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Abstract—Steganography is the problem of hiding secret messages in “innocent-looking” public communication so that the presence

of the secret messages cannot be detected. This paper introduces a cryptographic formalization of steganographic security in terms of
computational indistinguishability from a channel, an indexed family of probability distributions on cover messages. We use

cryptographic and complexity-theoretic proof techniques to show that the existence of one-way functions and the ability to sample from

the channel are necessary conditions for secure steganography. We then construct a steganographic protocol, based on rejection
sampling from the channel, that is provably secure and has nearly optimal bandwidth under these conditions. This is the first known

example of a general provably secure steganographic protocol. We also give the first formalization of “robust” steganography, where
an adversary attempts to remove any hidden messages without unduly disrupting the cover channel. We give a necessary condition on

the amount of disruption the adversary is allowed in terms of a worst case measure of mutual information. We give a construction that
is provably secure and computationally efficient and has nearly optimal bandwidth, assuming repeatable access to the channel

distribution.

Index Terms—Steganography, covert channels, provable security.
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1 INTRODUCTION

Aclassic problem of computer security is the mitigation
of covert channels. First introduced by Lampson [1], a

covert channel in a (single-host or distributed) computer
system can be roughly defined as any means by which two
processes or users can exchange information in violation of
security policy. While the exact detection of usable covert
channels in a system is undecidable, many conservative
approaches exist to detect and eliminate all potential covert
channels; for example, the US Department of Defense
“Light Pink Book” [2] on covert channel analysis includes
detailed procedures to find and eliminate covert channels.
Unfortunately, the cost of such elimination is often
prohibitive; in this case, the Light Pink Book recommends
techniques to limit the bandwidth of covert channels and
requires auditing to detect any use of the covert channel. A
natural question that arises from this suggestion is whether
it is feasible for an auditor to do so.

This paper focuses on the dual problem of steganogra-
phy: How can two communicating entities send secret
messages over a public or audited channel so that a third
party such as the reference monitor cannot detect the
presence of the secret messages? Notice how the goal of
steganography is different from classical encryption, which
seeks to conceal the content of secret messages: Stegano-
graphy is about hiding the very existence of the secret
messages.

Steganographic “protocols” have a long and intriguing
history that predates covert channels, stretching back to
antiquity. For example, Kahn [3] relates stories of World
War II prisoners, spies, and soldiers sending secret
messages—written in invisible ink, hidden in love letters
(e.g., hiding the message in the first character of each
sentence), or using other “physical” steganographic
techniques—to circumvent inspections by both the Allied
and Axis governments. In response, postal censors crossed
out anything that looked like sensitive information (e.g.,
long strings of digits) and they prosecuted individuals
whose mail seemed suspicious. In many cases, censors
even randomly deleted innocent-looking sentences or
entire paragraphs in order to prevent secret messages
from being delivered.

More recently, there has been a great deal of interest in
digital steganography, that is, in hiding secret messages in
communications between computers. This interest is ap-
parently fueled by the increased amount of communication
that is mediated by computers and by connections to
potential commercial applications: Hidden information
could potentially be used to detect or limit the unauthorized
propagation of the innocent-looking “carrier” data. Because
of this, there have been numerous proposals for protocols to
hide data in channels containing pictures [4], [5], video [5],
[6], [7], audio [8], [9], and even typeset text [10]. Many of
these protocols are extremely clever and rely heavily on
domain-specific properties of these channels. On the other
hand, the literature on steganography also contains many
clever attacks that detect the use of such protocols. As a
result, it is unclear from this body of work whether secure
steganography is possible at all.

In this paper, we use techniques from cryptography and
complexity theory to answer the question “under what
conditions is (secure) steganography possible?” We give
cryptographic definitions for symmetric-key stegosystems
and steganographic secrecy against a passive adversary in
terms of indistinguishability from a probabilistic channel
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process. We show that a widely believed complexity-
theoretic assumption (the existence of a one-way function)
and access to a channel oracle are both necessary and
sufficient conditions for the existence of secure stegano-
graphy relative to any channel. We furthermore give a
construction that has essentially optimal bandwidth when
compared with known provably secure constructions.
Finally, we consider the question of robust steganography
that resists attempts to censor the use of a covert channel;
we prove necessary and sufficient conditions for the
existence of a secure robust stegosystem and give a
provably robust stegosystem with nearly optimal band-
width under attack.

1.1 Previous Work

The scientific study of steganography in the open literature
began in1983whenSimmons [11] stated theproblem in terms
of communication in a prison. In his formulation, two
inmates, Alice and Bob, are trying to hatch an escape plan.
The only way they can communicate with each other is
through apublic channel,which is carefullymonitored by the
warden of the prison, Ward. If Ward detects any encrypted
messages or codes, he will throw both Alice and Bob into
solitary confinement. The problem of steganography is then:
how can Alice and Bob cook up an escape plan by
communicating over the public channel in such a way that
Ward does not suspect that anything “unusual” is going on?

Anderson and Petitcolas [12], [13] posed many of the
open problems resolved in this article. In particular, they
pointed out that it was unclear how to prove the security of
a steganographic protocol and gave an example that is
similar to the protocol we present in Section 4 but noted that
it was not clear what properties were necessary to prove its
security. They also posed the open question of bounding the
bandwidth that can be securely achieved over a given cover
channel.

Since then, several works [14], [15], [16], [17] have
addressed information-theoretic definitions of steganogra-
phy. Cachin [14], [18] defines security by requiring that the
relative entropy between stegotexts, which encode hidden
information, and independent identically distributed sam-
ples from some innocent-looking covertext probability
distribution, is small. He also gives a construction that is
provably secure but relies critically on the assumption that
all orderings of covertexts are equally likely. Cachin points
out several flaws in other published information-theoretic
formulations of steganography. In addition to requiring
arbitrarily long shared secrets, all of these works assume a
more restrictive model of innocent communication and do
not address bandwidth, robustness, or the necessary
conditions for steganography.

Subsequent to the announcements of our results [19], [20],
several extensions have been investigated. Reyzin and
Russell [21] were the first to show that construction 1 (see
Fig. 1) could be securely extended to multiple-bit hidden-
texts for high-entropy channels, but their construction is still
less efficient than construction 2 (see Fig. 2) in terms of bits
per symbol. Independent of our bandwidth upper and lower
bounds, Dedi!c et al. [22] proved the security of a stegosystem
similar to our construction 2 and gave an upper bound on the
bandwidth per query of a universal stegosystem. Their

bound is weaker than ours (in terms of bits per oracle query)
by a factor of log2 2e but applies to a more general class of
stegosystems and is proved using techniques of independent
interest. Van Le and Kurosawa [23] proposed a stegosystem
based on arithmetic coding that uses specialized knowledge
of a channel to achieve higher bandwidth per symbol in
some cases. Lysyanskaya and Meyerovich [24] considered
the effects of an imperfect channel sampling procedure on
universal stegosystems. Backes and Cachin [25] introduced a
notion of “active attacks” that use a decoding oracle to detect
the presence of hidden messages in a special “challenge”
cover message.

1.2 Preliminaries
We denote the length of a string or sequence s by jsj. We
denote the empty string or sequence by " and the
concatenation of strings s1 and s2 by s1ks2. We assume the
use of efficient and unambiguous pairing and unpairing
operators on strings so that ðs1; s2Þ may be uniquely
interpreted as the pairing of s1 with s2 and may not be
the same as s1ks2. One example of such an operation is to
encode ðs1; s2Þ by a prefix-free encoding of js1j, followed by
s1, followed by a prefix-free encoding of js2j, and then s2.
Unpairing works in the obvious way.

We let Uk denote the uniform distribution on f0; 1gk. If X
is a finite set, we denote by x X the action of uniformly
choosing x from X. We denote by FL;l the uniform
distribution on functions f : f0; 1gL ! f0; 1gl. For a prob-
ability distribution D, we denote the support of D by ½D$.
For an integer n, we let ½n$ denote the set f1; 2; . . . ; ng.

We make use of two different measures of the informa-
tion in a probability distribution. Let D be a probability
distribution with finite support D; then, the Shannon
Entropy of D is HSðDÞ ¼ &

P
d2D PrD½d$ log2 PrD½d$, and the

Minimum Entropy of D is H1ðDÞ ¼ mind2Df&log2 PrD½d$g.
We model all parties by Probabilistic Turing Machines

(PTMs). A PTM is a standard Turing machine with an
additional read-only “randomness” tape that is initially set
so that every cell is a uniformly independently chosen bit.
If A is a PTM, we denote by x AðyÞ the event that x is
drawn from the probability distribution defined by
A’s output on input y for a uniformly chosen random tape.
We write ArðyÞ to denote the output of A with random tape
fixed to r on input y.

We sometimes use Oracle PTMs (OPTMs). An OPTM is a
PTM with two additional tapes, a “query” tape and a
“response” tape, and two corresponding states Qquery and
Qresponse. An OPTM runs with respect to some oracle O and
when it enters state Qquery with value y on its query tape, it
goes in one step to state Qresponse, with x OðyÞ written to
its “response” tape. If O is a probabilistic oracle, then AOðyÞ
is a probability distribution on outputs taken over both the
random tape of A and the probability distribution on
O’s responses.

Let F : f0; 1gk ' f0; 1gL ! f0; 1gl denote a family of
functions. Informally, F is a pseudorandom function
(PRF) family if F and FL;l are indistinguishable by oracle
queries. Formally, let A be an oracle probabilistic adversary.
Define the PRF advantage of A over F as
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Advprf
A;F ðkÞ ¼ Pr

K Uk

AFKð(Þð1kÞ ¼ 1
h i

& Pr
f FL;l

Afð1kÞ ¼ 1
! "####

####:

Define the insecurity of F as InSecprfF ðt; q; kÞ ¼
maxA2Aðt;qÞfAdvprf

A;F ðkÞg, where Aðt; qÞ denotes the set of
adversaries taking atmost t steps andmaking atmost q oracle
queries. Then, Fk is a ðt; q; !Þ-PRF if InSecprfF ðt; q; kÞ ) !.
Suppose that lðkÞ and LðkÞ are polynomials. A sequence
fFkgk2IN of families Fk : f0; 1gk ' f0; 1gLðkÞ ! f0; 1glðkÞ is
called pseudorandom if, for all polynomially bounded
adversaries A, Advprf

A;F ðkÞ is negligible in k. We will
sometimes write FkðK; (Þ as FKð(Þ. We note that the results
of [26] and [27], when taken together, imply that the
existence of PRFs and one-way functions are equivalent.

2 CHANNELS

We seek to define steganography in terms of indistinguish-
ability from a “usual” or innocent-looking pattern of
communication. In order to do so, we must characterize
this pattern. We begin by supposing that Alice and Bob
communicate via documents.

Definition 1 (documents). Let D be an efficiently recognizable
prefix-free set of strings or documents.

As an example, if Alice and Bob are communicating over
a computer network, they might run the TCP/IP protocol, in
which case they communicate by sending “packets”
according to a format that specifies fields like a source
and destination address, packet length, and sequence
number.

Once we have specified what kinds of strings Alice and
Bob send to each other, we also need to specify the
probability that Ward will assign to each document. The
simplest notion might be to model the innocent commu-
nications between Alice and Bob by a stationary distribution:
each time Alice communicates with Bob, she makes an
independent draw from a probability distribution C and
sends it to Bob. Notice that, in this model, all orderings of
the messages output by Alice are equally likely. This does
not match well with our intuition about real-world
communications; if we continue the TCP/IP analogy, we
notice, for example, that, in an ordered list of packets sent
from Alice to Bob, each packet should have a sequence
number that is one greater than the previous; Ward would
become very suspicious if Alice sent only packets with odd
sequence numbers.

Thus, we will use a notion of a channel that models a
prior distribution on the entire sequence of communication
from one party to another:

Definition 2. A channel is a probability distribution on
sequences s 2 D1.

Any particular sequence in the support of a channel
describes one possible outcome of all communications
from Alice to Bob—the list of all packets that Alice’s
computer sends to Bob’s. The process of drawing from the
channel, which results in a sequence of documents, is
equivalent to a process that repeatedly draws a single
“next” document from a distribution consistent with the

history of already drawn documents—for example, draw-
ing only packets that have a sequence number that is one
greater than the sequence number of the previous packet.
Therefore, we can think of communication as a series of
these partial draws from the channel distribution, condi-
tioned on what has been drawn so far. Notice that this
notion of a channel is more general than the typical
setting in which every symbol is drawn independently
according to some fixed distribution: Our channel ex-
plicitly models the dependence between symbols common
in typical real-world communications.

Let C be a channel. For a finite sequence h 2 D*, we let
PrC½h$ ¼

P
s2D1 PrC½ðh; sÞ$. We let Ch denote the marginal

channel distribution on a single document from D condi-
tioned on the history h of already drawn documents; we let
Clh denote the marginal distribution on sequences of
l documents conditioned on h. Concretely, for any d 2 D,
we will say that

Pr
Ch
½d$ ¼

P
s2 ðh;dÞf g'D1 PrC½s$P
s2fhg'D1 PrC½s$

and that, for any ~d 2 dl,

Pr
Clh
½~d$ ¼

P
s2 ðh;dÞf g'D1 PrC½s$P
s2fhg'D1 PrC½s$

:

When we write “sample x Ch, ” we mean that a single
document should be returned according to the distribution
conditioned on h.

Informativeness. We will require that a channel satisfy a
minimum entropy constraint for all histories. Specifically,
we require that there exist constants L > 0, " > 0, and
# > 0 such that, for all h 2

S
l)L D

l, either PrC½h$ ¼ 0 or
H1ðC"hÞ + #. If a channel does not satisfy this property, then
it is possible for Alice to drive the information content of
her communications to 0, so this is a reasonable require-
ment. We say that a channel satisfying this condition is
ðL;#;"Þ-informative and, if a channel is ðL;#;"Þ-informative
for all L > 0, we say that it is ð#;"Þ-always informative, or
simply always informative. Note that this definition implies
an additive-like property of minimum entropy for
marginal distributions; specifically, H1ðCl"h Þ + l#. For ease
of exposition, we will assume that channels are always
informative in the remainder of this paper; however,
our theorems easily extend to situations in which a channel
is L-informative. The only complication in this situation is
that there will be a bound in terms of ðL;#;"Þ on the
number of bits of secret message that can be hidden before
the channel runs out of information.

Intuitively, L-informativeness requires that Alice always
sends at least L packets over her TCP/IP connection to Bob,
and at least one out of every " packets she sends has some
probable alternative. Thus, we are requiring that Alice
always says at least L=" “interesting things” to Bob.

Channel access. To demonstrate that it is feasible to
construct secure protocols for steganography, we will
assume only that Alice has oracle access to the marginal
channel distributions Ch on her communications to Bob.
This is reasonable because, if Alice can communicate
innocently with Bob at all, she must be able to draw from
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this distribution; thus, we are only requiring that, when
using steganography, Alice can “pretend” she is commu-
nicating innocently. In fact, we will show in Section 5 that
this requirement is necessary: If Alice can communicate
steganographically with Bob, then she can draw samples
from her marginal channel distributions.

On the other hand, we will assume that the adversary,
Ward, knows as much as possible about the distribution
on innocent communications. Thus, he will be allowed
oracle access to marginal channel distributions Ch for
every history h and, in addition, the adversary may be
allowed access to an oracle that on input ðh 2 D*; lÞ
returns an l-bit representation of PrC½h$. Note that this
allows Ward to compute the marginal probabilities of
individual documents under arbitrary histories.

These assumptions allow the adversary to learn as much
as possible about the channel distribution but do not
require any legitimate participant to know the distribution
on communications from any other participant. We will,
however, assume that both Alice and Bob know the history
of communications from Alice to Bob.

We will also assume that cryptographic primitives
remain secure with respect to oracles that draw from the
marginal channel distributions Ch. Thus, channels that can
be used to solve the hard problems that standard primitives
are based on must be ruled out. In practice, this is of little
concern, since the existence of such channels would have
previously led to the conclusion that the primitive in
question was insecure.

Notice that the set of documents need not be literally
interpreted as a set of bitstrings to be sent over a network. In
general, documents could encode any kind of information,
including things like actions (such as accessing a hard drive
or changing the color of a pixel) and times (such as pausing
an extra 1

2 second between words of a speech). Our model is
thus general enough to deal with these situations without
any special treatment.

3 DEFINITIONS

We will first define a stegosystem in terms of syntax and
correctness and then proceed to a security definition.

Definition 3 (stegosystem). A stegosystem S for message space
M, with security parameter k is a pair of probabilistic
algorithms:

. S.Encode (abbreviated SE) takes as input a key
K 2 f0; 1gk, a string m 2 M (the hiddentext), and a
message history h. SEðK;m; hÞ returns a sequence of
documents ðs1; s2; . . . ; slÞ (the stegotext).

. S.Decode (abbreviated SD) takes as input a key K, a
sequence of documents ðs1; s2; . . . ; slÞ, and a message
history h. SDðK; s; hÞ returns a hiddentext m 2 M.

Both algorithms may be stateful, in which case they have an
implicit fourth parameter, the current state.

3.1 Correctness

Of course, in order for a stegosystem to be useful, it must be
correct: when using the same key, history, and state (if any),
decoding should usually recover the encoded message.

Definition 4 (correctness). A stegosystem S is correct if, for
every message m 2 M and every history h 2 D*, the “error
function”

ErrS;C;m;hðkÞ ¼ Pr SDK SEKðm;hÞ; hð Þ 6¼ m½ $

is negligible, where the probability is taken over the key K and
any coin tosses of SE and SD.

3.2 Security

Intuitively, what we would like to require is that no efficient
warden can distinguish between stegotexts output by SE
and covertexts drawn from the channel distribution Ch. As
we stated in Section 2, we will assume that W knows the
distribution Ch; we will also allow W to know the
algorithms involved in S, as well as the history h of Alice’s
communications to Bob. In addition, we will allow W to
pick the hiddentexts that Alice will hide if she is in fact
producing stegotexts. Thus, W ’s only uncertainty is about
the key K and the single bit denoting whether Alice’s
outputs are stegotexts or covertexts.

As with encryption schemes, we will model an attack
against a stegosystem as a game played by a passivewarden,
W , who is allowed to know the details of S and C.
Definition 5 (chosen hiddentext attack). In a chosen

hiddentext attack with security parameter k, W is given
access to a “mystery oracle” M, which is chosen from one of
the following distributions:

1. ST . The oracle ST has a uniformly chosen key
K  Uk and responds to queries ðm;hÞ with a
StegoText drawn from SEðK;m; hÞ.

2. CT . The oracle CT has a uniformly chosen K as
well and responds to queries ðm;hÞ with a CoverText
c C‘h of length ‘ ¼ jSEðK;m; hÞj.

If S is stateful, M’s queries may include a state input to SE,
with the restriction that W must be state respecting: It
cannot cause the state of SE to repeat itself. We require state-
respecting adversaries against stateful schemes to model the
ability of the sender to maintain a state that does not repeat,
which can be used to ensure that different invocations of the
protocol are “independent” of each other.

After interacting with its oracle, WMð1kÞ outputs a bit,
which represents its guess about the type of M.

We define W ’s advantage against a stegosystem S for
channel C by

Advss
W;S;CðkÞ ¼ Pr WST ð1kÞ ¼ 1

! "
& Pr WCT ð1kÞ ¼ 1

! "## ##;

where the probability is taken over the randomness of ST ,
CT , and W .

Define the insecurity of S with respect to channel C by

InSecssS;Cðt; q; l; kÞ ¼ max
W2Wðt;q;lÞ

Advss
W;S;CðkÞ

n o
;

where Wðt; q; lÞ denotes the set of all adversaries that make
at most qðkÞ queries totaling at most lðkÞ bits (of hiddentext)
and running in time at most tðkÞ.
Definition 6 (steganographic secrecy). A stegosystem Sk is

called ðt; q; l; !Þ steganographically secret against a
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chosen hiddentext attack for the channel C (ðt; q; l; !Þ-SS-
CHA-C) if InSecssS;Cðt; q; l; kÞ ) !.

4 CONSTRUCTIONS

For our feasibility results, we have taken the approach of
assuming a channel that can be drawn from freely by the
stegosystem; this is in contrast to many ad hoc proposals in
the literature, where the stegosystem is given only a single
sample from the channel as input. We prove in Section 5
that our notion of steganographic secrecy requires the ability
to draw multiple samples from the channel. Thus, removing
this requirement would require a fundamentally different
notion of security than the one we give here.

It is also worth noting that the stegosystem we
construct that has relatively little knowledge of the
channel distribution—SE—needs only to sample from an
oracle according to the distribution. This is because in
many cases the full distribution of the channel has never
been characterized; for example, the oracle may be a
human being or a video camera focused on some complex
scene. In these cases, the cost of sampling from Ch may be
nontrivial. We therefore stress that, due to the possible
expense of oracle queries, it is important to minimize their
use. We also point out that our definitions do not rule out
efficient constructions for channels where more is known
about the distribution.

In practice, the oracle is also theweakest point of all of our
constructions.We assume the existence of a perfect oracle: one
that can perform independent draws, one that can be
rewound, etc. This assumption can be justified in some cases
but not in others. If the oracle is a human, the humanmay not
be able to perform independent draws from the channel as is
required by our constructions. A real-world warden would
use this to his advantage. We therefore stress the following
cautionary remark: Our security proofs only hold under the
assumption that the channel oracle is perfect.

4.1 A Simple Construction

We start by describing a low-bandwidth stegosystem that
transmits only single-bit messages. Here, we assume that
Alice and Bob share a channel and let C denote the channel
distribution. We write d Ch to denote the action of
sampling d from the marginal distribution Ch (via
oracle access). We let FKð(; (Þ denote a PRF family indexed
by k ¼ jKj key bits that maps documents to bits, i.e.,
Fk : f0; 1gk ' f0; 1g* ! f0; 1g. We let Alice and Bob share
a secret key K 2 f0; 1gk and also a synchronized d bit
counter N (which need not be secret). The OneBit

stegosystem shown in Fig. 1 allows Alice and Bob to encode
and decode single bits sent via their shared channel.

The idea behind OneBit is simple. The encoding
algorithm makes ‘ copies of the bit m. For the ith copy,
the encoder attempts to find a document d such that
FKðN þ i; dÞ ¼ m by drawing d Ch. If the encoder fails, it
draws a second d0  Ch and sends d0 instead of d. The
decoder recovers ‘ bits by applying FK to each document
and outputs 1 if the majority of the bits are 1 and 0
otherwise. Intuitively, this works because we expect each si
to map to the bit m with probability about 3

4 and, so, the
probability of a decoding failure should be negligible in ‘.

Lemma 1. Let s1; . . . ; s‘  SEfðm;hÞ, i.e., SE where FK is
replaced by f  F *;1. Then, for any d 2 D,

Pr½si ¼ d$ ¼ Pr
Chi
½d$:

Proof. The event si ¼ d happens exactly when di ¼ d and
fðN þ i; diÞ ¼ m (call this event Fi) or when d0i ¼ d and Fi

happens. Because di and d0i are drawn independently
from Chi and independent of f , we get

Pr½si ¼ d$ ¼ Pr ðFi ^ di ¼ dÞ _ Fi ^ d0i ¼ d
$ %! "

¼ Pr½ðFi ^ di ¼ d$ þ Pr Fi ^ d0i ¼ d
! "

¼ Pr fðN þ i; diÞ ¼ m½ $Pr½di ¼ d$

þ Pr fðN þ i; diÞ ¼ 1&m½ $Pr d0i ¼ d
! "

¼ 1

2
Pr
Chi
½d$ þ 1

2
Pr
Chi
½d$ ¼ Pr

Chi
½d$:

ut

Theorem 1. Let TSE denote the time required to execute
OneBit.Encode . T h e n , InSecssOneBit;Cðt; q; q; kÞ )
InSecprfF ðtþ qTSE; 2q‘; kÞ.

Proof. Let W 2 Wðt; q; qÞ be an adversary for OneBit. We
construct a PRF adversary A for F with the same
advantage as W . Af works by running W and intercept-
ing any queries W makes to its oracle M. To respond to
these queries, Af emulates the encoding procedure
OneBit.Encode using the function oracle f in place
of FK to get a result s and starts W with s as the response
to its oracle query. When W halts with output b, A also
outputs b. Clearly, when f  FK , AFK perfectly emulates
the ST oracle for W , so

Pr
K

AFK ð1kÞ ¼ 1
! "

¼ Pr WST ð1kÞ ¼ 1
! "

:

By the previous lemma, when f  F *;1, Af perfectly
simulates a CT oracle for W , so
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Pr
f

Afð1kÞ ¼ 1
! "

¼ Pr WCT ð1kÞ ¼ 1
! "

:

Thus, by the definition of advantage, Advprf
A;F ðkÞ ¼

Advss
W;OneBit;CðkÞ. The theorem follows by the definition

of insecurity. tu

Lemma 2. Let s1; . . . ; s‘  SEfðm;hÞ, where f  F *;1. Then,
for any i,

Pr fðN þ i; siÞ ¼ m½ $ ¼ 1

2
þ 1

4
Pr

d0;d1 Chi
½d0 6¼ d1$:

Proof. Consider the two documents di and d0i that SE draws
in iteration i. It will be the case that fðN þ i; siÞ ¼ m
exactly when either fðN þ i; diÞ ¼ m, which happens
with probability 1

2 , or when fðN þ i; diÞ ¼ 1&m and
fðN þ i; d0iÞ ¼ m, which happens with probability 1

4
when di 6¼ d0i and with probability 0 otherwise. The
theorem applies for any i because the function fðN þ i; (Þ
is independent of fðN þ j; (Þ for i 6¼ j. tu

Lemma 3. Suppose C is ð#;"Þ-always informative and f  F *;1.
Then, we have

Pr
i
fðN þ i; siÞ ¼ m½ $ + 1

2
þ 1

4"
ð1& 2&#="Þ:

Proof. Because C is ð#;"Þ-informative, for any h and any
sequence d1; . . . ; d"  C"h, there must be a j between 0
and " & 1 such that H1ðCðh;...;djÞÞ + #=". If this were not
the case, then we would have h such that H1ðC"hÞ < #.
Thus, for a string of length ‘ drawn from C‘h, there must
be ‘=" positions i that have H1ðChiÞ + #=". In these
positions, the collision probability is at most 2&#=" . In the
other positions, the collision probability is at most 1.
Applying the previous lemma yields the result. tu

Theorem 2. If C is ð#;"Þ-informative, then

ErrOneBit;C;m;hðkÞ ) e&$‘ þ InSecprfF ðTSE‘; 2‘; kÞ;

where $ ¼ 2ð 14" ð1& 2&#="ÞÞ2 and TSE is the time required to
execute the inner loop of OneBit.Encode.

Proof. Lemma 3 implies that if f is a random function, then
ErrOneBitf ;C;m;hðkÞ ) e&$‘. We describe a PRF adversary A
for F that has an advantage of at least

ErrOneBit;C;m;hðkÞ & e&$‘
## ##:

A uses its function oracle f to emulate the action of SE
encoding a uniformly chosen bit m under history h,
counting the number of documents with fðN þ i; siÞ ¼ m.
If fewer than 1

2 of the si satisfy fðN þ i; siÞ ¼ m, A
outputs 1; otherwise, A outputs 0. Lemma 3 shows

that Pr½Afð1kÞ ¼ 1$ ) e&$‘, whereas Pr½AFkð1kÞ ¼ 1$ ¼
ErrOneBit;C;m;hðkÞ. So, by the definition of advantage,

Advprf
A;F ðkÞ + ErrOneBit;C;m;hðkÞ & e&$‘

## ##

and it follows that this quantity is at most
InSecprfF ðTimeAðkÞ; QueriesAðkÞ; kÞ. But , A runs in
time ‘TSE and makes 2‘ function-oracle queries, which
proves the theorem. tu
For completeness, we also show in Fig. 1 the obvious

extension of the stegosystem OneBit to multiple-bit
hiddentexts. We assume the same setup as that used
previously. The MultiBit stegosystem works by simply
repeatedly invoking OneBit on the individual bits of the
message m. It is straightforward to state and prove similar
theorems about the security and correctness of MultiBit.

4.2 Increasing the Rate

The Multibit stegosystem is secure for any ðL;#;"Þ-
informative channel, but it is inefficient in the sense that in
order to yield a negligible error rate e&$‘, it must set
‘ ¼ !ðlog kÞ, so the number of documents used to encode an
m-bit hiddentext is !ðm log kÞ, whereas the number of
documents needed to ensure m bits of information in a
covertext is m"=# ¼ OðmÞ. Fig. 2 gives a stegosystem,
OneBlock, that can hide % bits of hiddentext in
l ¼ ð1þ !Þ% "# documents of stegotext, for any ! > 0. We
will prove that this stegosystem has error rate %2&!% and
takes an expected 2% samples from the channel; in the next
section, we prove that no stegosystem of this type can
simultaneously hide as many or more bits of hiddentext in
l documents while taking fewer than 2% samples from the
channel. We will assume for this construction that both
Alice and Bob know the history h and a value l such that
% < ð1& !ÞH1ðCl

hÞ. We let F : f0; 1gk ' f0; 1g* ! f0; 1g%

be a PRF and also assume that Alice and Bob share a
key K 2 f0; 1gk.

The idea behind this construction is that, to encode
message m 2 f0; 1g%, we can search for a document s such
that FKðN; sÞ ¼ m; this will involve drawing about
2% samples sð0Þ; sð1Þ; . . . ; sð2

%Þ. The main problem we en-
counter in extending the proof of Lemma 1 to this case is the
assertion that FKðN; sðiÞÞ and FKðN; sðjÞÞ are independent:
This is only true if sðiÞ 6¼ sðjÞ. To ensure that the sequence of
inputs to FKðN; (Þ is distinct, we maintain a counter c½d$, for
each d 2 D, that records how many times d has been
sampled and we include c½sðjÞ$ as an argument to FKðN; ( ( (Þ.
When decoding, we assume that the value of the counter for
the stegotext was 1; we prove that this is correct with high
probability.

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. X, XXX 2009

Fig. 2. Construction 2: OneBlock and NoState stegosystems.



Theorem 3. Let S be the OneBlock stegosystem. Then,

ErrS;C;m;hðkÞ ) e&% þ %2%&H1 C
l
hð Þ þ InSecprfF ðt;%2%; kÞ;

where t ¼ Oð%2%Þ.
Proof. We will show that when FK is replaced by a random

function f :

Pr f N; h; 1; SEfðm;h;NÞ
$ %

6¼ m
! "

) e&% þ %2%&H1 C
l
hð Þ:

We can use the same PRF adversary A from the proof of
Theorem 2 to get an advantage of at least Advprf

A;F ðkÞ +
ErrS;C;m;hðkÞ & e&% þ %2%&H1ðClhÞ, which will give the
desired bound.

Let C denote the event that OneBlock:EncodefðmÞ
outputs an si with c½si$ > 1. This happens when there is
at least one j < i such that sj ¼ si. Thus, by the union
bound, we have Pr½C$ )

P
j<i Pr½sj ¼ si$. Since, for each

j, Pr½sj ¼ si$ ) 2&H1ðC
l
hÞ and since i < %2%, we get the

following bound:

Pr½C$ ) %2%&H1 C
l
hð Þ:

Let D denote the event that OneBlock:EncodefðmÞ
outputs s%2% . This happens when each of the previous
%2% tests fðN; h; c½si$; siÞ ¼ m fails. Since each test
involves a distinct point of f , each of these happens
independently with probability 1& 1=2%. Since the
events are independent, we can bound Pr½D$ by

Pr½D$ ¼ 1& 1

2%

& '%2%
) e&%:

The only other condition under which OneBlock:
EncodefðmÞ outputs si is if fðN; h; 1; siÞ ¼ m; thus,

Pr SDf SEfðmÞ
$ %

6¼ m
! "

¼ Pr½C _ D$ ) e&% þ %2%&H1 C
l
hð Þ:

As in Theorem 2, the adversary Af picks m 2 f0; 1g%

and runs OneBlock:Encodefðm; "; 0; lÞ to get a sequence
s 2 Dl. Af then outputs 1 if fðsÞ 6¼ m. Clearly, when
A’ s orac le f  FK , we have Pr½AFK ð1kÞ ¼ 1$ ¼
ErrS;C;m;"ðkÞ and, when f is a randomly chosen function
from f0; 1g* ! f0; 1gl, we have shown that Pr½Afð1kÞ ¼
1$ ) e&% þ %2%&H1ðClhÞ. It follows that A has the stated
advantage and, thus,

ErrS;C;m;hðkÞ )Advprf
A;F ðkÞ þ e&% þ %2%&H1 C

l
hð Þ

) InSecprfF ðt;%2%; kÞ þ e&% þ %2%&H1 C
l
hð Þ:

ut

Theorem 4. Let t0 ) tþOðq%2%Þ. Then, InSecssOneBlock;Cðt; q;
q%; kÞ ) InSecprfF ðt0; q%2%; kÞ.

Proof. Fix any state-respecting W 2 Wðt; q; q%Þ. We will
show how to construct a PRF adversary A for F such that

Advprf
A;F ðkÞ ¼ Advss

W;OneBlock;CðkÞ:

Af works by emulating W , responding to its queries
by running OneBlock:Encodef ; when W halts with

output b, A outputs b as well. Clearly, when f  FK ,
we have that

Pr AFK ð1kÞ ¼ 1
! "

¼ Pr WST ð1kÞ ¼ 1
! "

:

When f is a randomly chosen function and since W is
state respecting, A never evaluates f on any point twice.
Thus, Af is equivalent to a process that draws a
new independent function at each stage. In this model,
for any d 2 Dl, we have that Pr½SEðm;hÞ ¼ d$ ¼
Prf;s Clh ½s ¼ djfðsÞ ¼ m$ and, since s and f are drawn
independently, we have that Pr½SEðm;hÞ ¼ d$ ¼ PrClh ½d$.
Thus, A’s responses to W ’s queries are distributed
according to C, so

Pr Afð1kÞ ¼ 1
! "

¼ Pr WCT ð1kÞ ¼ 1
! "

:

Combining the cases yields

Advprf
A;F ðkÞ ¼ Pr AFK ð1kÞ ¼ 1

! "
& Pr Afð1kÞ ¼ 1

! "## ##

¼ Pr WST ð1kÞ ¼ 1
! "

& Pr WCT ð1kÞ ¼ 1
! "## ##

¼Advss
W;OneBlock;CðkÞ;

which proves the theorem. tu
We note that the error rate here is negligible in % but

polynomial in the expected runtime t ¼ 2%. The error rate
can be made negligible in t by using standard error-
correcting techniques such as a Reed-Solomon block code
over GF ð2%Þ using block length 2% and minimum distance
4%2ð1&!Þ%. This block code has rate 1& oð1Þ in terms of t and
standard tail bounds show that the probability of a
decoding error will be negligible in t.

4.3 Optimality of OneBlock
We concern ourselves with the rate of a universal
blockwise bounded-sample stegosystem. A universal stego-
system S accepts an oracle for the channel C and is secure
against a chosen hiddentext attack with respect to C as
long as C does not violate the hardness assumptions S is
based on. Universality is important because, typically,
there is no good description of the marginal distributions
on a channel. A ðh; l;%; tÞ-sample-bounded blockwise
stegosystem encodes messages in (multiples of) a fixed
“block size” of % bits, always outputs l-document
sequences from the channel and draws at most t samples
from Clh when encoding a block. Since we require a
stegosystem to have bounded runtime and to be universal,
the runtime of SEðK;m; hÞ is always an upper bound on t.
Conversely, if a stegosystem is t-sample bounded but not
t& 1-sample bounded, then t is a lower bound on the
worst case runtime of SE.

We consider the class Sðh; l;%; tÞ of stegosystems that
draw at most t samples from Clh to encode % bits of
hiddentext; we will show two upper bounds on the
hiddentext length % for any S 2 Sðh; l;%; tÞ. The first
MAXtðSÞ is in terms of the number of samples t. The
second MAXCðSÞ is in terms of the min entropy H1ðClhÞ of
the channel C. We define the combined upper bound by

MAXCðh; l; tÞ ¼ min MAXtðSÞ;MAXCðSÞf g:
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4.3.1 MAXtðSÞ
For any stegosystem S 2 Sðh; l;%; tÞ, we will show that there
exists a channel C such that S is insecure relative to C if
%& log t is any positive constant. Thus, it follows that
MAXtðSÞ ) log t.

Theorem 5. InSecssS;CðOðtþ kÞ; 1;%; kÞ + 1& 2&cðt;kÞ & 2&k &
&ðk;%Þ, where &ðk;%Þ ¼ Prm U%;K;h½SDðK;SEðK;m; hÞ;
hÞ 6¼ m$, and % + log tþ cðt; kÞ.

Proof. The channel C is defined as follows: to every history h
of length k, we associate a polynomial of degree tþ 1 over
GF ð2kÞwith uniformly chosen coefficients, phðxÞ. To draw
from Ch, we draw x Uk, compute y ¼ phðxÞ, and output
xky. Notice that if S:SEðK;m; hÞ draws at most t samples
ðx1; y1Þ; . . . ; ðxt; ytÞ Ch and outputs a pair ðx0; y0Þ such
that x0 62 fx1; . . . ; xtg, then Pr½y0 ¼ phðx0Þ$ ) 2&k. On the
other hand, an adversary can draw tþ 1 samples from Ch
and compute ph by interpolation. Thus, whenSEðK;m; hÞ
outputs apair ðx0; y0Þ 62 fðx1; y1Þ; . . . ; ðxt; ytÞg, anadversary
can distinguish between SEðm;hÞ and Ch by checking
whether y0 ¼ phðx0Þ.

Formally, we define the adversary AO as follows:
On input 1k, sample a history h of length k by drawing
h1  C" and hi  Ch1;...;hi&1 for 1 < i ) k. Draw tþ 1
samples ðx1; y1Þ; . . . ; ðxtþ1; ytþ1Þ Ch. Compute the poly-
nomial ph by interpolation. Choose m*  U% and draw
ðx*; y*Þ Oðm*; hÞ. If y* 6¼ phðx*Þ, output 1; otherwise,
output 0.

Clearly, A runs in time Oðtþ kÞ. We will now
compute the advantage of A. First, notice that, given a
covertext oracle, A will always output 0:

Pr ACT ð1kÞ ¼ 1
! "

¼ 0:

Now, let NS denote the event that SEðK;m; hÞ draws
samples ðx01; y01Þ; . . . ; ðx0t; y0tÞ Ch and outputs a stego-
text ðx*; y*Þ 62 fðx01; y01Þ; . . . ; ðx0t; y0tÞg. Since, in this case,
Pr½y* ¼ phðx*Þ$ ) 2&k, we have that

Pr AST ð1kÞ ¼ 1
! "

+ Pr½NS$ & 2&k:

Thus, we only need to give a lower bound on Pr½NS$ to
complete the proof.

Fix a tuple ðK;m; hÞ and consider the set SD&1
K;hðmÞ ¼

fs 2 D : SDðK; s; hÞ ¼ mg. S i n c e % + log tþ cðt; kÞ,
SD partitions D into t' 2cðt;kÞ such sets. Then, for any
fixed set of samples ðx0i; y0iÞ, the probability over m that
SEðK;m; hÞ has a sample ðx0i; y0iÞ 2 SD&1

K;hðmÞ is at most
t

2cðt;kÞt
¼ 2&cðt;kÞ. Let E denote the event that SEðK;m; hÞ

outputs an s* such that SDðK; s*; hÞ 6¼ m. Then,

Pr½NS$ + Pr 8j; x0j; y
0
j

( )
62 SE&1

K;hðmÞ
h i

& Pr½E$

+ 1& 2&cðt;kÞ & &ðkÞ;

which yields the stated bound. tu

4.3.2 MAXCðSÞ
We exhibit a chosen-history, chosen-hiddentext distin-
guisher for any black-box stegosystem ðSE; SDÞ that

encodes % >H 1ðClhÞ bits of hiddentext in l documents of

stegotext nonnegligibly often.
Suppose we have a specific history h such that SE

encodes ‘þ 1 bits by samples from Clh and H1ðClhÞ ¼ ‘. (If

such histories occur nonnegligibly often, then we can find

one by sampling from an oracle for SE; if they do not, then

the rate of the stegosystem does not exceed H1ðClhÞ) Since
H1ðClhÞ ¼ ‘, we know that there is at least one l-document

string, s*, that has probability 2&‘ under Clh and no other

string has more probability mass than s*. Now, if SE were

deterministic, then we would have that

Pr SEðmÞ ¼ s* : m U‘þ1½ $ ) 2&ð‘þ1Þ

by the unique decoding property. Even if SE is rando-

mized, then, for any fixed random bits r, we have

Pr SEðm; rÞ ¼ s* : m U‘þ1½ $ ) 2&ð‘þ1Þ:

But then, by an averaging argument, there must be some

m* 2 f0; 1g‘þ1 such that Pr½SEðm*Þ ¼ s*$ < 2&ð‘þ1Þ. In con-

trast, a covertext oracle CT will have Pr½CT ðmÞ ¼ s*$ ¼ 2&‘,

for any m 2 f0; 1g*. This gap is wide enough to detect with

high confidence, given polyð2‘Þ chosen-hiddentext samples.

And, since we are restricted to ‘ ¼ Oðlog tÞ by MAXtðSÞ,
this yields a polynomial-time distinguisher between a

covertext oracle and a stegotext oracle.

Theorem 6. LetS 2 Sðh; l;%; tÞ,H1ðClhÞ ¼ ‘,n ¼ 2‘,% ¼ ‘þ #,

and 0 < ' < 2# & 1. Then, InSecssS;CðOðn3Þ; 2n3; 2n3%; kÞ +

1& ð3þ 2#nÞe&cn, w h e r e c ¼ maxf12 ð1&
ffiffiffiffiffiffi
'þ1
2#

q
Þ2; '2=3;

1
12 ð1&

ffiffiffiffiffiffi
2#
'þ1

q
Þ2; 98 ð1&

ffiffiffiffiffiffi
'þ1
2#

q
Þ2g.

Proof. We define an adversary W with the stated

advantage. WO executes the following steps:

. W takes n2 samples from Clh. Let ŝ be the most
commonly occurring l-document sequence in the
sample set and let p̂ be the number of times ŝ
occurs in the sample.

. For each message m 2 f0; 1g‘þ#, W draws
n2 samples from OðmÞ. Let p̂m be the number of
occurrences of ŝ in the samples from OðmÞ.

. If for anym, p̂m )
ffiffiffiffiffiffi
'þ1
2#

q
p̂,W outputs 1. Otherwise,

W outputs 0.

We will bound the probability that W outputs 1 given a

stegotext oracle and a covertext oracle, respectively.

From the preceding paragraph, we know that, when

W has a stegotext oracle, there exists an m* such that

E½p̂m* $ ) 2&ð‘þ#Þ and we know that E½p̂$ ¼ 2&‘. So, W will

only output 0 if p̂ is much smaller than expected

(say, p̂ <
ffiffiffiffiffiffi
'þ1
2#

q
2&‘, and call this event P) or p̂ is about

right and p̂m* is much larger than expected (say,

p̂m* +
ffiffiffiffiffiffi
'þ1
2#

q
p̂, and call this event Q). Then, by Chernoff

bounds, we have
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Pr WST ð1kÞ ¼ 0
! "

¼ Pr½P ^Q$ þ Pr½P ^Q$
) Pr½P$ þ Pr½QjP$

) Pr p̂ <

ffiffiffiffiffiffiffiffiffiffiffi
' þ 1

2#

r
2&‘

" #

þ Pr p̂m* + ' þ 1

2#
2&‘

+ ,

) e&
n
2 1&

ffiffiffiffiffi
'þ1
2#

p$ %2

þ e&n'
2=3:

We also know that, when W has a covertext oracle, it

should be the case that for everym 2 f0; 1g*, E½p̂m$ ¼ 2&‘.

Thus,W should only output 1 when p̂ is much larger than

expected (say, p̂ > ð1þ 1
2 ð1&

ffiffiffiffiffiffi
2#
'þ1

q
ÞÞ2&‘, and denote this

event R) or some p̂m is much smaller than its expectation

(say, p̂m <
ffiffiffiffiffiffi
'þ1
2#

q
p̂, and denote this event Sm). Then, we

have that

Pr WCT ð1kÞ ¼ 1
! "

¼ Pr½R ^ 9m:Sm$ þ Pr½R ^ 9m:Sm$
) Pr½R$ þ Pr½9m:SmjR$
) Pr½R$ þ 2#nPr½SmjR$

) e&
n
12 1&

ffiffiffiffiffi
2#
'þ1

p$ %2

þ 2#nPr p̂m <
3

2

ffiffiffiffiffiffiffiffiffiffiffi
' þ 1

2#

r
& 1

2

 !

2&‘
" #

) e&
n
12 1&

ffiffiffiffiffi
2#
'þ1

p$ %2

þ 2#ne&
9n
8 1&

ffiffiffiffiffi
'þ1
2#

p$ %2

;

where the last three lines follow by the union bound and

multiplicative Chernoff bounds. Combining these
bounds with the constant c, we have

Advss
W;S;CðkÞ ¼ Pr WST ð1kÞ ¼ 1

! "
& Pr WCT ð1kÞ ¼ 1

! "

+ 1& 2e&cn & ðe&cn þ 2#ne&cnÞ:

The theorem follows by the definition of insecurity. tu

4.4 Removing Shared State

The previous constructions require Alice and Bob to keep
a synchronized d-bit counter N ; this is undesirable due to

the fact that there may be no good way to resynchronize
once a counter is corrupted. The NoState stegosystem

shown in Fig. 2 shows how to convert any “stateful”

stegosystem that requires only unique counter values (not
necessarily consecutive ones) into a stateless stegosystem,

at an expense of L documents. When L ¼ Oðk1&!Þ, this
preserves the rate (near) optimality of the OneBlock

stegosystem. The encoding and decoding functions of
NoState are parameterized by the encoding and decod-

ing functions of the underlying “stateful” stegosystem,
and additionally share a secret key ( to a PRF family

Gk : f0; 1gk 'DL ! f0; 1gd. The NoState stegosystem
works by choosing a long sequence from CLh and using it

to derive a value N , which is then used as the state for the
“stateful” stegosystem. This value is always a multiple of

2d=2 so that, if the value derived from the long sequence
never repeats, then any messages of length at most 2d=2

will never use a value of N used by another message.

Theorem 7. If C is ð#;"Þ-informative and ðSE; SDÞ is a stateful
stegosystem for C, then, for any q;) ) 2d=2

InSecssNoState;Cðt; q;); kÞ ) InSecssðSD;SEÞ;Cðtþ qTG; q;); kÞ

þ InSecprfG ðtþ ‘); q; kÞ þ qðq & 1Þ
2

ð2&d=2 þ 2&#L="Þ:

Proof. We reformulate the CT oracle in the chosen-
hiddentext attack game so that it also evaluates an
element of G( on the first L documents of its reply ðS; T Þ
to every query. Let NC denote the event that the values
G(ðS1Þ; . . . ; G(ðSqÞ are all distinct during the chosen-
hiddentext attack game and let C denote the complement
of NC. Then, for any W , we can bound Advss

W;NoState;CðkÞ
by ðPr½WST ð1kÞ ¼ 1jNC$ & Pr½WCT ð1kÞ ¼ 1jNC$Þ þ Pr½C$.
To bound the first term, note that we can make an
adversary X against ðSD; SEÞ that achieves this advan-
tage by choosing a ( and running W. When W queries its
oracle at ðm;hÞ, X draws S1  CLh and computes
N ¼ 2d=2G(ðS1Þ. X will halt with output 0 in case of
a repeated counter; otherwise, XO will return
ðS1;Oðm; ðh; S1Þ; NÞÞ to W .

To bound the probability of event C, we imagine that
the game is played with a random function f  F *;d=2
in place of G( and let Cf denote the event C in this
scenario. Let S1; . . . ; Sq denote the L-document prefixes
of the sequences returned by the oracle in the chosen-
hiddentext attack game and let Ni ¼ fðSiÞ. Then, the
event Cf happens when there exist i 6¼ j such that
Ni ¼ Nj or, equivalently, fðSiÞ ¼ fðSjÞ, and this event
happens when Si ¼ Sj or Si 6¼ Sj ^ fðSiÞ ¼ fðSjÞ. Thus,
Prf ½Cf $ ) qðq&1Þ

2 ð2&#L=" þ 2&d=2Þ.
Finally, observe that, for every W 2 Wðt; q;)Þ, we can

construct a PRF adversary A for G in Aðtþ ‘); qÞ such
that Advprf

A;GðkÞ + jPr½C$ & Pr½Cf $j. A runs W , using its
oracle f in place of G( to respond to W ’s queries. A
outputs 1 if the event Cf occurs and 0 otherwise. Then,
Pr½AG(ð1kÞ ¼ 1$ ¼ Pr½C$, a nd Pr½Afð1kÞ ¼ 1$ ¼ Pr½Cf $,
which satisfies the claim. tu

5 NECESSARY CONDITIONS

The previous section demonstrates that relative to an oracle
for C, the existence of one-way functions is sufficient for the
existence of secure steganography. In this section, we will
explore weaker definitions of steganographic secrecy and
establish two results. First, one-way functions are necessary
for steganography; thus, relative to a channel oracle, the
existence of one-way functions and secure steganography
are equivalent. Second, we will show that in the “standard
model, ” without access to a channel oracle, the existence of
a secure stegosystem implies the existence of a program
that samples from Ch and, thus, in the standard model,
secure steganography for C exists if and only if (iff) Ch is
efficiently sampleable.

5.1 Steganography Implies One-Way Functions

To strengthen our result, we develop the weaker notion of
security against known-hiddentext attacks (KHAs). In an
ðl;)Þ-KHA against distribution D, the adversary is given a
history h of length l, a hiddentext drawn from D), and a
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sequence of documents s 2 DjSEðK;m;hÞj. The adversary’s
task is to decide whether s Ch or s SEðK;m; hÞ. We
define the KHA advantage of W by

Advkha-D
W;S;Cðk; l;)Þ ¼

####Pr W h;m; SEðK;m; hÞð Þ ¼ 1½ $

& Pr W h;m; C SEðK;m;hÞj j
h

( )
¼ 1

h i####

and say that S is secure against KHAwith respect to D and C
(SS-KHA-D-C) if, for every PPT W , for all polynomially
bounded l and ), Advkha&D

W;S;C ðk; lðkÞ;)ðkÞÞ is negligible in k.
Thus, a stegosystem is secure against KHA if given the

history h and a plaintextm, an adversary cannot distinguish
(asymptotically) between a stegotext encoding m and a
covertext of the appropriate length drawn from Ch. We will
show that one-way functions are necessary even for this
much weaker notion of security. In order to do so, we will
use the following results from [27]:

Definition 7 [27, Definition 3.9]. A polynomial-time
computable function f : f0; 1gk ! f0; 1g‘ðkÞ is called a false
entropy generator (FEG) if there exists a constant c and
polynomial-time-computable g : f0; 1gk

0
! f0; 1g‘ðkÞ such that

1) HSðgðUk0ÞÞ > HSðfðUkÞÞ þ 1=ckc and 2) fðUkÞ - gðU 0kÞ.

Thus, a function is an FEG if its output is indistinguishable
from a distribution with higher (Shannon) entropy. We
make use of the following.

Theorem 8 [27, Lemma 4.16]. If there exists an FEG, then there
exists a pseudorandom generator.

We note that the proof of Theorem 8 is “black box” with
respect to the FEG, and thus, it holds relative to the
presence of the channel oracle C.
Theorem 9. If there is a stegosystem S that is SS-KHA-D-C

secure for some hiddentext distribution D and some channel C,
then there exists a pseudorandom generator, relative to an
oracle for C.

Proof. We will show how to construct a FEG from
S.Encode, which, when combined with Proposition 8,
will imply the result. We consider an experiment which
draws a key K  Uk and hiddentext m Dk2 and
define the random variable L ¼ jSEðK;m; "Þj. Because
S is SS-KHA-D-C secure, we must have

SEðK;m; "Þ;mð Þ - CL" ;m
$ %

and, for any k, we must have one of the following cases:

1. HSðCL" Þ > HSðSEðK;m; "ÞÞ þ 1=k. In this case, the
program that samples from C" is an FEG.

2. HSðCL" Þ < HSðSEðK;m; "ÞÞ & 1=k. In this case, SE
is an FEG.

3. jHSðCL" Þ &HSðSEðK;m; "ÞÞj ) 1=k.

In the last case, we construct an FEG as follows: Let
fðUk1Þ draw m and K be as above and output
ðSEðK;m; "Þ;mÞ, and let gðUk2Þ do the same and output
ðCL" ;mÞ. Then, HSðgðUk2ÞÞ ¼ HSðCL" Þ þHsðmjCL" Þ and

HS m j C SEðK;m;"Þj j
"

( )
¼ jKj2HSðDÞ;

due to independence, whereas HSðfðUk1ÞÞ ¼
HSðSEðK;m; "ÞÞ þHSðmjSEðK;m; "ÞÞ and

HS m jSEðK;m; "Þð Þ ) ð1þ *ÞjKj

for a negligible function *. To see that this is the case,
notice that m ¼ SDðK;SEðK;m; "ÞÞ and so is deter-
mined (up to a negligible probability) by K and
HSðKÞ ¼ jKj. Thus, asymptotically, we have that
HSðfðUk1ÞÞ > HSðgðUk2ÞÞ and f is an FEG relative to an
oracle for C.1 tu

Corollary 1. Relative to an oracle for C, secure stegosystems exist
iff one-way functions exist.

5.2 Sampleable Channels Are Necessary

We say that a channel C is efficiently sampleable if there exists
an algorithm C such that for any polynomial time A, for any
polynomial l,

Pr
h ClðkÞ"

A 1k; Cðh; 1k; UkÞ
$ %! "

& Pr
h ClðkÞ"

Að1k; ChÞ
! "

#####

#####

is negligible in k. Notice that, for any efficiently sampleable
channel C, the results of the previous sections prove that
secure steganography with respect to C exists iff one-way
functions exist in the standard model—e.g., without assuming
oracle access to the channel C. Here, we will show that if
secure steganography exists for C in the standard model,
then C is efficiently sampleable.

Theorem 10. If there exists an efficiently sampleable D such that
there is a SS-KHA-D-C secure stegosystem S in the standard
model, then C is efficiently sampleable.

Proof. Consider the program CS with the following behavior:
on input ð1k; hÞ, CS picks K  f0; 1gk, picks m D, and
returns the first document of S:EncodeðK;m; hÞ. Consider
any PPT distinguisher A. We will show that the KHA
adversaryW that passes the first document of its input to
A and outputs A’s decision has at least the advantage of
A. This is because, in case W ’s input is drawn from SE,
the input it passes to A is exactly distributed according to
CSð1k; hÞ and, when W ’s input is drawn from Ch, the
input it passes to A is exactly distributed according to Ch:

Advkha-D
W;S;Cðk; jhj; 1Þ

¼ Pr W SEðK;m; hÞð Þ ¼ 1½ $ & Pr WðChÞ ¼ 1½ $j j
¼ Pr A 1k; CSð1k; hÞ

$ %
¼ 1

! "
& Pr Að1k; ChÞ ¼ 1

! "## ##:

But, because S is SS-KHA-D-C secure, we know that
W ’s advantagemust be negligible and, thus, no efficientA
can distinguish this from the first document drawn from
CjSEðK;D;hÞj
h . So, the output of CS is computationally

indistinguishable from C. tu
As a consequence of this theorem, if a designer is

interested in developing a stegosystem for some channel C
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in the standard model, she can focus exclusively on
designing an efficient sampling algorithm for C. If her
stegosystem is secure, it will include one anyway and, if she
can design one, she can “plug it in” to the constructions in
Section 4 and get a secure stegosystem based on “standard”
assumptions.

6 ROBUST STEGANOGRAPHY

Robust steganography can be thought of as a game between
Alice and Ward in which Ward is allowed to make some
alterations to Alice’s messages. Ward wins if he can
sometimes prevent Alice’s hidden messages from being
read, while Alice wins if she can pass a hidden message
with high probability, even when Ward alters her public
messages. For example, if Alice passes a single bit per
document and Ward is unable to change the bit with
probability at least 1

2 , Alice may be able to use error
correcting codes to reliably transmit her message. It will be
important to state the limitations we impose on Ward since,
otherwise, he can replace all messages with a new
(independent) draw from the channel distribution, effec-
tively destroying any hidden information. In this section,
we give a formal definition of robust steganography with
respect to a limited adversary.

We will model the constraint on Ward’s power by a
relation R that is constrained to not corrupt the channel too
much. That is, if Alice sends document d, Bob must receive
a document d0 such that ðd; d0Þ 2 R. This general notion of
constraint is sufficient to include many simpler notions
such as “only alter at most 10 percent of the bits”; however,
it still significantly restricts Ward’s ability to manipulate
sequences of documents: In particular, they cannot be
reordered or dropped. We will assume that it would be
feasible for Alice and Bob to check (after the fact) if in fact,
Ward has obeyed this constraint; thus, both Alice and Bob
know the “rules” Ward must play by. Note, however, that
Ward’s strategy is still unknown to Alice and Bob.

6.1 Substitution-Robust Steganography

We model an R-bounded active warden W as an adversary
that plays the following game against a stegosystem S:

1. W is given oracle access to the channel distribution C
and to SEðK; (; (Þ. W may access these oracles at any
time throughout the game.

2. W presents an arbitrary message m* 2 f0; 1gl2 and
history h*.

3. W is then given a sequence of documents + ¼
ð+1; . . .+‘Þ SEðK;m*; h*Þ and produces a se-
quence s* ¼ ðs*1; . . . ; s*‘ Þ 2 D‘, where ð+i; s*i Þ 2 R for
each 1 ) i ) ‘.

Define the success of W against S by

SuccRW;SðkÞ ¼ Pr SDðK; s*; h*Þ 6¼ m*½ $;

where the probability is taken over the choice of K and the
random choices of S and W . Define the failure rate of S by

FailRS ðt; q; l;); kÞ ¼ max
W2WðR;t;q;l;)Þ

SuccRW;SðkÞ
n o

;

where WðR; t; q; lÞ denotes the set of all R-bounded active
wardens that submit at most qðkÞ encoding queries of total
length at most lðkÞ, produce a plaintext of length at most
)ðkÞ, and run in time at most tðkÞ.
Definition 8. A stegosystem S is called substitution robust for
C against R if it is steganographically secret for C and for every
PPT W , SuccRW;SðkÞ is negligible.

6.2 Necessary Conditions for Robustness

Consider the question of what conditions on the relation R
are necessary to allow communication to take place
between Alice and Bob. Surely, it should not be the case
that R ¼ D'D since, in this case, Ward’s “substitutions”
can be chosen independently of Alice’s transmissions and
Bob will get no information about what Alice has said.

Furthermore, if there is some document d0 and history h
for which

P
ðd;d0Þ2R PrCh ½d$ ¼ 1, then, when h has transpired,

Ward can effectively prevent the transfer of information
from Alice to Bob by sending the document d0 regardless of
the document transmitted by Alice, because the probability
that Alice picks a document related to d0 is 1. That is, after
history h, regardless of Alice’s transmission d, Ward can
replace it by d0, so seeing d0 will give Bob no information
about what Alice said.

Since we model the attacker as controlling the history h,
then a necessary condition on R and C for robust
communication is that

8h:Pr
C
½h$ ¼ 0 or max

y

X

ðx;yÞ2R
Pr
Ch
½x$ < 1:

We denote by IðR;DÞ the function maxy
P

ðx;yÞ2R PrD½x$.
We say that the pair ðR;DÞ is '-admissible if IðR;DÞ ) '
and a pair ðR; CÞ is '-admissible if 8h PrC½h$ ¼ 0 or
IðR; ChÞ ) '. Our necessary condition states that ðR; CÞ
must be '-admissible for some ' < 1.

It turns out that this condition (on R) will be sufficient,
for an efficiently sampleable channel, for the existence of a
stegosystem that is substitution robust against R.

6.3 Universally Substitution-Robust Stegosystem
In this section, we give a stegosystem that is substitution
robust against any admissible bounding relation R,
under a modified assumption on the channel and
assuming that Alice and Bob know some efficiently
computable '-admissible relation R0 such that R0 is a
superset of R. As with most of our constructions, this
stegosystem is most likely impractical, but it serves as a
proof that robust steganography is possible for any
admissible relation.

Suppose that the channel distribution C is efficiently
sampleable. (Recall that C is efficiently sampleable if there
is an efficient algorithm C such that given a uniformly
chosen string s 2 f0; 1gk, a security parameter 1k, and
history h, Cðh; 1k; sÞ is indistinguishable from Ch.) We will
assume that Alice, Bob, and Ward all have access to this
algorithm. Note that this is a different assumption about
the channel than what our previous constructions require:
the channel is no longer a “black box, ” but rather, its
results are repeatable across parties. Furthermore, we
assume that Alice and Bob share a key K to a PRF family
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F : f0; 1gk ' f0; 1g* ! f0; 1gk and have a synchronized
counter N . We will let nðkÞ ¼ !ðlog kÞ be a “robustness
parameter.” We begin with a stegosystem—ROneBit,
shown in construction 3 (see Fig. 3)—that robustly
encodes a single bit.

The idea behind this construction is the following:
Suppose that, instead of sharing a key to a PRF F , Alice
and Bob shared two secret documents +ð0Þ and +ð1Þ drawn
independently from Ch. Then, Alice could send Bob the
message bit m by sending document +ðmÞ and Bob could
recover m by checking to see if the document he received
was related (by R0) to +ð0Þ or +ð1Þ. Since the adversary is
R bounded and ðD; R0Þ is '-admissible, the probability of a
decoding error—caused either by the adversary or by
accidental draw of +ð0Þ and +ð1Þ—would be at most '.
Intuitively, ROneBit reduces the probability of a decoding
error to 'n by encoding each hiddentext bit n times.

Lemma 4. ROneBit is steganographically secret against a state-
respecting chosen-hiddentext attack:

InSecssROneBit;Cðt; q; q; kÞ ) InSecprfF tþOðnqÞ; nq; kð Þ:

Proof. Let W be a passive warden that runs in time t and
makes at most q queries of total length at most q (each
query can be only one bit, because of the type). We
construct a PRF adversary A that runs in time tþOðnqÞ
and makes at most nq queries to F such that
Advprf

A;F ðkÞ ¼ Advss
W;ROneBit;CðkÞ. The PRF adversary takes

a function oracle f and emulates W ð1kÞ, responding to
the queries W makes to the encoder SE by using f in
place of FKð(; (Þ; A gives the same output as W .

Now, when f  FK , clearly, Af is perfectly simulat-
ing SE to W , so Pr½AFK ð1kÞ ¼ 1$ ¼ Pr½WST ð1kÞ ¼ 1$. On
the other hand, when f is a uniformly chosen function,
then Af is handing W stegotexts generated by calls to
Cðh; 1k; (Þ with independent random values and, thus,
they are distributed identically to samples from Ch,
so Pr½Afð1kÞ ¼ 1$ ¼ Pr½WCT ð1kÞ ¼ 1$ and Advprf

A;F ðkÞ ¼
Advss

W;ROneBit;CðkÞ. The claim follows by the definition of
insecurity. tu

L e mm a 5 . FailRROneBitðt; q; q; 1; kÞ ) InSecprfF ðtþOðnqÞ;
nq; kÞ þ 'n.

Proof. Let W be an active R-bounded ðt; q; q; 1Þ warden. We
construct a PRF adversary A that runs in time tþOðnqÞ,
makes at most nq PRF queries, and satisfies
Advprf

A;F ðkÞ + SuccRW;ROneBitðkÞ & 'n. Af works by emulat-
ing W , using its function oracle f in place of FKð(; (Þ to
emulate ROneBit.Encode in responding to the queries
of W . Let m* and s* be the hiddentext and the stegotext

sequence returned byW , respectively. Then, Af returns 1
iff SDfðs*; h*Þ 6¼ m*. It is easy to see that when f  Fk,
Af perfectly simulates ROneBit to W .

Now, suppose that f is chosen uniformly from all

appropriate functions. Then, for each i, the stegotexts

+ðm
*Þ

i ¼ Cð1k; hðm
*Þ

i ; fðN þ i;m*ÞÞ are distributed indepen-

dently according to Chi . Consider the sequence of

“alternative stegotexts” +ð1&m
*Þ

i ¼ Cð1k; hð1&m
*Þ

i ; fðN þ i;

1&m*ÞÞ; each of these is also distributed independently

according to C
hð1&m

*Þ
i

and, since W is never given access to

the documents +ð1&m
*Þ

i , its output documents s*i are

independent of each +ð1&m
*Þ

i . Now, SD will fail (causing

Afð1kÞ to output 1) only if the event 8i:ð+ð1&m
*Þ

i ; s*i Þ 2 R0

occurs. Because the +ð1&m
*Þ

i are independent of the actions

of W and because ðD; R0Þ is '-admissible, each event

ð+ð1&m
*Þ

i ; s*i Þ 2 R0 happens independently with probability

at most '. So, the probability of failure is at most 'n and

Advprf
A;F ðkÞ ¼ Pr AFK ð1kÞ ¼ 1

! "
& Pr Afð1kÞ ¼ 1

! "

¼SuccRW;ROneBitðkÞ & Pr Afð1kÞ ¼ 1
! "

+SuccRW;ROneBitðkÞ & '
n:

ut

Theorem 11. If F is pseudorandom, then ROneBit is
substitution robust against R for C.

It is straightforward to extend ROneBit to a robust
stegosystem that encodes multiple bits by encoding each of
the bits individually. Another straightforward extension
replaces single-bit arguments to the PRF with %-bit
arguments. In this case, the removal probability for an
adversary is increased to 2%'‘ and the decoding time
increases by a factor of Oð2%Þ.

6.4 Nearly Optimal Robust Steganography
It is not hard to see that the maximum rate of hiddentext per
stegotext document attainable with the previous construc-
tion approaches log 1=' and that in order to have negligible
insecurity, the construction must have superpolynomial
decoding time. We now show that this rate is essentially
optimal: if a stegosystem is robust against any '-admissible
relation R (given access to R), then it can encode at most
log 1=' bits per document. We also demonstrate an efficient
robust stegosystem that encodes ð1& !& oð1ÞÞ log 1=' bits
per document, for any constant ! > 0, showing that this
upper bound is tight.

6.4.1 Upper Bound
Recall the definition of IðR;DÞ ¼ maxy

P
ðx;yÞ2R PrD½x$. We

will show that any universal stegosystem for '-admissible
relations R (given access to R) that attempts to transmit
more than &‘ log ' bits in ‘ documents is either not
universally secret or not universally robust.

Theorem 12. Let S be a universal stegosystem that transmits
more than ð1þ !Þ logð1='Þ bits per document. For every
0 < ' < 1, there exist a channel C and relation R such that
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FailRS;Cðt; 0; 0; ð1þ !Þ‘; kÞ + 1& 2&c!
ffiffi
‘
p
, where c is a constant

depending on '.

Proof. We let C be the uniform distribution on n-bit strings,
and Rðx; yÞ ¼ 1 iff the hamming distance of x and y is at
most d, where d and n are constants chosen to make
IðR; CÞ ) '. We will give an attacker W that achieves the
stated success probability. For notational convenience,
we define l ¼ &‘ log '.

W picks the challenge hiddentext m*  Ul and gets in
response the stegotext + 2 S:SEðK;m*Þ. W then uni-
formly picks a sequence s* subject to j+i & s*i j ) d for
1 ) i ) ‘. W ’s output is the sequence s*.

We now compute the success probability of W . Recall
that SuccRW;SðkÞ ¼ Pr½SDðK; s*Þ 6¼ m*$, where this prob-
ability is taken over K, m*, s*, and +. Notice that the
adversary W is identical to a noisy discrete memoryless
channel, with pðs*j+Þ defined as the uniform distribution
on fs 2 f0; 1gn : js& +j ) dg. This channel has Shannon
capacity exactly & log IðR; CÞ ¼ & log '. Furthermore, any
robust stegosystem is a candidate code for the channel.
The strong converse to Shannon’s coding theorem [28]
tells us that any code with rate ð1þ !Þ log 1=' will have an
average error probability of at least 1& 2&c!

ffiffi
‘
p
, where

c ¼ 2&4nþ2 logð1='Þ.
Since the event that the adversary W is successful is

identical to the event that a decoding error occurs in the
code induced by SEðK; (Þ; SDðK; (Þ, we have that

SuccRW;SðkÞ + 1& 2&c!
ffiffi
‘
p
;

which satisfies the theorem. tu

6.4.2 Construction

In this section, we will give a secure universally

'-substitution-robust stegosystem that achieves rate ð1& !&
oð1ÞÞ logð1='Þ for any ! > 0. We note that the construction

mentioned at the end of Section 6.3, which encodes % bits at

a time by using a PRF with %-bit arguments, can in principle

achieve rate ð1& !Þ logð1='Þ by setting % ¼ ð1& !Þ logð1='Þ‘.
Notice, however, that because the runtime of the decoding

procedure in this case is exponential in ‘, the proof of

robustness is not very strong: The information-theoretic

bound on the success of W is essentially polynomial in the

runtime of the PRF adversary we construct fromW . We will

now give a construction with a polynomial-time decoding

algorithm, at the expense of a oð1Þ factor in the rate.

As before, we will assume that C is efficiently sample-
able, that F : f0; 1gk ' f0; 1g* ! f0; 1gk is pseudorandom
and both parties share a secret K 2 f0; 1gk, and a
synchronized counter N . As before, we will let
l ¼ ð1& !Þ‘ logð1='Þ, but we now set ‘ so that l ¼ log k. We
set an additional parameter L ¼ k= logð1='Þ.

The idea behind this procedure is to break an nl-bit
message into l-bit blocks, encode each one using the
RLBit.Encode procedure, and then append the encoding
of L documents of message-dependent redundancy. To
decode, we iteratively attempt to match each stegotext block
against each of the 2l ¼ k possible hiddentext blocks; there
will always be one matching block, and with some small
probability k&!, there will be an additional match. We
perform a depth-first search on these matches to find a list L
of candidate messages and then test each message to see
whether the redundancy matches. Any candidate match
from the depth-first search will also have matching
redundancy with probability 2&k, and a union bound will
thus bound the probability of a decoding failure by
ð1þ 1

!Þ2
&k. Furthermore, the total expected number of nodes

explored by Decode is at most ð1þ 1
!Þn, so the reduction is

efficient.

Theorem 13. RMBit (Fig. 4) is steganographically secret against
a state-respecting chosen-hiddentext attack:

InSecssRMBit;Cðt; q; l); kÞ ) InSecprfF tþOð)‘Þ;)‘; kð Þ:

Proof. Let W be a passive warden that runs in time t and
makes at most q queries of total length at most l) (each
query must be a multiple of l bits because of the input
type). As in the previous proofs, we construct a PRF
adversary A that runs in time tþOð)‘Þ and makes at
most )‘ queries to F such that

Advprf
A;F ðkÞ ¼ Advss

W;RMBit;CðkÞ:

The PRF adversary takes a function oracle f and
emulates W ð1kÞ, responding to the queries W makes to
its oracle O by running RMBit.Encode, using f in place
of FKð(; (Þ. We see that, when f  FK , Af perfectly
emulates RMBit.Encode and, when f is a uniformly
chosen function, the stegotexts passed to the adversary
are samples from Cðh; (Þ with independent uniform
inputs; by the assumption on C, these are identically
distributed to samples from C‘h. Thus, A’s advantage over
F is exactly W ’s advantage over RMBit.

The claim follows by the definition of insecurity. tu
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Theorem 14. RMBit is robust:

FailRRMBitðt; q; l); ln; kÞ

) InSecprfF ðt0; q0; kÞ þ ð1þ 1=!Þ2&k þ ðe=4Þn;

wher e t0 ) tþOððlþ )ÞnÞ þOðð1þ 1=!ÞknÞ and q0 )
2nð1þ 1=!Þ þ lð)þ nÞ:

Proof. Let W be an active R-bounded ðt; q; l); lnÞ warden.
We construct a PRF adversary A that runs in time t0,
makes at most 2nð1þ 1=!Þ þ lð)þ nÞ PRF queries, and

satisfies Advprf
A;F ðkÞ + SuccRW;RMBitðkÞ & ð1þ 1=!Þ2&k &

ðe=4Þn. Af works by emulating W , using its function
oracle f in place of FKð(; (Þ to emulate RMBit.Encode

in responding to the queries of W . Let m* and s* be
the hiddentext and the stegotext sequence returned
by W , respectively. Then, Af returns 1 iff
SDfðs*; h*Þ 6¼ m*. To ensure that the number of queries
and runtime are at most t0 and 2nð1þ 1=!Þ þ lð)þ nÞ,
we halt whenever SDf makes more than 2nð1þ 1=!Þ
queries to f , an event we will denote by TB. We will
show that Pr½TB$ ) ðe=4Þn when f is a randomly
chosen function. Thus, we can neglect this event in
our case analyses.

Now, when the oracle f is a uniformly chosen
function, a decoding error happens when there exists
another m 2 f0; 1gln such that for all ði; jÞ, 1 ) i ) ‘,
1 ) j ) n, we have ðsðj&1Þnþi;LEncfðm1...jÞiÞ 2 R, and
also, ðs‘nþi;LEncfðmÞiÞ 2 R for all i, 1 ) i ) L. Let j be
the least j such that mj 6¼ m*

j . Then, for blocks
mjþ1; . . . ;mn, the ‘-document blocks LEncfðm1...jþiÞ are
independent of +*jþi. Thus, for such m, the probability of
a match is at most '‘ðn&jÞþL ¼ 2&k'ðn&jÞ‘. Since there are
2lðn&jÞ messages matching m* in the first j blocks, we
have that

Pr Afð1kÞ ¼ 1
! "

¼ Pr SDfðs*Þ 6¼ m*! "

) Pr 9m 6¼ m*:
^

1)i)‘nþL
siðm1...i=lÞ; s*i
$ %

2 R

" #

)
Xn

j¼0
2lðn&jÞ2&k'ðn&jÞ‘ ) 2&k

X1

j¼0
'!‘j

¼ 2&k
1

1& '!‘ ) 2&kð1þ 1=!Þ:

On the other hand, when f  FK , Af outputs 1 exactly
when W succeeds against RMBit, by the definition of

RMBit. Thus, we see that

Advprf
A;F ðkÞ ¼ Pr AFK ð1kÞ ¼ 1

! "
& Pr Afð1kÞ ¼ 1

! "

¼SuccRW;RMBitðkÞ & Pr Afð1kÞ ¼ 1
! "

+SuccRW;RMBitðlÞ & ð1þ 1=!Þ2&k & Pr½TB$:

It remains to show thatPr½TB$ ) ðe=4Þn. Notice that the
expected number of queries to f byA is just the number of
messages that match a j‘-document prefix of s*, for
1 ) j ) n, times k. Let Xm ¼ 1 if m 2 f0; 1gj‘ matches a j-
block prefix of s*. Let X ¼

Pn
j¼1
P

m2f0;1gj‘ Xm denote the

number of matching prefix messages. Then,
n ) E½X$ ) nð1þ 1=!Þ, and a Chernoff bound gives us

Pr X > 2nð1þ 1=!Þ½ $ ) Pr X > 2E½X$½ $

) ðe=4ÞE½X$ ) ðe=4Þn;

which completes the proof. tu
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