
Max-sum for allocation of changing cost tasks

James Parker1, Alessandro Farinelli2, and Maria Gini1

1 Computer Science and Engineering, University of Minnesota
jparker@cs.umn.edu and gini@cs.umn.edu
2 Department of Computer Science, University of Verona

alessandro.farinelli@univr.it

Abstract. We present a novel decentralized approach to allocate agents
to tasks whose costs increase over time . Our model accounts for both
the natural growth of the tasks and the effort of the agents at containing
such growth. The objective is to minimize the increase in task costs. We
show how a distributed coordination algorithm, which is based on max-
sum, can be formulated to include costs of tasks that grow over time.
Considering growing costs enables our approach to solve a wider range
of problems than existing methods. We compare our approach against
state-of-the-art methods in both a simple simulation and RoboCup Res-
cue simulation.

1 Introduction

Task allocation problems are ubiquitous. We address task allocation for problems where
the costs for completing the tasks increase over time. Applications for this type of prob-
lem include minimizing damage from invasive species, resource distribution for fight-
ing epidemics, and containment of wild fires. In most practical applications, multiple
agents need to cooperate to complete all the tasks. (i.e., fire fighters cooperate to ex-
tinguish large fires). Since costs grow over time, a task can grow indefinitely if not
enough agents are assigned to it. If the growth rate surpasses the reduction the agents
can provide, then that task cannot be completed.

A formulation for this problem and a centralized heuristic method was proposed
in [8]. We use the same formulation of the cost growth model and propose the first
decentralized solution for this class of task allocation problems. Our method is based
on max-sum [2], which we modify by projecting future growth into our formulation. We
assume that an approximation of the growth functions is known upfront, but they could
be learned. New tasks of any size can appear at any time and agents may disappear.

This paper provides the following main contributions: (i) a general approach to
handle growth functions for problems where the costs of tasks increase over time; (ii)
an empirical evaluation and comparison with state-of-the-art methods both in a simple
simulation and in RoboCup Rescue [3]. The results show our decentralized method
performs similarly to the state-of-the-art centralized method.

2 Related Work

Multi-agent task allocation with temporal constraints has been studied from a variety
of angles. Efficient auction based methods for task with disjoint time windows are pre-
sented in [6]. Their method is not be directly applicable to our problem because in our
case the cost of the tasks changes over time and hence the rewards given to the agents
for completing tasks have to depend on the actions of other agents. The work in [16]
focuses on tasks that can be completed only with multiple agents but assumes task costs
are fixed. In [1] Fisher market clearing with soft deadlines is used to assign agents to
tasks when reward for task completion decreases over time. In their work tasks become
less important over time, while in our work tasks become harder over time and there can
be severe consequences if tasks are not completed (i.e., the city might burn completely).

A decentralized solution using max-sum to allocate tasks in RoboCup Rescue is
presented in [14]. The work focuses on coalition formation among agents taking into ac-
count both temporal and spatial constraints. Their objective is to complete as many tasks
as possible when each task has a deadline for being completed. In their case tasks have
a fixed cost, while we assume costs grow over time. Their experimental results are ob-
tained using synthetic data not in RoboCup Rescue. Other distributed approaches based
on max-sum have been proposed for RoboCup Rescue, in particular using Tractable
Higher Order Potentials (THOPs) [15] to improve the efficiency [11, 13]. The use of
THOPs reduces the message passing of max-sum from exponential to polynomial by
exploiting the structure of the problem. To gain these benefits, problems must be for-
mulated with binary variables and with more limited types of factors. The closest to our
work is the work in [12], which uses binary max-sum. They evaluate the utility of the
current state using a domain specific heuristic based on distance, intensity of fire, and
number of agents assigned to a task. Our approach is more general because it is based
on a task cost growth model which is independent of the specific application domain.
The incorporation of temporal reasoning on task growth, estimation of solution cost and
generality across domains makes our work significantly different.

3 Problem Definition

We assume homogeneous agents which have a spatial location and tasks which have
a location and have a cost that changes over time. An agent must be at a task’s lo-
cation in order to work on that task. We denote the set of homogeneous agents by
A = {a1, . . . , an}, where n = |A| and the set of tasks by B = {b1, . . . , bm}, where
m = |B|. The set of active agent assignments is denoted by N t = {nt1, . . . , nt|B|},
where nti is the set of agents from A that are currently working on task bi at time t. An
agent can only work on one task at a time, so nti ⊆ A and ∀i 6= j, nti ∩ ntj = ∅. The
travel time, TT (x, y), between two locations, x and y, is assumed to be computable.
Travel time causes a delay between the time an agent works on one task and the time it
can work on another. This means

∑
i n

t
i ≤ |A| as some agents might be in transit.

Each agent provides work amountw per time unit once the agent has reached a task.
Every task bi ∈ B has a cost defined with the following recursive relationship:

f t+1
i = f ti + hi(f

t
i)− w · |nti|, (1)

where f ti starts at some initial cost f0i and hi is a positive semidefinite monotonically
increasing function, as in [8]. The growth function hi is assumed to be known but it
could be estimated. Here we treat f ti as a sequence due to the use of discrete time steps,
but it could be treated as a continuous function if that is a better model for the domain.

If at time t the cost of task bi, namely f ti , reaches or goes below zero the task is
considered complete. We denote this completion time as cti, For this reason, when f ti
is non-positive, hi(f ti) is assumed to be zero and we do not allow those tasks to be
assigned to agents. The time when the last task is completed is defined as ts, namely
maxbi∈B cti. Our objective is to minimize the accumulated growth of all tasks, denoted
by

Rts =
∑

t<maxbi∈B cti

∑
bi∈B

h(f ti) (2)

This objective corresponds to minimizing the amount costs increase over all time. For
instance, in an epidemic outbreak this would mean allocating a limited number of doc-
tors (agents) to areas with sick people (tasks). The sickness is contagious so areas with
the disease have a higher infection rate, based on the growth rate hi(x). Our model
projects the infection rate and the rate of doctors curing to decide where doctors should
be located and when and if they need to move. The people who are sick before the crisis
is discovered do not affect our goal, but we want to minimize Rts , which is the number
of new people who become sick before the epidemic is cured.

4 Max-Sum Formulation

A Distributed Constraint Optimization problem (DCOP) can be formally defined as a
tuple 〈X ,D, C〉, where X = {x1, x2, ...x|X |} is a set variables with domains D =
{D1, D2, ...D|X |} and C = {c1, c2, ...c|C|} are utility functions. Each utility function,
ci, has a value based on a subset of X variables, {xi1 , xi2 , ...}, specifically ci : Di1 ×
Di2 × ... → <. We will denote the specific variables used for each utility function,
ci, by Xci . The max-sum algorithm finds an approximate solution to the sum of each
utility function ci, namely:

maximize
∑
ci∈C

ci(Xci)

Max-sum finds a solution by alternating between passing messages from variables
to functions and from functions to variables. Both types of messages are repeatedly sent
until they cease to change or a maximum number of iterations has been reached. After
convergence, each variable can determine the best value by examining the most recent
messages passed to it. Both message types generate outgoing messages based on all the
other incoming messages.

A message from a variable to function simply adds all the messages coming into
the variable from all the other functions. A message from a variable xi to function
cj would be generated only if xi ∈ Xci , namely this function uses the variable. The
message generated is:

µxi→cj (d) =
∑

k∈Cxi
/cj

µk→xi
(d),

where Cxi
is the set of all functions which involve xi and d ∈ Di is a value in the

domain of xi. µk→xi
is the most recent message xi received from function k.

The message from a function to variable is then:

µcj→xi
(d) = max

Y

cj(d, Y) +
∑

k∈Xcj
/xi

µk→cj (yi)

 ,

where yi ∈ Di is a value of variable xi, and Y is a set of values for variables Xcj/xi.
Once messages have converged, each variable xi chooses the value that maximizes all
of its incoming messages, namely argmaxd

∑
k∈Cxi

µk→xi
(d).

Approaches to solve DCOPs range from optimal techniques [7] to heuristics [2].
Optimal solutions require an exponential coordination overhead (i.e. communication
computation). We approximate an unknown process which involves a potentially large
number of agents, hence we use heuristic methods, which do not guarantee a solution
quality but have a lower coordination overhead. Optimal methods would only solve the
approximate model without guaranteeing an actual optimal solution. Following [12]
we use binary max-sum in conjunction with Tractable Higher Order Potentials to more
efficiently pass messages [15]. This can reduce the message passing complexity from
O(|B||A|) to O(|A| log |A|). The use of binary variables means Di ∈ {0, 1}.

The heuristics to prioritize tasks used in [12] are domain specific to RoboCup Res-
cue. Explicit values are assigned to fires based on their intensity and the number of
agents assigned. A distance penalty discourages agents from selecting tasks far away.
This is balanced with a utility heuristic, which discourages many agents from working
on the same task. Our max-sum model instead assumes task cost size follows the re-
cursive relationship in Eq. 1 and computes the expected effect of agent allocation on
the tasks. We also compute a utility and distance penalty, but our distance penalty com-
putes how much a task will grow before an agent reaches it, and our utility computes
how much faster a task will be completed if an agent is assigned to it. This allows our
max-sum formulation to generalize to any task allocation problem, as long as their cost
can be approximated by the general recursive relationship in Eq. 1, unlike the work in
[12]. Our method also solves a temporal component which is not addressed in [12].

Next we discuss the specifics of our max-sum problem formulation. We treat the
cost, f ti , as an algebraic variable that depends on time t and the number of agents
active |nti|. The goal is to minimize Rts , the total amount of growth before all tasks are
completed. Our task growth approximation for the model in Eq. 1 is h(f ti) = gi · f ti ,
where gi is a constant found empirically. For ease of calculation, we assume that time
is continuous rather than discrete so this means δft

i

δt = gi · f ti . Solving for f ti yields the
well known exponential function: f ti = Ki · egi·t, where Ki is the integration constant.
The initial task cost, f0i , is used to determine an appropriate Ki for each task. The cost
reduction from agents working on a task is represented as δft

i

δt = gi ·f ti −|nti| ·w, which
can again be solved for f ti :

f ti =
|nti| · w
gi

+Ki · egi·t, (3)

...V1,1

q1

p1,1 p1,2 p1,B
...

...

q2

p2,1 p2,2 p2,B

...

q|A|

pA,1 pA,2 pA,B

...

...

s1 s2 s|B|...

...
V1,2 V1,B V2,1 V2,2 V2,B VA,1 VA,2 VA,B

Fig. 1: The factor graph for our representation. v are binary indicators of an agent’s
assignment, p distance penalties, q constraints for ensuring an agent is active on one
task, and s the utility function for the assignment (Eq. 5).

where again Ki is an integration constant. Ki is negative if the agents are completing
the task faster than it is growing, namely Ki < 0 if and only if |nti| · w > gi · f ti . If the
number of agents changes, Ki has to be recomputed. We can use further algebra to get
the following equations:

f ti =
|nti| · w
gi

+

(
f0i −

|nti| · w
gi

)
· egi·t (4)

−L(|nti|) =
|nt

i|·w
gi
· (ln(α) + 1− α) + f ti · (α− 1),

where α =
|nt

i|·w
|nt

i|·w−ft
i ·gi

(5)

Eq. 4 estimates the cost of task bi at time t when |nti| agents are assigned to it. Eq. 5
is the natural growth of task cost from time t until task i is finished. We use a negative
sign since max-sum maximizes but we want to minimize. This means

∑
i−L(|nti|) =

−(Rts −Rt), where Rts is from Eq. 2.
The factor graph [5] used to model this problem is shown in Figure 1, with circles

for the variables and squares for the functions. Each agent ai controls all |B| binary
task assignment indicator variables vi,j , where j indicates the agent’s assigned task, bj .
The constraint qi ensures an agent is assigned to exactly one task, specifically:

qi(vi,1, vi,2, ...vi,|B|) =

{
0

∑
j vi,j = 1

−∞ otherwise
. (6)

sj is the accumulated cost growth until the task is finished. Since we want to minimize
the accumulated growth, the negative of this value is taken:

sj(v1,j , v2,j , ...v|A|,j) = −L(
∑
i

vi,j), with L as in Eq. 5. (7)

pi,j(vi,j) is a travel penalty, since sj assumes the agent arrives instantly, the correct
amount is subtracted if agent ai is still traveling to task bj . TT (vi,j , bj) denotes the
travel time between agent ai and task bj . Knowledge of T̂ , the time it takes the currently
assigned agents to complete the task, is approximated by the previous assignment to
compute pi,j(vi,j) as follows:

pi,j(vi,j) =

{
w·egi·T̂
gi

·
(
e−gi·TT (vi,j ,bj) − 1

)
vi,j = 1

0 vi,j = 0
(8)

This factor graph is binary and composed of only Tractable Higher Order Potentials,
specifically only the cardinality of the inputs is required for sj (number of agents as-
signed to the task) and qi (number of tasks assigned to an agent) [15].

Our global utility function is a sum over all functions:∑
i

qi(vi,1, vi,2, ...) +
∑
i

∑
j

pi,j(vi,j) +
∑
j

sj(v1,j , v2,j ...)

This factor graph is cyclical, so max-sum is not guaranteed to find a global optimum.
Our max-sum use the same framework as [12], based on the work of [17] for an effi-
cient anytime solution. Max-sum is run at every time step for multiple reasons. New
tasks may appear, new agents may join and current agents may leave. Also as both the
modeling and solution are approximate, readjusting projections with the real outcomes
improves accuracy. This solutions is also decentralized, compared with past work [8],
which proposed a centralized solution.

5 Results

We compare the performance of max-sum against a modified version of RT-LFF [8].
The original RT-LFF tried to minimize the time the latest task finished. We changed RT-
LFF to instead minimize the accumulated task cost so it is consistent with our current
problem formulation. RT-LFF uses LFF [8] for this initial assignment, which is optimal
when agents cannot be reassigned. RT-LFF can change assignments if a large gain is
detected. This modified RT-LFF has a worst-case running time of O(|A||B|2), but is
typically significantly less in practice compared to O(|B||A| log |A|) of binary max-
sum.

The comparisons are done in both a controlled simple simulator and in the RMAS-
Bench [4] extension of RoboCup Rescue to show the applicability to complex environ-
ments and to make our results easily comparable.

5.1 Simple Simulator

The simple simulator gives us greater analytical power than RoboCup Rescue since
every aspect can be controlled. Here we use the same h growth function for all the tasks

Table 1: Accumulated growth cost, Rts for different setups in the simple simulator

h(x) Initial costs Optimal Max-sum RT-LFF AllOnOne Uniform
0.000016 · x3 {20, 15} 8.1333 8.1334 8.3724 15.852 12.121
0.00019 · x2 {25, 20, 10} 22.761 22.761 23.632 39.268 49.076
0.0036 · x {50, 30} 188.72 188.72 188.72 188.76 189.41
0.02 ·

√
x {5, 10, 15, 20} 43.398 43.398 144.60 69.117 79.878

0.02 · ln(x+ 1) {40, 30} 28.158 28.158 41.661 31.409 39.134
mixed {25, 10, 10} 24.485 29.064 28.110 40.948
sigmoid {40, 30} 41.218 100.99 26.127 92.530

except in the mixed experiments (see Table 1). We explicitly define the initial costs,
f0i , growth functions, hi(x), and the effect of agents on the task, w, for any number of
tasks.

We consider the optimal, max-sum, and RT-LFF. For additional comparison, we
tested two simple strategies: UNIFORM and ALLONONE. The UNIFORM strategy as-
signs an equal number of agents to all tasks that are not complete. If a task cost reaches
zero, it is marked as complete and the agents are redistributed. The ALLONONE strat-
egy assigns all agents to a single task until that task is completed. The order in which
tasks are selected is from left to right in the “Initial Costs” column of Table 1. We ex-
perimented with different types of growth functions (Table 1). All experiments in the
section use 20 agents with with work rate w = 0.015. The coefficients for w and in the
growth functions are small to minimize the discretization of the time steps. A travel time
of zero between all tasks is used to have a direct comparison as the optimal solution is
only known for this case.

When there is no travel time, three different families of growth functions can be
classified based on ∂2

∂x2h(x) as shown in [9]. If ∂2

∂x2h(x) < 0, then the growth function
is concave and the optimal solution is to have all agents on the task that is the smallest.
In the case of a tie for the smallest, one task should be picked randomly and all agents
should work on that one. When ∂2

∂x2h(x) = 0, the growth is proportionally to the cur-
rent cost of the task. In this linear case, any assignment that fully utilizes all agents at
every time step is optimal. This is easily achieved since agents require no time to move
between tasks. The last case is when ∂2

∂x2h(x) > 0, which is when the growth is convex.
This has an optimal solution of assigning agents to the largest task, and balancing the
assignment equally among the largest tasks when ties exist. There are no known opti-
mal solutions if tasks have different families of growth functions. For example if the
first task grows convexly and the second task grows with a concave function, no known
optimal solution exists even without travel time. Functions that have both concave and
convex parts, such as the sigmoid function, also have unknown optimal solutions.

Table 1 compares the algorithms across seven different sets of growth functions,
hi(x), which each have different optimal solutions. Each algorithm is largely determin-
istic, but we provided the average over five runs to ensure small tie breakers did not
effect the results. The settings of the experiment, shown in Table 1, are: two convex,

one linear, two concave, one group of tasks with mixed functions and one function that
has both concave and convex parts. The first convex function has two tasks, both with
growth rate hi(x) = 0.000016 · x3. The first task has an initial cost of 20, while the
second task has an initial cost of 15. The second set of convex growth tasks all have
a growth rate, hi(x) = 0.00019 · x2 and initial costs f01 = 25, f02 = 20, f03 = 10.
For linear growth functions, hi(x) = 0.00360 · x with initial costs f01 = 40, f02 =
30, f03 = 10. The first concave tasks all have hi(x) = 0.020 ·

√
x and initial costs

f01 = 20, f02 = 15, f03 = 10, f03 = 5. The second set of concave tasks grow very
slowly, all with hi(x) = 0.02 · ln (x+ 1) and initial costs f01 = 40 and f02 = 30.
The x + 1 inside the logarithmic function is to ensure continuity of task growth when
tasks near completion. Optimal solutions are not provided for the last two experiments,
as there are no known solutions. The mixed category has one of each type of growth
function: h1(x) = 0.00019 · x2 and f01 = 25, h2(x) = 0.00360 · x and f02 = 10
and h3(x) = hi(x) = 0.020 ·

√
x with f03 = 10. A growth rate corresponding to the

sigmoid function is h1(x) = h2(x) = 0.1 · e−0.1·x

(1+e−0.1·x)2 and has two tasks with initial
costs f01 = 40 and f02 = 30. This is the only growth function which does not have a
continuous first derivative when tasks are completed, namely h(0) > 0. However, when
the cost of a task reaches zero at some time t̂, i.e. f t̂i = 0, we set h(f ti) = 0 for all t ≥ t̂.

We see that max-sum performs quite close to optimal in all cases when the optimal
is known, and only loses to ALLONONE on the sigmoid function. All strategies perform
approximately the same for linear growth functions, as the theory suggests. The small
differences are discretization effects of the agents. RT-LFF and UNIFORM only do well
comparatively on the convex functions. The ALLONONE performs well in general on
the concave functions and the sigmoid. Next we will give a detailed analysis of the
reasons for the algorithms performance.

The optimal solution for convex functions spends the majority of the time with
an equal number of agents on all tasks. Max-sum follows very close to the optimal
solution’s assignment at every step, and thus performs similarly. RT-LFF attempts to
minimize the number of agents switched and causes both tasks to finish at the same time.
With hi(x) = 0.000016 · x3, RT-LFF start with 15 agents on the first task, the larger,
and 5 on the second. It then slowly switches agents from the larger task to smaller task,
until about halfway through the simulation. At this point, both tasks have the same cost
and agent are split 10 on each for the rest of the simulation. UNIFORM also performs
well for convex functions for the same reason. ALLONONE has a strategy very different
than the optimal, so it is not surprising that it does poorly for this group of functions.

The optimal strategy for concave growth functions is to have all the agents on the
smallest task. Again, max-sum finds this solution and performs competitively with the
optimal solution. RT-LFF and UNIFORM perform poorly on this family of functions,
as they both spread agents over all tasks. Although ALLONONE is similar to the op-
timal solution, it assigns all agents to the larger tasks first instead of the smaller ones.
This causes ALLONONE to perform sub-optimally, but not as poorly as the drastically
different strategies of RT-LFF and UNIFORM.

The optimal solution is not known for mixed functions. Max-sum outperforms all
others in this case, but the assignments vary drastically over time as shown in Figure 2.
ALLONONE attempts to finish the first task, which grows considerably more than the

 0

 5

 10

 15

 20

 0 50 100 150 200 250

A
m

o
u

n
t

o
f

a
g

e
n

ts
 a

llo
c
a

te
d

Time

Assignment to three tasks with mixed growth functions for 20 agents

x
2

x
sqrt(x)

Fig. 2: Agent assignment across all three tasks with different growth types.

others. RT-LFF also assigns most of the agents to this first task for the majority of
the simulation, causing RT-LFF and ALLONONE to perform similarly. UNIFORM does
not assign enough agents to the important first task, initially 7, which is not enough to
reduce the task growth. Eventually when the second task finishes about 25% through
the simulation, the first task gets 10 agents which are able to overcome the task growth.

The sigmoid function has a steep slope when the cost is small. ALLONONE is able
to overcome this fairly easily as all agents are on one task. Max-sum initially distributes
agents across both tasks, but then moves them to a single task when the costs are smaller.
Both RT-LFF and UNIFORM attempt to complete both tasks at the same time for the
whole simulation, thus more effort to get past the steep slope when the cost is low.

Using ANOVA with repeated measures gives a p-value of 0.0716, which is close to
being statistically significant so we did paired t-tests. The most different pair was max-
sum and UNIFORM, with a p-value of 0.015. All other pairs did not reach statistical
significance, including compared to the optimal when it was known. As this experiment
spans different growth rates, no single algorithm could consistently be the best.

5.2 RoboCup Rescue Simulator

In this section we focus on fires in the RoboCup Rescue simulator. The RoboCup Res-
cue simulator is designed for urban search and rescue after an earthquake, where build-
ings collapse and fires start in buildings. The environment is complex with thousands
of buildings and hundreds of agents in the full simulator which uses street maps of real
cities. The full simulator uses heterogeneous agents, but for this work we focus only on
the agents that can extinguish fires, i.e. firetrucks, through the use of the RMASBench
simulator extension [4]. Although RMASBench is an extension of the RoboCup Rescue
Agent Simulator, the communication is relaxed to allow many more messages to be sent
than in the original simulator, along with multiple messages per time step.

Fires are the most dangerous hazard in RoboCup Rescue. Buildings heat up and
catch on fire based on how many other nearby buildings are on fire. This creates a
positive feedback loop, which causes fires to grow at exponential rates. A screenshot of

(a) Starting state of VC 3 with 95% of
buildings intact.

(b) Max-sum at end with 73% of
buildings intact.

Fig. 3: Virtual City 4 (VC4)

the simulator is shown in Figure 3a and Figure 3b. Buildings on fire are yellow, orange
and red in increasing intensity and temperature. When a fire is extinguished, buildings
become blue or purple. When a building is destroyed it turns black.

We cluster nearby fires into a single task, where the cost is the number of buildings
on fire. We use bottom-up hierarchical clustering with the Euclidean distance as the
metric and the minimum distance between all pairs linkage criterion. Clustering ends
when the distance between the closest pair of clusters is over 50 meters.

Both h(x) and w need to be estimated. We approximate the cost growth function for
all tasks as h(f ti) = g · f ti − |nti| · w as in Eq. 3 to Eq. 5. To estimate g, buildings were
allowed to burn unhindered for 100 simulation steps in 20 different tests. An exponential
regression fit best, so we could model it as a·eb·t or simply eb·t, where b is the g we want.
There are two regression models that minimize the sum of squares: 4.6852 · e0.0393·t or
e0.0561·t. We cannot use the first regression model since the scaling factor outside the
exponent is reserved for the initial task cost. Thus we have to decide between the two g
values, 0.0393 and 0.0561. We do it by looking at how they affect the distribution of w.

The work rate, w, was also empirically derived. A fixed small number of fires were
repeatedly extinguished in 70 tests. If f0i , g, |nti| and tc are known, Eq. 4 can then be
used to solve for w. The experiments found that w is rather noisy and typically has a
few high outliers. This means in some cases, the fire trucks were able to extinguish the
fire much more rapidly than the model anticipated. The lack of low outliers provides
stability, since this indicates agents rarely extinguish poorly. We chose g = 0.0393, due
to a smaller variance in w and fewer outliers.

This exponential model corresponds to the linear task growth from Section 5.1. In
the simple simulator all strategies performed fairly identical in this case, but our model
for RoboCup is an approximation of the real process. Max-sum is overly responsive
to changes, so when a few buildings unexpectedly start on fire or get extinguished,
agents are transferred. This can cause assignment thrashing for max-sum, as agents in
transit are lost work and the solution quality decreases overall. RT-LFF is much more

Table 2: Percent of buildings damaged at the end of simulation in RoboCup.
Map RT-LFF Max-Sum

µ σ µ σ

VC 1 72.14 7.23 83.82 6.03
VC 2 1.96 0.43 21.02 0.33
VC 3 50.41 9.70 26.19 6.36
VC 4 29.02 2.90 56.53 4.50
VC 5 76.90 2.69 82.42 1.34
Paris 1 15.47 4.55 27.46 5.03
Paris 2 58.89 7.00 68.63 8.73
Paris 3 39.27 4.69 31.19 3.92
Paris 4 8.76 0.45 9.01 0.52
Paris 5 25.22 6.36 20.36 5.66

conservative and rarely thrashes, however it is unable to exploit smaller gains. This
causes both methods to perform similarly in this domain on average.

Table 2 shows the percentage of damaged buildings for 5 variations of both the Vir-
tual City (VC) and Paris map. Each variation is denoted by a number after the map
name. Changes are to the number and location of fires along with the number and lo-
cation of agents. Virtual City is a smaller map, so the number of agents and fires range
between 8 to 15 and 30 to 50 respectively. In Paris there are between 10 to 50 agents
with 50 to 120 fires. This randomization causes some configurations to be easier than
others. Each configuration was run 5 times. Both RT-LFF and max-sum use the clus-
tered building data as an approximation of f ti . Results on maps such as VC 5 are poor
across all algorithms. This indicates more the hardness of the VC 5 configuration than
the inefficiency of the algorithms. The opposite is the case in Paris 4, where the config-
uration is too easy and all algorithms performed well.

Often the initial configuration of a map makes it either too hard or too easy, which
causes results to have bimodal distributions [10]. In this case the scores are similar
across algorithms making differentiation more difficult. Due to the bimodal nature we
apply the non-parametric Wilcoxon signed-rank test instead of the normal t-test. Neither
method showed a statistically significant advantage over the other.

6 Conclusions and Future Work

In this work we focused on tasks with costs that grow over time and provided the first
decentralized task assignment approach for this type of tasks. Our decentralized solu-
tion, which is based on the max-sum algorithm, performs similarly to the previous cen-
tralized solution in both a simple simulation and the RoboCup Rescue Agent Simulator.
Our functions that predict the future cost of tasks assume that the number of agents ac-
tive on a task is constant. However, sometimes it is beneficial to reassign agents before
the task is completed. Future work will consider the effect of planned reassignments
over time. The current work also assumes that these functions are estimated upfront,
but they could be learned over the course of the simulation. Given different families of

functions, the model could be refined over time to select the best function family with
the best parameters. This could also help determine what errors come from modeling
versus inherent randomness of the growth.

Acknowledgments: Work supported in part by NSF-IIP-1439728 and the Graduate
School of the University of Minnesota.

References

1. S. Amador, S. Okamoto, and R. Zivan. Dynamic multi-agent task allocation with spatial and
temporal constraints. In Proc. AAAI Conf. on Artificial Intelligence, pages 1384–1390, 2014.

2. A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings. Decentralised coordination of low-
power embedded devices using the max-sum algorithm. In Int’l Conf. on Autonomous Agents
and Multi-Agent Systems, pages 639–646, May 2008.

3. H. Kitano and S. Tadokoro. RoboCup Rescue: A grand challenge for multiagent and intelli-
gent systems. AI Magazine, 22(1):39–52, 2001.

4. A. Kleiner, A. Farinelli, S. Ramchurn, B. Shi, F. Maffioletti, and R. Reffato. RMASBench:
Benchmarking dynamic multi-agent coordination in urban search and rescue. In Int’l Conf.
on Autonomous Agents and Multi-Agent Systems, pages 1195–1196, 2013.

5. F. Kschischang, B. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm.
IEEE Trans. Inf. Theory, 47(2):498–519, Feb 2001.

6. J. Melvin, P. Keskinocak, S. Koenig, C. Tovey, and B. Ozkaya. Multi-robot routing with
rewards and disjoint time windows. In Proc. of IEEE/RSJ Int’l Conf. on Intelligent Robots
and Systems, pages 2332–2337, Oct 2007.

7. P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. ADOPT: asynchronous distributed con-
straint optimization with quality guarantees. Artificial Intelligence, 161:149–180, 2004.

8. J. Parker and M. Gini. Tasks with cost growing over time and agent reallocation delays. In
Proc. Int’l Conf. on Autonomous Agents and Multi-Agent Systems, pages 381–388, 2014.

9. J. Parker and M. Gini. Controlling growing tasks with heterogeneous agents. In Proc. Int’l
Joint Conf. on Artificial Intelligence, 2016.

10. J. Parker, J. Godoy, W. Groves, and M. Gini. Issues with methods for scoring competitors in
RoboCup Rescue. In Autonomous Robots and Multirobot Systems at AAMAS, 2014.

11. T. Penya-Alba, M. Vinyals, J. Cerquides, and J. A. Rodriguez-Aguilar. A scalable message-
passing algorithm for supply chain formation. In Proc. AAAI Conf. on Artificial Intelligence,
pages 1436–1442, 2012.

12. M. Pujol-Gonzalez, J. Cerquides, A. Farinelli, P. Meseguer, and J. A. Rodriguez-Aguilar.
Efficient inter-team task allocation in RoboCup Rescue. In Proc. Int’l Conf. on Autonomous
Agents and Multi-Agent Systems, pages 413–422, 2015.

13. M. Pujol-Gonzalez, J. Cerquides, P. Meseguer, J. A. Rodrı́guez-Aguilar, and M. Tambe. En-
gineering the decentralized coordination of UAVs with limited communication range. In
Advances in Artificial Intelligence, pages 199–208. Springer, 2013.

14. S. Ramchurn, A. Farinelli, K. Macarthur, M. Polukarov, and N. Jennings. Decentralised
coordination in RoboCup Rescue. The Computer Journal, 53(9):1–15, 2010.

15. D. Tarlow, I. E. Givoni, and R. S. Zemel. Hop-map: Efficient message passing with high
order potentials. In Proc. Int’l Conf. on Artificial Intelligence and Statistics, pages 812–819,
2010.

16. X. Zheng and S. Koenig. Reaction functions for task allocation to cooperative agents. In
Proc. Int’l Conf. on Autonomous Agents and Multi-Agent Systems, pages 559–566, 2008.

17. R. Zivan. Anytime local search for distributed constraint optimization. In Proc. Int’l Conf.
on Autonomous Agents and Multi-Agent Systems, pages 1449–1452, 2008.

