result in time at ni§t). Our protocol is secure in the random
oracle model, under the Decisional Diffie-Hellman assumption. We show at the end of this section, however,
that our protocol can be made to satisfy a slightly weaker security condition without the use of a random
oracle. (We note that the technique used in this section has some similarities to one that appears in [1].)

4.1 Definitions

We assume the existence of a non-interactive bitwise commitment scheme with commitments which are
indistinguishable from random bits. One example is the (well-known) scheme which commits tottbg bit
emt(b; (r,x)) = r||7(x)||(x-r) ® b, wherer is a one-way permutation on domdid, 1}*, = - y denotes the
inner-product ofc andy overGF'(2), andzx, r < Uy. (The integer DDH assumption implies the existence of
m.) Commitment to a multiple-bit string C M T (s; -), can be implemented by committing to the individiual
bits of s.

Let f denote the functionality we wish to compute. We say th# fair if for every distinguisherD,,
distinguishingf(Xy, X1) from U given X, with advantage at least there is a distinguisheb;_, with
advantage at least— v(k), for a negligible functiorw. (That is, if Py can distinguishf (X, X;) from
uniform, so canP;.) We sayf is strongly fairif (f(Xo, X1), Xo) = (f(Xo, X1), X1).

A n-round, two-party protocoll = (P, P;) to compute functionalityf is said to be a strongly fair
covert protocol for the bidirectional chanrlif the following conditions hold:

— (External covertness): For any inptt(Py(zo), Pi(x1)) = B.

— (Strong Internal Covertness): There exists a FPEn extracto) such that if PPTD (V') distinguishes
betweenV}%(z) and V[, (z) with advantage, E”(V/;7 (z)) computesf(z) with probability at
leaste /poly (k)

— (Strong Fairness): If the functionaliyis fair, then for anyC; running in time" such thaPr[C (V7 ,(Z)) =
f(z)] > €, there exists &',_, running in timeO(T") such thaPr[Cl_g(Vﬁ;"(i)) = f(Z)] = 2(e).

— (Final Covertness): For every PHT there exists a PPD’ and a negligible such that for any:, and

!

distribution X; _,, Adv? (k) < AAVEx, | ooy, (k) + v(k).

V}[)U (Xl—(r:xo')yvll;fjglio_ (X1—07IU)

Intuitively, the Internal Covertness requirement states that “Alice can't tell if Bob is running the protocol
until she gets the answer,” while Strong Fairness requires that “Alice can’t get the answer unless Bob can.”
Combined, these requirements imply that neither party has an advantage over the other in predicting whether
the other is running the protocol.

4.2 Construction

As before, we have two partie$} (Alice) and P, (Bob), with inputszy and z, respectively, and the
function Alice and Bob wish to compute j&: {0,1} x {0,1}1 — {0,1}, presented by the circutt;.

The protocol proceeds in three stages: COMMIT, COMPUTE, and REVEAL. In the COMMIT stage, Alice
picks k + 2 strings,ro, andsg[0], ..., so[k], eachk bits in length. Alice computes commitments to these
values, using a bitwise commitment scheme which is indistinguishable from random bits, and sends the
commitments to Bob. Bob does likewise (picking strimgss[0], . . ., s1[k]).

The next two stages involve the use of a pseudorandom genétatéd, 1}* — {0, 1}* which we will
model as a random oradier the security argument onlyr itself must have an efficiently computable circuit.

In the COMPUTE stage, Alice and Bob compute two serial runs (“rounds”) of the covert Yao protocol
described in the previous section. If neither party cheats, then at the conclusion of the COMPUTE stage,
Alice knows f (zo, x1) ®G(r1) and Bob’s value; [0]; while Bob knowsf (z¢, z1) & G(ro) and Alice’s value

s0[0]. The REVEAL stage consists &frounds, where each round consists of two runs ofdb@ERTYAO
protocol. At the end of each rounidif nobody cheats, Alice learns th® bit of Bob's stringry, labeled

r1[i] and also Bob’s value, [i]. After k& rounds in which neither party cheats, Alice thus knewsnd can
computef(zg,z1) by computing the exclusive-or @¥(r;) with the value she learned in the COMPUTE
stage, and Bob can likewise compute the result.

Each circuit sent by Alice must check that Bob has obeyed the protocol; thus at every round of every
stage, the circuit that Alice sends to Bob takes as input the opening of all of Bob’s commitments, and checks
to see that all of the bits Alice has learned so far are consistent with Bob’s input. The difficulty to overcome
with this approach is that the result of the check cannot be returned to Alice without giving away that Bob is
running the protocol. To solve this problem, Alice’s circuits also take as input the lastsguel | that Bob
learned. If Alice’s circuit ever finds that the bits she has learned are inconsistent with Bob’s input, or that
Bob’s input forsg[i — 1] is not consistent with the actual valuesfi — 1], the output is a uniformly chosen
string of the appropriate length. Once this happens, all future outputs to Bob will also be independently
and uniformly chosen, because he will have the wrong valuef@r, which will give him the wrong value
for so[i + 1], etc. Thus the valuesy[1], ..., so[k] Sserve as “state” bits that Bob maintains for Alice. The
analogous statements hold for Bob’s circuits and Alice’s inputs.

Protocol 3 (Fair covert two-party computation)

Inputs and setup. To begin, each party’, chooses: + 2 random strings,, s,[0],...,ss[k] < Ug. P5'S
inputs to the protocol are theXi, = (x5, 7o, 55[0], . . ., so[k]).

COMMIT stage. Each partyP, computes the commitment, = CMT(X,; p,) using randomness,,
and sends this commitment to the other party. Denot&byhe value that®, interprets as a commitment
to X;_,, that is, K denotes the value Alice interprets as a commitment to Bob’s ifput

COMPUTE;(z1—0,7,8[0... K], p) = REVEALL (21—0, S1—c[i—1],7,81-0[0... k], p) =
if (Ko =CMT(z1-0,7,5;p)) Let FF = G(r) ® f(zo,z1)
then if (Ko =CMT(21-6,7,81-0;p)
setF = G(ro) ® f(xo,x1) and F = Fi,
setS = s, (0] and Ro[t — 1] = r[i — 1]
else and S1_5[i — 1] = so[i — 1]
drawF «— U;, S « Uy. and S,[i — 1] = s1-o[¢ — 1])
output F||S then
setR = rq[i], S = s5[i]
else
drawR «— {0,1}, S — Uy
output R||S

Fig. 1. The circuitscOMPUTEandREVEAL.

COMPUTE stage.The COMPUTE stage consists of two serial runs oft¢kae/ERTYAO protocol.

1. Bob garbles the circutompPuTE shown in figure 1, which takes), ¢, s0[0], . . .,s0[k], andpg as input
and outputs=(r1) @ f(xo,z1)|s1[0] if K7 is a commitment taX. If this check fails, COMPUTE
outputs a uniformly chosen string, which has no information atfdut, ;) or s;[0]. Bob and Alice
perform thecOVERTYAO protocol; Alice labels her resulfy||.Sy[0].

2. Alice garbles the circuitcoMPUTE) shown in figure 1, which takes,, r1, s1[0],...,s1[k], andp; as
input and output&? (o) & f(zo,x1)||s0[0] if Ko is a commitment toX;. If this check failscoOMPUTE,
outputs a uniformly chosen string, which has no information atfdut, 1) or so[0]. Bob and Alice
perform thecOVERT-YAO protocol; Bob labels his resul ||.S;[0].

REVEAL stage. The REVEAL stage consists &frounds, each of which consists of 2 runs of t@®vERT
YAO protocol:

1. Inroundi, Bob garbles the circuREVEAL? shown in figure 1, which takes inpug, So[i—1], 70, s0[0 - - . k], po
and checks that:

— Bob’s result from the COMPUTE stag#, is consistent withx, rg.

— The bit R;[i — 1] which Bob learned in round — 1 is equal to biti — 1 of Alice’s secretry. (By
convention, and for notational uniformity, we will defid&[0] = R;[0] = ro[0] = r1[0] = 0)

— The stateSy[: — 1] that Bob’s circuit gave Alice in the previous round was correct. (Meaning Alice
obeyed the protocol up to rourd- 1.)

— Finally, that the stat&; [: — 1] revealed to Bob in the previous round was the stafe— 1] which

Alice committed to in the COMMIT stage.
If all of these checks succeed, Bob’s circuit outputsibif ; and states; [:]; otherwise the circuit

outputs a uniformly chosefk + 1)-bit string. Alice and Bob perforrovERTYAO and Alice labels the
resultRo|i], Sol]. .

2. Alice garbles the circuiREVEAL{, depicted in figure 1 which performs the analogous computations to
REVEAL}, and performs the oVERT-YAO protocol with Bob. Bob labels the resut [i], Si[i].

After k such rounds, if Alice and Bob have been following the protocol, we lave ro andRy = 1 and

both parties can compute the result. The “stateafe what allow Alice and Bob to check that all previous
outputs and key bits (bits af, andr,) sent by the other party have been correct, without ever receiving the
results of the checks or revealing that the checks fail or succeed. In Appendix B we prove the following:

Theorem 4. Construction 3 is a strongly fair covert protocol realizing the functionafity

5 Conclusions and Open Questions

We have presented protocols for covert two-party computation that combine steganography with crypto-
graphic protocols whose messages are all indistinguishable from uniformly chosen random bits. Covert
two-party computation can be applied whenever the use of ordinary two-party computation raises enough
suspicion to defeat its intended purpose. Our protocols are secure against semi-honest adversaries under the
decisional Diffie-Hellman assumption and against malicious adversaries in the Random Oracle model.

Our work leaves room for improvement and open problems. For example, given the known theoretical
issues with the random oracle methodology [8, 10, 15, 4], it is an important open problem to remove the RO
assumption from the security proof for Construction 3. In Appendix C we show that a weak form of fair
covert two-party computation can be satisfied in the plain model. It seems at least plausible that construc-
tions based on concrete assumptions such as the “knowledge-of-exponent” assumption or the “generalized
BBS” assumption may allow construction of standard fair covert protocols, yet the obvious applications
always destroy the final covertness property. Another open question is that of improving the efficiency of
the protocols presented here, either by designing protocols for specific goals or through adapting efficient
two-party protocols to provide covertness.

An interesting question is whether the notion of covert two-party computation can be extended in some
natural and implementable way to multiple parties. Such a generalization could have important applications
in the area of anonymous communication, allowing, for instance, the deployment of undetectable anonymous
remailer networks.

10

References

1. G. Aggarwal, N. Mishra and B. Pinkas. Secure computation of the k'th-ranked elemekdvances in Cryptology — Proceed-
ings of Eurocrypt '04pages 40-55, 2004.

2. L. von Ahn and N. Hopper. Public-Key Steganography. Advances in Cryptology — Proceedings of Eurocrypt, 'pdges
323-341, 2004.

3. M. Backes and C. Cachin. Public-Key Steganography with Active Attacks. To app€heary of Cryptography Conference
(TCC), 2005.

4. M. Bellare, A. Boldyreva, and A. Palacio An Uninstantiable Random-Oracle-Model Scheme for a Hybrid-Encryption Problem.
In: Advances in Cryptology — Eurocrypt 2Q(ages 171-188, 2004.

5. M. Bellare and S. Micali. Non-interactive oblivious transfer and applicatidadsances in Cryptology — Proceedings of CRYPTO
'89, pages 547-557, 1990.

6. E. Brickell, D. Chaum, |. Dantyd, J. van de Graaf: Gradual and Verifiable Release of a Séaeances in Cryptology —
Proceedings of CRYPTO '8pages 156-166, 1987.

7. C. Cachin. An Information-Theoretic Model for Steganograghformation Hiding, 2nd International Workshppages 306-
318, 1998.

8. R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology, revisit&thiftieth Annual ACM Symposium on
Theory of Computingpages 209-218, 1998.

9. N. Dedic, G. ltkis, L. Reyzin and S. Russell. Upper and Lower Bounds on Black-Box Steganography. To appearynof
Cryptography Conference (TC005.

10. C. Dwork, M. Naor, O. Reignold, and L. Stockmeyer. Magic FunctionsPtaceedings of the Fortieth IEEE Symposium on
Foundations of Computer Sciengmges 523-534 ,1999

11. Z. Galil, S. Haber, M. Yung. Cryptographic Computation: Secure Fault-Tolerant Protocols and the Public-Kedealetes
in Cryptology — Proceedings of CRYPTO ;&ages 135-155, 1987.

12. O. Goldreich. Secure Multi-Party Computation. Unpublished Manusértift://philby.ucsd.edu/books.html998.

13. O. Goldreich, S. Goldwasser and S. Micali. How to construct pseudorandom fundtamsal of the ACMvol 33, 1998.

14. O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Gaxieeteenth Annual ACM Symposium on Theory of
Computing pages 218-229.

15. S. Goldwasser and Y.T. Kalai. On the (in)security of the Fiat-Shamir paradigniPrdoeedings of the 44th Annual IEEE
Symposium on Foundations of Computer Scigpages 102-113, 2003.

16. J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator from any one-way futdlhJournal on
Computing 28(4), pages 1364-1396, 1999.

17. N. Hopper, J. Langford and L. Von Ahn. Provably Secure Steganograghlwnces in Cryptology — Proceedings of CRYPTO
'02, pages 77-92, 2002.

18. M. Naor. Bit Commitment Using Pseudorandomness. J. Cryptology 4(2): 151-158 (1991)

19. M. Naor and B. Pinkas. Efficient Oblivious Transfer ProtocolsPhoceedings of the 12th Annual ACM/SIAM Symposium on
Discrete Algorithms (SODA 200lpages 448-457. 2001.

20. M. Naor, B. Pinkas and R. Sumner. Privacy Preserving Auctions and Mechanism D&sicgedings, 1999 ACM Conference
on Electronic Commerce.

21. B. Pinkas. Fair Secure Two-Party Computation Aldvances in Cryptology — Eurocrypt '0p 87—105, 2003.

22. A. C. Yao. Protocols for Secure ComputatiBmceedings of the 23rd IEEE Symposium on Foundations of Computer Science
1982, pages 160-164.

23. A. C. Yao. How to Generate and Exchange SecRatsceedings of the 27th IEEE Symposium on Foundations of Computer
Science1986, pages 162—-167.

Appendix A: Yao’s Protocol and Modifications

Yao’s protocol [22] securely (not covertly) realizes any functionafithat is expressed as a combinatorial
circuit. Our description is based on [20]. The protocol is run between two partiegygheOwnerA and
theProgram OwnerB. The input ofA is a valuer, and the input o is a description of a functiofi. At the

end of the protocolB learnsf(z) (and nothing else abouf), and A learns nothing about. The protocol
requires two cryptographic primitives, pseudorandom functions and oblivious transfer, which we describe
here for completeness.

Pseudorandom Functions. Let {F : {0,1}* x {0,1}*® — {0,1}'®}, denote a sequence of func-
tion families. Let A be an oracle probabilistic adversary. We define pfeadvantage ofA over F as

Adv%%(k) = | Prg[AFxO(1%) = 1] — Pry[A9(1%) = 1]|, whereK « U, andg is a uniformly cho-
sen function fromL (k) bits tol(k) bits. ThenF" is pseudorandonif Advar’;(k:) is negligible ink for all
polynomial-timeA.. We will write F(-) as shorthand fof| (K, -) when| K| is known.

11

Oblivious Transfer. 1-out-of-2 oblivious transfer (Gff allows two parties, thesenderwho knows the
valuesmy andmi, and thechooserwhose input isc € {0,1}, to communicate in such a way that at
the end of the protocol the chooser learng, while learning nothing about; _,, and the sender learns
nothing about. Formally, letO = (S, C') be a pair of interactive PPT programs. We say thas correct

if Pr[Oc((mo,m1),0) = ms] > 1 — e(k) for negligiblee. We say thatD haschooser privacyf for any
PPTS” and anymg, myq, |Pr[S'((S"(mo,m1),C(0))) = o] — 3| < (k) andO hassender privacyf for
any PPTC' there exists @ and a PPTC” such thatC” (m,,) = Vi ((mg, m1), o). We say that) securely
realizes the functionalit@T? if O is correct and has chooser and sender privacy.

Yao's Protocol. Yao's protocol is based on expressifigs a combinatorial circuit. Starting with the circuit,
the program owneB assigns to each wiretwo randomk-bit values(W?, W}) corresponding to the 0 and
1 values of the wire. It also assigns a random permutatioover {0, 1} to the wire. If a wire has value

b; we say it has “garbled” valueWib", m;i(bi)). To each gatg, B assigns a unique identifidy and a table
T, which enables computation of the garbled output of the gate given the garbled inputs. Given the garbled
inputs tog, T, does not disclose any information about the garbled outpgif@fany other inputs, nor does
it reveal the actual values of the input bits or the output bit.

Assumey has two input wireg:, j) and one output wireut (gates with higher fan in or fan out can be
accommodated with straightforward modifications). The constructidh), efses a pseudorandom function
F whose output length i8 + 1. The tablel, is as follows:

i (bi) |7 (b;) value
0 (Wit Tout (bour)) @ F o, (I, 0) & Fypo, (I,0)
0 | 1 |0V Toulbou) & oy (U 0) & Fyyo (I 1)
[0 | oualbon)) 6 By, (U 1) 6 By (15, 0)
1|1 W) i (bowr)) ® FW}, (I3, 1) © Fyyn, (15, 1)

To computef (z), B computes garbled tablds for each gate, and sends the tables ta Then, for each
circuit input wirei, A and B perform an oblivious transfer, wheré plays the role of the chooser (with

o = b;) and B plays the role of the sender, withy = W?||7;(0) andm; = W}||m;(1). A computesr;(b;)

for each output wirg of the circuit (by trickling down the garbled inputs using the garbled tables) and sends
these values td, who appliesr; ! to learnb;. Alternatively, B can send the values; (for each circuit
output wirej) to A, who then learns the result. Notice that the first two columng,ofan be implicitly
represented, leaving a “table” which is indistinguishable from uniformly chosen bits.

Covert Oblivious Transfer

As mentioned above, we guarantee the security of our protocols by ensuring that all the messages exchanged
are indistinguishable from uniformly chosen random bits. To this effect, we present a modification of the
protocol in [19] for oblivious transfer that ensures that all messages exchanged are indistinguishable from
uniform when the input messages andm, are uniformly chosen. Our protocol relies on the well-known
integer decisional Diffie-Hellman assumption:

Integer Decisional Diffie-Hellman. Let P and @ be primes such thap divides P — 1, let Z} be the
multiplicative group of integers modulB, and letg € Z}, have order). Let A be an adversary that takes
as input three elements @f;, and outputs a single bit. Define tBDH advantage ofA over (g, P, () as:
Advi(g, P, Q) = | Prop,[Ar(9% 6%, 9%, 9, P, Q) = 1]—Prap . [Ar(9%, 6%, 9%, 9, P,Q) = 1]|, whereA,,
denotes the adversa#y running with random tape, a, b, c are chosen uniformly at random frofy, and

all the multiplications are ovef,. The Integer Decisional Diffie-Hellman assumption (DDH) states that for
every PPTA, for every sequencl{ Py, Qx, g) } » satisfying| P.| = k and|Q| = O(k), Advid(gx., Py, Qx)

is negligible ink.

12

Setup. Letp = rq + 1 where2* < p < 2#+1 ¢ is alarge prime, and géd q) = 1; let g generateZ,, and
thusy = ¢" generates the unique multiplicative subgroup of orgdet 7 be the least integer such that

r# = 1 mod g. Assumemy| = |my| < k/2. Let H : {0,1}?* x Z,, — {0, 1}*/2 be a pairwise-independent
family of hash functions. Define the randomized mapping(y) — Z;, by ¢(h) = h' g®4, for a uniformly
chosens € Z,; notice thatp(h)” = h and that for a uniformly chosefn € (), ¢(h) is a uniformly chosen
element ofZ;. The following protocol is a simple modification of the Naor-Pinkas 2-round oblivious transfer
protocol [19]:

Protocol 4 COT:

1. Oninputo € {0,1}, C chooses uniform, b € Z,, setsc, = ab mod ¢ and uniformly chooses; _, €
Zy. C setse = 4%, y =7, 29 = ¥, 21 = v and sets’ = ¢(z),y' = ¢(v), 2 = ¢(20), 2} = d(21).
If the most significant bits of all of’, v/, z(, 2| are0, C sends the least significaktbits of each taS;
otherwiseC' picks newa, b, c;_, and starts over.
2. The sender recoveisy, zg, z1 by raising to the power, picks fy, f1 € H and then:
- S repeatedly chooses uniforrg, sy € Z, and setsvy = %04, w = ¢(wyp) until he finds a pair
with wjy < 2%. He then setd(y = 250y™.
-5 repeatedly chooses uniform, s; € Z, and setsv; = z°'9"™, w] = ¢(wy) until he finds a pair
with w) < 2%. He then setd(; = 27"y
S sendsw0||f0|\f0(K0) & mo|lwi || f1ll f1 (K1) & ma
3. C recoversk, = (w,)" and computes,,.

Lemma 3. S cannot distinguish between the case thds following the COT protocol and the case tliat
is drawing fromUy; that is,

V(:SOT(m07 mi, o) & VCSOT:L{C (mo, m1,0).
Proof. Suppose that there exists a distinguisbewith advantage. Then there exists a DDH adversaty
with advantage at leasf8 — v(k) for a negligiblev. A takes as input a triplgy®, v°, v¢), picks a random
bit o, setsz, = v¢ and picks a uniform__ € {0,1}*, and computes’ = ¢(1%),y' = ¢(1°), 2., = é(25);
if all three are at mos2*, thenA outputsD(2’,y/, 2}, 2}), otherwiseA outputs0.
Clearly, wherc # ab,

1
PrlA(v*,7",7%) =1] > 3 PT[D(VCSOT;L{C) =1],

since the elements passedAyo D are uniformly chosen an calls A with probability at least /8 (since
each ofr’,y/, 2/ are greater tha2" with probability at most /2). But whenc = ab, then

Pr[A(y?,7",7%) = 1] = (1/8 — v(k)) Pr[D(Véor) = 1],

since the elements passedyo D are chosen exactly according to the distributiorC8s output specified
by COT'; and since the probability thd@? is invoked byA is at leastl /8 whenc # ab it can be at most(k)
less where = ab, by the Integer DDH assumption. Thus the DDH advantagé o at least/8 — v(k).
Sincee/8 must be negligible by the DDH assumption, we have fhigtadvantage must also be negligible.

Lemma 4. Whenmyg, my < Uy o, C cannot distinguish between the case thas following the COT pro-
tocol and the case that is sending uniformly chosen strings. Thaﬂ'(goT(Uk/z, Uk2,0) ~ Vccows (Uky2,Uky2,0).

Proof. The group elements,, w, are uniformly chosen by; thus whenng, m; are uniformly chosen, the
message sent by must also be uniformly distributed.

13

Lemma 5. The COT protocol securely realizes theZdtinctionality.

Proof. The protocol described by Pinkas and Naor is identical to the COT protocol, with the exception
that ¢ is not applied to the group elementsy, zg, z1, wo, w1 and these elements are not rejected if they
are greater tha@*. Suppose an adversarial sender can predisith advantage in COT; then he can be
used to predictr with advantage /16 — v (k) in the Naor-Pinkas protocol, by applying the mapo the
elementse, y, zo, z1 and predicting a coin flip if not all are less thah, and otherwise using the sender’s
prediction against the message that COT would send. Likewise, any bit a chooser can prediectabau?

with advantage in COT, can be predicted with advantagel in the Naor-Pinkas protocol: the Chooser’s
message can be transformed into elements pby taking the components to the poweglnd the resulting
message of the Naor-Pinkas sender can be transformed by sampling/frem¢(wy), w] = ¢(w1) and
predicting a coin flip if either is greater thaf, but otherwise giving the prediction of the COT chooser on

wy || foll fo(Ko) @ mollwi || f1ll f1 (K1) © ma.

Conjoining these three lemmas gives the following theorem:

Theorem 5. Protocol COT covertly realizes the uniform-®ftinctionality

We can combine the components developed up to this point to make a protocol which covertly realizes
any two-party functionality. The final protocol, which we calbvERT-YAO, is simple: assume that both
parties know a circui’y computing the functionalityf. Bob first uses Yao’s protocol to create a garbled
circuit for f(-,zp). Alice and Bob performz 4| covert oblivious transfers for the garbled wire values cor-
responding to Alice’s inputs. Bob sends the garbled gates to Alice. Finally, Alice collects the garbled output
values and sends them to Bob, who de-garbles these values to obtain the output.

Theorem 1. COVERT-YAO covertly realizes any functionality for the uniform channel.

Proof. That (Alice, Bob) securely realize the functionalifyfollows from the security of Yao’s protocol.
Now consider the distribution of each message sent from Alice to Bob:

— In each execution of COT: each message sent by Alice is uniformly distributed
— Final values: these are masked by the uniformly chosen bits that Bob chose in garbling the output gates.
To an observer, they are uniformly distributed.

Thus Bob'’s view, until the last round, is in fact identically distributed when Alice is running the protocol
and when she is drawing frotd. Likewise, consider the messages sent by Bob:

— In each execution of COT: because ﬂﬁé from Yao’s protocol are uniformly distributed, Theorem 5
implies that Bob’s messages are indistinguishable from uniform strings.

— When sending the garbled circuit, the pseudorandomneBsamid the uniform choice of thWib imply
that each garbled gate, even given one garbled input pair, is indistinguishable from a random string.

Thus Alice’s view after all rounds of the protocol is indistinguishable from her view when Bob draws from
Uu.

If Bob can distinguish between Alice running the protocol and drawing ftbafter the final round,
then he can also be used to distinguish betwget, x 5) andU;. The approach is straightforward: given a
candidatey, use the simulator from Yao’s protocol to generate a view of the “data laygr# f (X 4, x),
then, by the security of Yao’s protocol, this view is indistinguishable from Bob’s view when Alice is running
the covert protocol. Ify — Uj, then the simulated view of the final step is distributed identically to Alice
drawing fromi/. Thus Bob’s advantage will be preserved, up to a negligible additive term.

14

Appendix B: Proof of Theorem 4

Theorem 4. Construction 3 is a strongly fair covert protocol realizing the functionafity

Proof. The correctness of the protocol follows by inspection. The two-party security follows by the security
of Yao’s protocol. Now suppose that some party, wlog Alice, cheats (by sending a circuit which computes
an incorrect result) in roungl Then, the key biRRy[j + 1] and stateSy[j + 1] Alice computes in roung + 1
will be randomized; and with overwhelming probability every subsequent result that Alice computes will be
useless. Assuming Alice can distinguigtr, X1) from uniform, she can still compute the result in at most
2k=J time by exhaustive search over the remaining key bits. By successively guessing the round at which
Alice began to cheat, Bob can compute the result in time at gfost™2. If Alice aborts at roundj, Bob
again can compute the result in time at st/ +1. If Bob cheats in round by giving inconsistent inputs,
with high probability all of his remaining outputs are randomized; thus cheating in this way gives him no
advantage over aborting in rourid- 1. Thus, the fairness property is satisfied.

If G is a random oracle, neither Alice nor Bob can distinguish anything in their view from uniformly
chosen bits without querying at the random string chosen by the other. So given a distinguisienning
in time p(k) for V;%(f) with advantage, it is simple to write an extractor which rurs, recording its

queries toG, picks one such query (say) uniformly, and outputsz(q) @ Fpy. SinceD can only have an
advantage when it queries, E will pick ¢ = r; with probability at least /p(k) and in this case correctly
outputsf(xo, x1). Thus the Strong Internal Covertness property is satisfied.

Appendix C: Weakly Fair Covertness

We can achieve a slightly weaker version of covertness without using random orécisssaid to be
a weakly faircovert protocol for the channd if I7 is externally covert, and has the property thaf ifs

strongly fair, then for every distinguishér,, for fo; (z) with significant advantage there is a distinguisher

D,_, for Vﬁ*”(f) with advantage?(e). Thus in a weakly fair covert protocol, we do not guarantee that
both parties get the result, only that if at some point in the protocol, one party can tell that the other is
running the protocol with significant advantage, the same is true for the other party.

We note that in the above protocols, if the functiGhis assumed to be a pseudorandom generator
(rather than a random oracle), then the resulting protocol exhibits weakly fair covertness. Sipgduse
significant advantage after roundi = 2j, as in the hypothesis of weak covertness. Notice that given
ri—o[1], ..., m1-6[j—1], G(ri—s) ® f(Z), the remainder of,’s view can be simulated efficiently. Thdn,
must be a distinguisher fa@r () given the firstj — 1 bits of ». But sincef is strongly fair,P;_, can apply
D, to G(r,) & f(x) by guessing at most 1 bit ef. and simulatingP,’s view with his own inputs. Thus
P,_, has advantage at least2 — v (k) = 2(e).

15

