In: Innovative Approaches to Planning, Scheduling and Control. pp 166-174, M. Kaufmann, San Mateo, Ca, 1990.

Deferred Planning and Sensor Use*

Duane Olawsky and Maria Gini
Computer Science Dept., University of Minnesota
4-192 EE/CSci Building
200 Union Street SE
Minneapolis, MN 55455
olawsky@umn-cs.cs.umn.edu
gini@Qumn-cs.cs.umn.edu

Abstract

Traditional approaches to task planning assume
the planner has access to all of the world in-
formation needed to develop a complete, cor-
rect plan—a plan which can then be executed
in its entirety by a robot. We consider prob-
lems where some crucial information is miss-
ing at plan time but can be obtained from sen-
sors during execution. We discuss the solution
of these problems through deferred planning
(i.e., by deferring specific planning steps un-
til more complete information is available and
then restarting the planner). We also present
early results of a comparative study of strate-
gies for deciding which plan steps to defer.

1 Introduction

Traditional approaches to task planning assume that the
planner has access to all of the world information needed
to develop a complete, correct plan—a plan which can
then be executed in its entirety by a robot. Unfortu-
nately, this information about the world may not always
be available at plan time. This is particularly true when
we consider autonomous robots that must operate under
general goals over extended periods in unpredicatable,
and changing environments. When crucial information
is missing at plan time, it may be impossible to find
a complete plan without obtaining additional informa-
tion. Fortunately, this information is often available at
execution time through the use of sensors. The problem,
then, is how to integrate execution time sensory data into
the planning process which, in traditional approaches, is
completed before execution begins.

The ability to integrate sensory data into the plan-
ning process is important. First, it provides greater ro-
bustness for autonomous robots. With this capability a

This work has been funded by the NSF under grants
NSF/DMC-8518735 and NSF/CCR-8715220.

166

robot could complete novel variations of tasks by real-
izing what information it knows and what it must find
out through sensor use. It could then obtain the nec-
essary information and perform the task. In this way
the robot could work around its incomplete knowledge,
filling in the gaps, to solve what would otherwise be an
unsolvable problem. Second, this integration is helpful
in robot recovery from execution errors and unexpected
events. In these cases, it is likely that significant world
information is missing (or at least in doubt). A robot
controller could use this ability to collect the required
information and then finish its task.

There are two reasons why it is difficult to integrate
sensory data into the planning process. The first has
already been mentioned—the planning process is tradi-
tionally completed before execution (and therefore sen-
sor use) begins. The second difficulty is that the infor-
mation obtained from sensors can have a dramatic ef-
fect on the shape of the plan. To make our discussion
more concrete we will use the following tool box domain
throughout this paper.

The robot is in a room with n tool boxes t1,t2,...t,,
each containing wrenches and bolts of various sizes.
The robot knows the initial locations of the wrenches
and bolts. Bolts are identified by a unique name, and
wrenches are identified by size (assume one wrench per
size). The robot has been instructed to close and bolt
one or more tool boxes with particular bolts. To perform
each bolting operation, the robot must use a wrench of
a size that matches the bolt. A sensor is available that
can classify bolts by the size (e.g., a number from 1 to
10). For simplicity, the bolts sizes are indicated along
the same scale as the wrench sizes. We also assume the
robot has a tool belt into which it can put an unlimited
number of bolts and wrenches.!

Figure 1 describes a sample problem instance. There

!We are not concerned here with the arm-empty condi-
tions used to define the blocks world. Our main goal in defin-
ing this domain is to study how sensor use can be interleaved
with planning.



Initial State:
((at t)(bolt-not-inserted s)(bolt-not-inserted )
(open s)(closed t)
(wrench-in-tbox 4 t)(wrench-in-tbox 5 s)
(bolt-in-tbox by t))

Goal State:
((bolted t b))

Figure 1: Sample Problem.

Open-Thbox t)
Get-Bolt b;)
Get-Wrench 4)
Close-Thox t)
Insert-Bolt b; t)
Bolt ¢ bt)

P

Figure 2: Sample plan when b, has size 4.

are two tool boxes, s and ¢t. Box t is to be bolted with
bolt b;. Initially, the robot is at box ¢t. There are two
wrenches available, one of size 4 and another of size 5.
The correct action sequence will vary depending upon
which tool box contains the needed wrench, and this in
turn depends on the size of b;. The plan when the wrench
is in s will differ from the plan when the wrench is in ¢.
Sample action sequences are shown in Figures 2 and 3.
If the planner knows the size of by, it can find a com-
plete plan before execution begins. Otherwise, the robot
must use its sensors during execution to obtain the bolt
size, and this information then determines the further
actions that are necessary to achieve the end goals.

2 Why Use Conventional Planning

Planning is desirable in robotics because it attempts to
map out future activities of the robot so that the robot
avoids undesirable situations during plan execution. Al-
though planning systems are known to suffer from com-

(Open-Thox t)
(Get-Bolt b;)
(Close-Tbox t)
(Insert-Bolt by t)
(Goto s)
(Get-Wrench 5)
(Goto t)

(BOlt t bt)

Figure 3: Sample plan when b; has size 5.

167

putational complexity, with well crafted heuristics they
have proven to be useful even for complex tasks [Wilkins,
1989].

A well recognized problem with planning is the inabil-
ity of most planners to deal with the inexactness and
noise of the real world. Several solutions have been pro-
posed including the following:

e eliminating planning altogether in favor of reactive
planning [Brooks, 1986] or situated systems [Agre

and Chapman, 1987, Kaelbling, 1988],

combining reactivity and planning [Georgeff and
Lansky, 1987, Drummond, 1989, Hayes-Roth, 1987,
Nilsson, 1989,

preplanning for every contingency [Schoppers,
1987,

verifying the executability of plans and adding sens-
ing whenever needed to reduce the uncertainty
[Brooks, 1982, Doyle, Atkinson and Doshi, 1986],

interleaving planning with execution [Durfee and
Lesser, 1989, Turney and Segre, 1989, Dean and
Boddy, 1988, Hsu, 1990, McDermott, 1978].

Reactive systems, which are often proposed as a solution
to the problems with conventional planning, suffer from
being myopic. They tend to react to local changes, and
have a short-term view of the problem they are trying
to solve.

We are interested in exploring how to use conventional
planning in domains in which the plan-time information
is incomplete. This includes exploring strategies to max-
imize the chances of producing a plan that, despite in-
complete knowledge, avoids premature actions.

3 Adapting Conventional Planning
Techniques

The next question is how best to use conventional plan-
ning techniques to solve the problems we are considering.
Is it necessary to extend these techniques in some way,
or can we just define new operators at the correct level
of abstraction that will allow a conventional planner to
handle these problems? We contend that extensions are
necessary. To demonstrate this, we attempt to define
the required operators and point out the difficulties we
encounter.

We must define the operators so that the planner need
not be explicitly aware of the fact that sensors are be-
ing used. Thus, no sensor processes will be available to
the planner. Assume that the size of some bolt B is un-
known. We begin by collapsing two separate subgoals
of the BOLT process with the properties (Boltsize B 7z)
and (Have-Wrench ?z), into a single goal with property
(Have-Wrench-for-Bolt B). In this way we hide the size
of the bolt and the identity of the matching wrench. Let



this new goal be achieved by the process (Get-Wrench-
For-Bolt B). It is this process upon which we must focus.
What effect does this process have on the world state.
At the very least, after executing this process, the robot
will have a wrench that it did not have before, and that
wrench will no longer be in any tool box. (It is also likely
that the robot will be in a different location.) The cru-
cial observation is that the planner cannot know which
wrench has been removed from a tool box. The iden-
tity of that wrench is determined entirely by execution-
time sensory data that is not available to the planner.
Thus, from the planner’s perspective, (Get-Wrench-For-
Bolt B) has nondeterministic effects, and this is problem-
atic in conventional planners. If we allow such nondeter-
ministic effects, the planner will have difficulty solving
other goals that require obtaining a wrench since it no
longer knows the location of all of the wrenches.

It thus appears necessary to extend conventional plan-
ning techniques to deal with the class of problems we are
considering. There are three basic ways to do this:

1. Find a complete plan (or set of plans) that will work
for all possible values of the relevant sensor reading.
That is, plan for all contingencies (This is similar to
universal planning [Schoppers, 1987] and to “tree
plans” [Nilsson, 1989)).

Find a single complete plan based on an assumed
value of the sensor reading. This plan will work
(without modification) only if the assumption is cor-
rect.

Defer planning decisions that depend on sensor
readings until those readings are available, then con-
tinue planning with the new information.

Which of these strategies is appropriate depends on ex-
ternal considerations such as the criticality of mistakes
(i.e., Are they reversible? Is reversal costly?), the com-
plexity of the domain, and the acceptability of suspend-
ing execution to do more planning.

3.1 The Three Approaches Compared

Planning all paths is often expensive and difficult and
should be avoided if possible. If there are 20 different
sizes of bolt, the planner might need to find a slightly
different plan for each of the 20 possible sensor values.
Matters are even worse in the likely event that more than
one sensor reading is required. If the size of two different
bolts must be determined by sensor readings from 20
possible values, there would be 400 combinations, each of
which might correspond to a slightly different plan. The
amount of planning grows exponentially in the number of
readings that are needed. Although it might be possible
to represent these 400 possible plans efficiently through
the use of disjunctive nodes in the plan network, this
does not really solve the problem. To do complete pre-
planning, the planner must still analyze the potential

168

interactions (e.g., conflicts) that arise when any of the
400 possible combinations occurs. Despite the expense
of this approach, there are still cases where it might be
appropriate if it is computationally feasible:

e The same plan will be used many times with poten-
tially different sensor values in each execution. Note
that the same initial state must be satisfied in each
use of the plan. In this case the cost of the plan is
justified by its long-term usefulness.

Time constraints during execution make it undesir-
able or impossible to do any execution-time plan-
ning (either deferred planning or replanning).

The criticality of errors in the plan is so high that
the cost of extra planning is outweighed by the cost
of a mistake.

Unfortunately, even with all the planning effort asso-
ciated with this approach, most execution-time errors
and unexpected events are not anticipated. Unless these
problems can be anticipated and handled in the plan,
replanning may still be necessary. Due to the size and
complexity of a plan in this approach, replanning to cor-
rect these problems could be difficult and costly.

Although approach (2) is less expensive, there is al-
ways a possibility that the assumptions made were in-
correct, and the plan is therefore invalid. When this
happens, replanning is necessary. Parts of the original
plan will likely be discarded, and as a result, some plan-
ning effort is wasted. It is also possible that, due to the
assumptions, some action is taken prematurely and must
later be undone. If the premature action is irreversible, it
might be impossible to solve the problem. Approach (2)
is most appropriate when the following are all true:

e It is acceptable to have the robot stop during exe-
cution while replanning occurs.

The criticality of plan errors is low. That is, actions
are reversible, or the cost of failure is small (e.g.,
the robot can throw away an inexpensive part and
start over with a new one).

Some particular value for a sensor reading is more
likely than any of the other possible values. In this
case the planner has something upon which to base
its guess. The odds are more in its favor.

One advantage of this approach over the deferred plan-
ning approach discussed below is that, when the planner
guesses correctly, no execution-time planning is needed.
However, if the planner guesses incorrectly, the time
needed for replanning will probably be longer than the
time needed to continue planning in a deferred planner
since the replanner usually must remove parts of the orig-
inal plan.

In the same vein, probabilistic reasoning has been
proposed to reduce the complexity of planning. For



instance, when expectations are available concerning
how long propositions are likely to persist, probabilistic
predictions can be made [Dean and Kanazawa, 1988].
Drummond [Drummond and Bresina, 1990] proposes an
algorithm that maximizes the probability of satisfying
a goal. The algorithm achieves a balance, in terms of
robustness, between triangle tables [Fikes and Nilsson,
1971] and universal plans [Schoppers, 1987].

With the deferred planning approach, the planner
avoids doing a lot of work that will later be discarded.
Instead, it completes only those portions of the plan for
which it has enough information at plan-time. Since the
planner, in its initial phase, does not find a complete
plan, there is the possibility that important dependen-
cies and constraints in the plan will be missed. In this
case some action might be taken prematurely which must
later be undone. As with the replanning approach, if the
premature action is irreversible, it might be impossible
to solve the problem. Thus, care must be taken to detect
these dependencies and constraints as early as possible
before the robot has taken too many actions. Deferred
planning is appropriate when the following are true:

o It is acceptable to have the robot stop during exe-
cution while planning continues.

e The criticality of plan errors is low. That is, actions
are reversible, or the cost of failure is small.

It is the deferred planning approach that we are study-
ing. The central problem for this approach is how to
avoid premature actions that must be reversed (or even
worse, that cannot be reversed). In Section 3.2 we will
describe how we have implemented this approach, and
integrated it with an execution simulator. In Section 3.3
we will give an example of how this system works. Sec-
tion 4 outlines a number of strategies for deciding which
plan goals to defer.

3.2 A Deferring Planner

The basis of our system is an agenda-controlled plan-
ner called BUMP (Basic University of Minnesota Plan-
ner). BUMP uses STRIPS-style operators [Fikes and
Nilsson, 1971] to build a plan network consisting of goal
nodes and process nodes. At present, BUMP is very
basic in that it does not do hierarchical planning [Sac-
erdoti, 1974], nor does it use special methods to reason
about resources [Wilkins, 1988]. It does maintain links
from process nodes to goal nodes that record the pur-
poses of each process node in the plan. The other major
component is the EXECUTION CONTROLLER (EC). This
controller is at the top-level in our system. It invokes
BUMP to get solutions (plans) for particular problems,
and it then controls the execution (in simulation) of the
steps within those plans. It can also invoke the planner
on a partially specified plan, asking BUMP to finish it.
A gystem diagram is shown in Figure 4.

169

To solve the problems with which we are dealing, the
BUMP plan must contain requests for sensor readings
that obtain the information that the planner is miss-
ing. This is accomplished by adding a new type of pro-
cess node to the planning system. A SENSOR PROCESS
NODE constitutes an instruction to the execution con-
troller (and hence the robot) to take a particular sensor
reading at a particular point in the execution. We as-
sume that the results of a sensor process can, at the plan-
ner’s level of abstraction, be described by one or more
logical predications.? This allows us to represent sensor
processes in much the same way as non-sensor processes.
That is, they are described by three lists of predications:

Add List — A list of predications describing the prop-
erties asserted as a result of the process. At least
one of these will be the new information obtained
by the sensor. This list can also specify side effects
of the sensor process.

Delete List — A list of predications for properties de-
nied as a result of the process. (This would likely
include things that are changed in the world as side
effects of sensing.)

Precondition List — Properties that must be true in
order to use the sensor. This list will be used to
generate the set-up actions for the sensor.

Since sensor processes are explicitly represented in the
plan in much the same way as all other processes, their
side effects as well as their set-up actions can be dealt
with by BUMP.

A sensor process is used (like any other process node
in a BUMP plan) to achieve one or more of the proper-
ties on its Add List. For example, to solve a goal node G
for property (Boltsize B ?z), BUMP can insert a sensor
process node (SENSE-BOLTSIZE B) into the plan. This
sensor process node, when executed, will assert that the
bolt B has some particular size as determined by the
relevant sensor or sensors. The node could for example
assert the property (Boltsize B #4). If some property
matching (Boltsize B 7z) is already asserted, either in
the initial state or by some process node that can occur
before G, then the planner can solve G by performing
the appropriate linking operation. No additional sensor
process node is needed. Thus, the planner can easily
recognize what information it already has available and
what information must be obtained from sensors. Fur-
thermore, it performs this reasoning through the same

2How sensor data is converted into such predications is a
nontrivial problem that is beyond the scope of this paper. We
do however assume that the conversion would be based upon
some hierarchical representation of sensor data which allows
that data to be represented at multiple levels of abstraction
[Henderson and Shilcrat, 1944]. The planner would work at
one of the highest levels.



Problem Description

Commands
Execution
Plan Controller Sensor Robot
Readings
“Start” Sensor Readings
BUMP Sensor Constants

Figure 4: System Architecture.

mechanisms that determine whether to use a helpful in-
teraction or an operator to solve a goal. While plan-
ning, BUMP uses special dummy constants in place of
the values that will come from sensor readings. Dur-
ing the initial planning phase, the plan variable ?z from
(Boltsize B ?z) will be bound to one of these constants.
Any subsequently attempted plan goals that refer to one
of these constants will be deferred until the executor has
obtained the reading.

When all goals in the plan network have been either
solved or deferred, BUMP returns the plan at its cur-
rent state of completion. The execution controller then
begins executing the partial plan, preferring sensor pro-
cesses over other parallel processes since the former in-
crease the robot’s information about the world. This
preference also extends to the set-up actions of sensor
processes and to any other process nodes that are con-
strained to occur before a sensor process. This strategy
is intended to obtain the sensory data at the earliest pos-
sible point in execution in order to avoid the problems
caused by premature actions. Once a plan-requested sen-
sor reading is obtained, BUMP is immediately restarted
with the new information which it can use to make addi-
tional plan decisions. BUMP returns a new (perhaps still
partial) plan to the executor. This cycle continues until
all the necessary sensing has been done and BUMP has
found a complete plan. The execution controller then
executes the remainder of that plan.

3.3 An Example

To clarify this process we present an example. Con-
sider the problem shown in Figure 1. A sample trace
for this problem is shown in Figure 5. After an initial

170

planning phase, BUMP halts with one Sense-Boltsize
process in the plan and with the corresponding Have-
Wrench goal deferred. EC begins the execution of the
partial plan. The first two operations are required as
preparatory steps for the third operation (Sense-Boltsize
B). Since this solution is done in simulation, EC asks
the user for a sensor reading. In this case, 4 is entered.
BUMP is now restarted with this new information and
this time produces a complete plan. The remainder of
the operations are now executed and the task completed.

4 Deferral Strategies

The primary question in deferred planning is deciding
what goals to defer. At the very least we want to defer
the goals that are defined in terms of a sensor reading
since we do not know the complete goal statement until
the reading has been obtained. For example, we cannot
formulate a plan or solve the goal (Have-Wrench ?s) un-
til we know the value of 7s, the size of the wrench we
must retrieve. We may not know this until we have used
sensors to determine the size of some bolt.?

Is it advantageous to defer additional goals? That is,
should we do as much preplanning as possible, or should
we be more conservative? To study this question, we
have defined two distinct deferral strategies:

%1t should be noted that goals such as (Boltsize B ?s) are
not treated in this way. When this goal is first encountered
BUMP does not immediately know that a sensor reading is
needed. Recall that when the bolt size is already known, a
sensor process is not added to the plan. If the bolt size is
unknown, a sensor process is added, ?s is bound to a sensor
constant, and any further references to ?s will be recognized
as a reference to a sensor reading.



<Initial Planning...>

Executing #<PROCESS19> (Open-Tbox T)
Executing #<PROCESS15> (Get-Bolt Bt)

Executing #<SENSOR-PROCESS11> (Sense-Boltsize Bt)

Enter the size of bolt Bt: 4

<More Planning...>

Executing #<PROCESS33> (Get-Wrench 4)
Executing #<PROCESS28> (Close-Tbox T)
Executing #<PROCESS23> (Insert-Bolt Bt T)
Executing #<PROCESS5> (Bolt T Bt)

Figure 5: Sample run for boltsize = 4.

Continue Elsewhere - In this strategy we defer only
those goals that are defined in terms of data that
must be obtained through a sensor reading. This
strategy preplans as much as possible.

Stop and Execute - As soon as BUMP reaches a goal
defined in terms of a sensor reading, it stops, de-
ferring all remaining goals until the sensor reading
has been obtained. This approach is “maximally
conservative”.

The Stop and Execute strategy does less preplanning
than the Continue Elsewhere strategy. This has the dis-
advantage that crucial plan dependencies can be missed,
and as a result, actions can be taken prematurely. On
the other hand the planner will do significantly less plan-
ning with incomplete information. This tends to de-
crease the number of premature actions. Furthermore,
Stop and Execute respects the order in which the planner
wants to attack goals (which is, of course, independent of
the order in which they are achieved during execution),
but Continue Elsewhere does not. This is important for
BUMP since it orders goals heuristically, and it is likely
to be important for other planners as well.

We are currently conducting a study on the perfor-
mance of these two strategies. We have conducted actual
system tests for a set of 32 problems defined for a 2-box
version of the tool box world. In this version there are
two boxes s and ¢, and they are to be bolted shut with
bolts b and by, respectively. Initially, the robot is at tool
box s. Without loss of generality, we assume b, has size
4 and b; has size 5 (we can rename sizes to make this
true), but the planner does not know this and must add
sensor processes to the plan. The problem space is de-
fined as in Figure 6. Note that since there are two boxes
that must be closed, the planner must be careful not to
bolt a box containing a wrench that will be needed later.
We consider such a case to be a failure since significant
actions are taken prematurely.*

“In this case the mistake is easily reversed. If the robot

171

Initial State: (Bolt-in-tbox b, x)
A = (Bolt-in-tbox by x)

A (Wrench-in-tbox 4 x)
A (Wrench-in-tbox 5 z)
A (At s)

Goal State: (Bolted z b,)(Bolted y by)

Figure 7: 2-Box Study “Stop and Execute” Failure
Cases.

Initial State: (Bolt-in-tbox b, s)
A = (Bolt-in-tbox b; s)
A (Wrench-in-tbox 5 s)
A (At s)

Goal State: (Bolted z b,)(Bolted y by)

Figure 8: 2-Box Study “Continue Elsewhere” Failure
Cases.

As a control we tested BUMP with complete infor-
mation on the 32 problems. It produced a correct plan
with no failures for every problem. The Stop and Exe-
cute strategy fails on two of the 32 cases, and Continue
Elsewhere fails on four of them. The failure cases are
described in Figures 7 and 8. The variables z and
y range over the set {s, t}. The Continue Elsewhere
failures occur because BUMP follows the rather natural
heuristic of doing everything it can at its initial location
before going somewhere else. In cases where b, is not in
s, the initial plan will instruct the robot to bolt s before
sensing b;. When the size of b; is finally determined, its
wrench may have already been bolted inside s. BUMP
has ordered these actions prematurely and incorrectly

were welding the boxes shut, the recovery would be more
difficult.



goal-ordering €
bs location € {s,t}
b location € {s,t}
wrench 4 location € {s,t}
wrench 5 location € {s,t}

{[(bolted s bs)(bolted t b;)], [(bolted t b;)(bolted s bs)]}

Figure 6: 2-Box Study Problem Space.

Initial State: (Bolt-in-tbox by s)
A = (Bolt-in-tbox b s)
A (Wrench-in-tbox 5 s)
A (At s)

Goal State: (Bolted t by)(Bolted s bs)

Figure 9: 2-Box Study “Sense Before Closing” Failure
Cases.

since insufficient information was available at the time.

We have also experimented with a modified Continue
Elsewhere strategy called Sense Before Closing. In this
strategy, the planner attempts to order all sensor pro-
cesses before all Close-Thox processes. (This ordering is
not always possible because of other ordering constraints
that may already be in the plan.) This strategy per-
formed as well as Stop and Execute (see Figure 9 for the
failure cases), however, it is not as general-purpose as
the first two strategies. It is applicable only in domains
where we want all sensor operations to precede all box
closings. This would not be the case if the robot were
requested to bolt a box, move to another room, and then
do more sensing there.

5 Discussion

Interleaving of planning and execution has been used
extensively. For instance, in the work of [Durfee and
Lesser, 1989] the planner uses a blackboard based prob-
lem solver to abstract sensory data. This enables the
planner to approximate the cost of developing potential
partial solutions to achieve long-term goals. Detailed
plans are created only for the immediate future using
the sketch of the entire plan. By keeping the long-term
goals the planner bases its short-term details on a long-
term view.

Dean and Boddy [1988] propose a class of algorithms
that they call “anytime” algorithms. These algorithms
can be interrupted at any point, returning a partial plan.
The quality of this plan depends upon the time used to
compute it.

We have decided to investigate a more limited class of
problems. We are interested in proposing and evaluating
strategies to be used when some information is missing

172

at planning time and needs to be obtained with sensors.
In our approach planner decisions that depend on sen-
sory information are deferred. As soon as sensory data
become available the planning activity is resumed.

Doyle [Doyle, Atkinson and Doshi, 1986] uses sensors
to verify the execution of a plan. The sensor requests are
generated after the plan has been produced by examin-
ing the preconditions and postconditions of each action
in the plan. Domain dependent verification operators
map assertions to perception requests and expectations.
Since perception requests are actions that could have
preconditions, the planner is used to modify the original
plan to guarantee that the preconditions are established.
If the expectations are not satisfied by the perception the
plan is repaired using predefined fixes. The entire pro-
cess is done before executing the plan.

Our work has been inspired, in part, by the recent
work of [Turney and Segre, 1989]. The system they
present, SEPTA, alternates between improvising and
planning. It addresses sensing errors, control errors, and
modeling errors. Their example is a traveling salesper-
son problem with time constraints at every place to be
visited. The set of rules suitable for firing contains rule
instances whose preconditions and constraints have been
met, but whose sensor requests have yet to be evaluated.
Since sensing is assumed to be expensive, the system fires
the rule instance with the fewest sensor requests first.
The cost of a rule is proportional to the number of sen-
sor requests it contains. The planner is interrupted when
the cumulative cost exceeds its budget. The quality of
the heuristic improvisation strategy has the most signif-
icant effect on the quality of the solution (both with the
simple improvisation strategy and with SEPIA). This
seems to suggest that it is more important to develop
good heuristics than to develop a highly sophisticated
planner.

Dean [1987] recognized the complexity of solving re-
alistic planning problems and suggested heuristic ap-
proaches to decompose a task into independent subtasks
that are easier to solve. He suggested using a library of
strategies applicable to a set of tasks instead of a library
of plans.

The need to plan with incomplete information raises
interesting theoretical issues in finding an appropriate
balance between the time spent to plan and the time



spent to get additional information. Hsu [1990] proposes
a method for planning with incomplete information. She
shows that if the information available to the planner is
not sufficient to produce a plan, then no amount of plan-
ning will help find the optimal solution. The idea is to
generate a “most general partial plan” without commit-
ting to any choice of actions not logically imposed by
the information available at that point. An anytime al-
gorithm is then used to chose the appropriate action on
the current partial plan when the system has to act. She
defines a PERCEPT to be a (possibly partial) description
of the world. Percepts are saved to form HISTORIES. A
history prescribes or prohibits some actions, allowing the
refinement of a partial plan. Finally, a plan is a map-
ping from histories to actions. Instead of using the most
general partial plan she introduces the notion of effec-
tive partial plan. Conceptually an effective partial plan
is a huge table where each entry contains a perceptual
history and a set of actions. This resembles universal
plans and is probably impractical unless powerful do-
main heuristics can be used to prune the search space.

6 Further Work and Conclusions

We are currently extending our strategy study to a 3-box
world where the robot must bolt three boxes with three
different bolts using three different wrenches.? Prelimi-
nary results suggest that as the problem becomes more
complicated, Continue Elsewhere will begin to outper-
form Stop and Execute. This is due to the fact that
BUMP with the Stop and Execute strategy is unable
to plan more than one sensor operation ahead. This
is too shortsighted for complex problems. More inter-
estingly, preliminary results also suggest that neither of
the general-purpose strategies are very good at avoiding
failures, and that more specialized, domain-dependent
strategies such as Sense Before Closing may be neces-
sary.

To conclude, we have adapted a conventional plan-
ner to do deferred planning. This planner can then be
used for problems where there is insufficient informa-
tion at planning time to develop a complete plan. We
have developed several strategies for deciding which plan
goals to defer, and we are studying the performance of
these strategies. In the 2-box study, the Stop and Exe-
cute strategy seems to perform (slightly) better than the
other two strategies. The 3-box study is still in progress.

References

[Agre and Chapman, 1987] Philip E. Agre and David
Chapman. Pengi: an implementation of a theory of
activity. In Proceedings of the Sixth National Confer-
ence on Artificial Intelligence, pages 268272, Seattle,

®There are, of course, problem instances where two or
more bolts have the same size, but these are easier for the
planner and therefore less interesting.

173

Washington, July 1987. American Association for Ar-
tificial Intelligence.

[Brooks, 1982] Rodney A. Brooks. Symbolic error anal-
ysis and robot planning. International Journal of
Robotics Research, 1(4):29-68, 1982.

[Brooks, 1986] Rodney A. Brooks. A robust layered
control system for a mobile robot. IEEE Journal
of Robotics and Automation, RA-2(1):14-23, March
1986.

[Dean, 1987] Thomas Dean. Intractability and time-
dependent planning. In Reasoning about Actions and
Plans: Proceedings of the 1986 Workshop, eds. M.
Georgeff and A. Lansky. Morgan Kaufmann, San Ma-
teo, California, 1987.

[Dean and Boddy, 1988] Thomas Dean and Mark Bod-
dy. An analysis of time-dependent planning. In Pro-
ceedings of the Seventh National Conference on Ar-
tificial Intelligence, pages 49-54, Minneapolis, Min-
nesota, August 1988. American Association for Arti-
ficial Intelligence.

[Dean and Kanazawa, 1988] Thomas Dean and Keiji
Kanazawa. Probabilistic temporal reasoning. In Pro-
ceedings of the Seventh National Conference on Arti-
ficial Intelligence, pages 524-528, Minneapolis, Min-
nesota, August 1988. American Association for Arti-
ficial Intelligence.

[Doyle, Atkinson and Doshi, 1986] R. J. Doyle, D. J.
Atkinson, and R. S. Doshi. Generating perception
requests and expectations to verify the execution of
plans. In Proceedings of the Fifth National Conference
on Artificial Intelligence, pages 81-87, Philadelphia,
Pennsylvania, August 1986. American Association for
Artificial Intelligence.

[Drummond, 1989] Mark Drummond. Situated control
rules. Proceedings of the First International Confer-
ence on Principles of Knowledge Representation and
Reasoning, Toronto, May 1989. Morgan Kaufmann.

[Drummond and Bresina, 1990] Mark Drummond and
John Bresina. Anytime synthetic projection: maxi-
mizing the probability of goal satisfaction. In Pro-
ceedings of the Fighth National Conference on Artifi-
cial Intelligence, Boston, Massachusetts, August 1990.
American Association for Artificial Intelligence.

[Durfee and Lesser, 1989] Edmund H. Durfee and Vic-
tor R. Lesser. Incremental planning to control a
blackboard-based problem solver. In Proceedings of
the Fifth National Conference on Artificial Intelli-
gence, pages 58—64, Philadelphia, Pennsylvania, Au-
gust 1986. American Association for Artificial Intelli-
gence.



[Fikes and Nilsson, 1971] Richard E. Fikes and Nils J.
Nilsson. STRIPS: a new approach to the application
of theorem proving to problem solving. Artificial In-
telligence, 2:189-208, 1971.

[Georgeff and Lansky, 1987] Michael P. Georgeff and
Amy L. Lansky. Reactive reasoning and planning.
In Proceedings of the Sixth National Conference on
Artificial Intelligence, pages 677-682, Seattle, Wash-
ington, July 1987. American Association for Artificial
Intelligence.

[Hayes-Roth, 1987] Barbara Hayes-Roth. Dynamic con-
trol planning in adaptive intelligent systems. In Pro-
ceedings of the DARPA Knowledge-Based Planning
Workshop, pages 4-1-4-7, Arlington, Virginia, 1987.

[Henderson and Shilcrat, 1944] Tom Henderson and Es-
ther Shilcrat. Logical sensor systems. Journal of
Robotics, 1(2): 169-193, 1984.

[Hsu, 1990] Jane Yung-jen Hsu. Partial planning with
incomplete information. AAAI Spring Symposium on
Planning in Uncertain, Unpredictable, or Changing
Environments, March 1990.

[Kaelbling, 1988] Leslie P. Kaelbling. Goals as parallel
program specifications. In Proceedings of the Seventh
National Conference on Artificial Intelligence, pages
60—65, Minneapolis, Minnesota, August 1988. Ameri-
can Association for Artificial Intelligence.

[McDermott, 1978] Drew V. McDermott. Planning and
acting. Cognitive Science, 2:71-109, 1978.

[Nilsson, 1989] Nils Nilsson. Action networks. In Pro-
ceedings of the Rochester Planning Workshop, pages
21-52, Rochester, New York, October 1988. Univer-
sity of Rochester.

[Nilsson, 1989] Nils J. Nilsson. Teleo-reactive agents.
Draft Paper, Stanford Computer Science Department,
September 1989.

[Sacerdoti, 1974] Earl D. Sacerdoti. Planning in a hi-
erarchy of abstraction spaces. Artificial Intelligence,
5:115-135, 1974.

[Schoppers, 1987] Marcel J. Schoppers. Universal plans
for reactive robots in unpredictable environments. In
Proceedings of the Tenth International Joint Confer-
ence on Artificial Intelligence, pages 1039-1046, Mi-
lano, Ttaly, August 1987. International Joint Commit-
tee on Artificial Intelligence.

[Turney and Segre, 1989] Jennifer Turney and Alberto
Segre. A framework for learning in planning domains
with uncertainty. Technical Report TR 89-1009, Cor-
nell University, May 1989.

174

[Wilkins, 1989] David E. Wilkins. Can AI planners solve
practical problems? Technical Note 468, SRI Interna-
tional, Menlo Park, July 1989.

[Wilkins, 1988] David E. Wilkins. Practical Planning —
Ezxtending the Classical AI Planning Paradigm. Mor-
gan Kaufmann, San Mateo, California, 1988.



