Fast Connectionist Learning for Trailer Backing using a Real Robot *

Dean F. Hougen, John Fischer, Maria Gini, and James Slagle
Department of Computer Science
University of Minnesota
Minneapolis, MN 55455

Abstract

This paper presents the application of a connection-
ist control-learning system to an autonomous mini-
robot. The system’s design is severely constrained by
the computing power and memory available on board
the mini-robot and the on-board training time is greatly
limited by the short life of the battery. The system is
capable of rapid unsupervised learning of output re-
sponses in temporal domains through the use of eligi-
bility traces and data sharing within topologically de-
fined neighborhoods.

1 Introduction

Control-learning in autonomous robotic systems
provides many challenges. The learning system must
be robust enough to overcome the problems of noisy
input data and uncertain interactions between mo-
tor commands and effects in the world, be compact
enough to fit into available on-board memory, and be
able to give responses in real time. The challenges
are even greater if the learning system must acquire
its proficiency during a short demonstration period
consisting of a small number of trials. The system
we present here meets these specifications, yet is ca-
pable of unsupervised learning of a difficult credit-
assignment problem.

Connectionist control-learning systems have re-
cently received much attention, and numerous papers
and several books have been published on this topic in
the last five years (e.g. [10], [7]). Most of these works,
however, have concentrated on simulated systems and
therefore have not had to deal with the ambiguities
of the real world. We present a new connectionist
learning system designed for use on a real robot with
limited computational power and that has to acquire
its proficiency in a minimum number of learning trials.

Learning responses has generally been classified

*This work was funded in part by the NSF under grant
NSF/DUE-9351513 and by the AT&T Foundation.

into supervised and unsupervised learning. In su-
pervised learning an agent or function, often called
the teacher, provides the desired output response for
each input vector. Systems that do not make use of
a teacher, then, are known as unsupervised learning
systems.

Within unsupervised learning different levels of
feedback may be available. Often an evaluation of
system output is immediately available. This allows
learning to occur for each input vector and output re-
sponse pair. We are concerned with learning in situa-
tions in which a less immediate response is available.

In this paper we examine the problem of backing a
car and trailer rig to a target location by steering the
front wheels of the car. No feedback is available until
the task is completed. We refer to these problems as
terminal feedback problems. Further, we are interested
in problems for which the terminal feedback is simply
a boolean value (a success or failure signal).

2 ROLNNET

For learning in terminal feedback problems with
boolean evaluation functions, Hougen [1] proposed
the Self-Organizing Neural Network with Eligibility
Traces (SONNET). The use of SONNET networks
on the “pole-balancing” problem in simulation [1]
and for a real-world system [2] have been presented.
Prominent features of SONNET systems are self-
organization for input-space partitioning, the use of
eligibility traces to provide temporal sensitivity, and
response learning through inter-neural cooperation.

The system presented here, Rapid Output Learning
Neural Network with Eligibility Traces (ROLNNET),
is a simplification of the SONNET paradigm.
ROLNNET uses eligibility traces and output space
inter-neural cooperation, as do SONNET systems, but
does not use self-organization for input-space parti-
tioning. Instead, the input space is partitioned by
problem specification evaluation, prior to the applica-
tion of the learning system. This simplifies the prob-
lem and allows the network to learn more rapidly.

2.1 Neighborhood function

The internal structure of a ROLNNET map is de-
fined by a topological ordering of the neurons that
remains unaltered as the network learns. We use a
planar topology. Each neuron is uniquely numbered
with a pair of integers that can be thought of as its
coordinates in topology space. The existence of a net-
work topology allows for the definition of a distance
function for the neurons. Typically, this is defined as
the Cartesian distance between coordinates in topol-
ogy space.

The distance function often is used indirectly
through the definition of neighborhoods. A neighbor-
hood may have any width from zero (the neighborhood
is restricted to the unit itself) to the maximum sepa-
ration between units in topology space (the entire net-
work is in the neighborhood) and may vary with time,
typically starting large and subsequently decreasing.

More formally, if U is the set of units u in the
network, d the distance function defined on topology
space, and W a time dependent function specifying the
width of the neighborhood, then the neighborhood N
of neuron n at time ¢ may be defined as

No(t) ={ueU|dn,u) <W(t)} (1)

All units within a neighborhood may be treated
as belonging to a single class for a particular compu-
tation, and those outside as belonging to a separate
class, giving a discretization which improves the com-
putational efficiency of the method.

The concept of the neighborhood relationship is
borrowed from Kohonen’s Self-Organizing Topological
Feature Maps [4] where the neighborhoods are used for
self-organization of the maps.

2.2 Competition

Each neural element in the network is sensitive to
a particular region in the input space of the problem.
For the present application, the input dimensions are
evenly partitioned into eight regions along each axis.
The sensitivity regions of the neurons are set to be
the 64 resulting divisions of the input space such that
nearest neighbors (according to the neighborhood re-
lation described above) are assigned adjacent regions
of the input space.

Each time a new input vector is given to the net-
work the neuron sensitive to the input region into
which the vector falls is declared the “winner”. The
winning neuron gives an output response based on its
response weight value (see 2.4) and has its eligibility
for adaptation increased (see 2.3).

2.3 The eligibility trace

One function of biological neurons which has not
been approximated in the more standard connection-
ist systems is what we refer to as the eligibility trace.
It is known that many neurons become more amenable
to change when they fire (see, e.g. [3]). This plastic-
ity reduces with time, but provides an opportunity
for learning based on feedback received by the neuron
after its activity.

All neural elements in a ROLNNET system have
an eligibility value associated with them. Initially, all
neurons are given an eligibility value of zero. Each
time a neural element fires (gives an output response),
its eligibility is increased by a preset amount which is
uniform for all neurons in the network. The eligibility
value for each neuron decays exponentially regardless
of whether or not it fires on any given time step.

2.4 Output weights

Each neural element has a single output weight
which is initially given a random value. Together with
the input region sensitivities described above (2.2), the
weights can be understood as describing a mapping
from car-trailer states to output responses.

The output weights are used to determine the sys-
tem’s response to an input vector. For the present
application, the weight value of the winning neuron
(see 2.2) is examined for its sign alone. If the weight
is positive, the wheels of the car are turned to the
right. Otherwise, the wheels are turned to the left.

When success or failure is signaled, the weights are
updated according to the following equation:

w™ = sign(w”'!)(jw”?| + e s(T) f) (2)

where w is the weight, e is the eligibility for adapta-
tion, s is a scaling function that changes with the trial
number T, and f is the feedback signal (+1 for suc-
cess, -1 for failure). The scaling function s is used to
allow for large changes to the weights in early training
trials and smaller changes in subsequent trials. In this
application, s is defined to be

1
1+ (T —1)mod10

s(T) = 3)

2.5 Inter-neural cooperation

After the completion of a trial and the subsequent
updating of each neuron’s weight according to its el-
igibility, inter-neural cooperation takes place. This
consists of neurons updating their weights a second

Figure 1: TBMin, the trailer backing mini-robot

time, this time based on the weight values of the other
neurons in their neighborhood. For the present appli-
cation, the neighborhood has a constant size of 1.
Each individual neuron 4 is influenced by its neigh-
bors according to the following equation:
Wn
w; = (1 —a(T))w; + a(T) —
neN

(4)

where each w is a weight, IV is the neighborhood of
neuron 4, m is the number of neurons in that neigh-
borhood, and a determines the degree to which a neu-
ron’s value is “smoothed” with that of its neighbors.
In general, o decreases with time. This means that
each neuron’s value becomes more independent from
those of its neighbors as time passes. In this particular
application, « is defined to be

1
2+ (T —1)mod 10

a(T) ()
where T is the trial number. (Le. For the first ten
trials, a is 1/2, for the second 10 it is 1/3, and so on.)

3 Autonomous mini-robots

Figure 1 shows the autonomous mini-robot TBMin
that we have designed and built for this problem. The
body of TBMin is made up of a small radio controlled
car and a trailer. The original electronics have been
replaced by specially designed boards. We use (1) a
micro-computer board built around a 68hcll micro-
controller, with 16k of ROM and 32k of RAM. (2)
a motor board also built around a 68hcl1 microcon-
troller, with 16k of EPROM and a L293E dual-motor-
driver chip. This board, that operates as a slave, keeps
the car at a constant velocity, controls the steering,
and controls a light-tracking head; (3) an interface

Hitch Angle

|
Goal Angle

Figure 2: The trailer-backing problem

board that synchronizes the communication between
the micro-computer and the motor board. A 7.2 volt
rechargeable battery is used to drive the car and the
boards. The battery lasts approximately 15 minutes.

TBMin uses two inputs: (1) the angle from the
spine of the trailer to the goal and (2) the angle of the
hitch, as shown in Figure 2. The angle to the goal
is computed using a light-tracking head (mounted on
a servo) that tracks a 100W light bulb. The angle of
the hitch is sensed using a variable resistor. If the rear
of the trailer reaches the goal, success is signaled. If
the angle to the target exceeds 90° or the angle of the
hitch exceeds 45°, failure is signaled. The system is
clocked to operate in discrete time units. No other
sensory data or feedback is available.

Other researchers have defined the problem differ-
ently. Whereas most trailer-backing systems include
such variables as the x and y position of the rear of the
trailer in Cartesian space, we do not. This is primarily
because our system is designed to operate in the real
world where it is difficult for the robot to acquire its
own x and y coordinates.

4 Experimental results

The system described in this paper must meet many
varied and sometimes conflicting challenges. Some of
these are inherent in the task to be learned, some are
imposed by the use of real robotic systems, some come
from our use of small yet autonomous mini-robots, and
some we have imposed on ourselves to study learning
in completely unsupervised domains. The results in
this section show that the system is able to function in
the demanding environment in which we have placed it
and produce good results as quickly as we need them.

The system was tested in simulation and on TB-
Min. For both the simulation and the real robot, the
learning system was initialized to having random val-
ues for output weights. At the start of each trial,
the eligibility for adaptation for each neuron was set
to zero. On each time step the learning system was

(c)

Figure 3: Example simulation trial. (a) start, (b)
progress (shown every tenth time step), (c) end.

given the current values of the trailer and hitch an-
gles and, if applicable, a failure or success signal. The
network response was thresholded and values less than
zero were used as hard left control signals, while values
equal to or greater than zero are used as hard rights
by TBMin. In this way, the system was given bang-
bang control. The output values would not have to
be thresholded and the system could learn smoother
control, if more sophisticated hardware were utilized.

4.1 TBMin results

For testing the real robot, the car-trailer rig was
positioned to match as closely as possible the initial
positions selected as in case 1 (see 4.2). The system
was trained in a series of runs of 50 trials each. (The
maximum period for which a single battery can be
expected to last is approximately 100 trials. To in-
sure that battery decline does not cause failure of the
onboard computer, runs were limited to half this ex-
tent.) Five runs of the learning system were made on
the actual robot, each starting with the output weights
initialized to random values. These runs are plotted

below for comparison with the runs done in simula-
tion. A comparison of the simulation plots with the
runs using TBMin shows that the learning system is
not significantly affected by the inaccuracy inherent in
the real-world system.

L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

Figure 4: Graph of runs on TBMin. Average per-
formance for 5 runs of 50 trials each. Trials graphed
together in groups of five. Initial position: Rear of
trailer 4 to 7 feet from target, angle to target +/—60°,
angle of hitch +/—15°. New random position for each
trial.

4.2 Simulation results

For the simulation testing, we studied four cases
that varied in the range of possible initial car-trailer
positions and in the presentation of new positions to
the learning system. For each case the system was
trained in a series of runs of 100 trials each.

Case 1: the car-trailer rig was started with the back
of the trailer from four to seven feet from the tar-
get, with an angle to the target between —60° and
+60°, and with a hitch angle between —15° and
+15°. New initial conditions were chosen ran-
domly at the start of each trial (see below) with
a uniform distribution over the entire range.

Case 2: this is identical to case 1, except that the rig
was started with the back of the trailer from three
to six feet from the target and with an angle to
the target between —45° and +45°.

Case 3: resembled case 1, differing only in when new
initial positions were presented. In case 3, new
initial positions were given only when success had
been achieved with the previous position; when
the system failed to reach the target, the same
initial position would be repeated.

0 L L L L
0 20 40 60 80 100

Graph of simulation case 1. Average perfor-

mance for 100 runs of 100 trials each. Ins-

tial position: Rear of trailer 4 to 7 feet from

target, angle to target +/ — 60°, angle of hitch

+/ — 15°. New random position for each trial.
1 T

0 L L L L
0 20 40 60 80 100

Graph of simulation case 8. Average performance for
100 runs of 100 trials each. Initial position: Rear of
trailer 4 to 7 feet from target, angle to target +/ —
60°, angle of hitch +/ — 15°. New random position
only following success; previous position repeated after
failure.

0 L L L L
0 20 40 60 80 100

Graph of simulation case 2. Average perfor-

mance for 100 runs of 100 trials each. Ins-

tial position: Rear of trailer 3 to 6 feet from

target, angle to target +/ — 45°, angle of hitch

+/ — 15°. New random position for each trial.
1 T

0 L L L L
0 20 40 60 80 100

Graph of simulation case 4. Average performance for
100 runs of 100 trials each. Initial position: Rear of
trailer 3 to 6 feet from target, angle to target +/—45°,
angle of hitch +/—15°. New random position only fol-
lowing success; previous position repeated after failure.

Figure 5: Simulation data

Case 4: resembled case 2, differing from it in the
same way case 3 differed from case 1.

A total of 100 runs were made in simulation for
each of four cases, using different random seeds for
both the initial starting positions for each trial and
for the random initial values of the output weights.
The results are plotted in the graphs in Figure 5.

As can be seen from these graphs, the system
quickly improved its performance, reaching its max-
imum performance in three of the four cases within 40
trials. In the fourth case, the system reached its max-
imum performance in well under 100 trials. This is
amazingly fast learning. (While a realistic comparison

of systems cannot be made it might be of interest to
know that other authors have used as many as 20,000
trials to train their systems to control trailer-backing).
In fact, the success rate of completely random control
for the given initial conditions was determined experi-
mentally to be zero, and the success rate using control
by a random network without learning was determined
to be approximately 6%, so it is obvious that signifi-
cant learning has taken place within the first ten trials.

The results for Cases 1 and 2 were very similar with
performance increasing only slightly faster and reach-
ing a slightly higher level in Case 2 than in Case 1.
While the greater possible starting angles in Case 1

made the problem more difficult, this was apparently
mostly offset by the greater distance from the target,
which provided more room for the control system to
bring the trailer around. The performance in Cases 3
and 4 respectively increased more slowly and reached
a lower maximum level than either Case 1 or 2. This
might be explained by the bias towards presentation
of hard initial positions in Cases 3 and 4. The steep
initial slope of all the graphs, including that for the
runs using TBMin, indicates that significant learning
occurred on failure as well as success.

5 Related work

The trailer-backing problem is gaining attention as
a simple to understand yet difficult to solve learning-
control problem. Approaches such as the Cerebellar
Model Articulated Controller (CMAC) [8], adaptive
fuzzy systems [5], backpropagation through time [6],
and “fuzzy BOXES” [11] have all been applied to ver-
sions of this problem. It is difficult to directly compare
results across many of these systems and with our re-
sults.

The most obvious difference between this study and
those of most other authors writing on this problem,
is that our system was implemented on a real robot,
whereas theirs were restricted to simulated systems.
Restricting their attention to simulated systems has
freed many researchers from having to deal with un-
pleasantries such as noisy input data and imprecision
in the execution of tasks, although some have tried
to model these types of effects in simulation (e.g.
[9]). The use of simulation has also allowed other
researchers to include many more learning trials in
their training runs and to use learning systems with
much greater memory and computational demands.
For these reasons, the results of these other learning
systems cannot be directly compared with ours. Un-
fortunately for the sake of honest comparison, we are
aware of no other research involving trailer-backing us-
ing real robots. All of the differences taken in combi-
nation make it clear that simple comparison of success
rates between ROLNNET and other learning systems
for trailer-backing are of no value.

6 Conclusions

We have described a paradigm for learning simple
tasks for real robots and we have presented experimen-
tal evidence to support our proposed approach. We
have shown that our system is able to learn extremely
quickly, despite noise, and with limited computing
power and feedback. The paradigm is rich with possi-

bilities for further study, including novel network ar-
chitectures and hybridization with other systems (such
as self-learning critics).

References

[1] Dean F. Hougen. Use of an eligibility trace to
self-organize output. In Science of Artificial Neu-
ral Networks II, Proceedings SPIFE, volume 1966,
pages 436-447, 1993.

[2] Dean F. Hougen, John Fischer, and Deva
Johnam. A neural network pole balancer that
learns and operates on a real robot in real time.
In Proceedings of the MLC-COLT Workshop on
Robot Learning, pages 73—-80, 1994.

[3] A. Klopf. Brain function and adaptive systems —
a heterostatic theory. In Proceedings of the Inter-
national Conference on Systems, Man, and Cy-
bernetics, 1974.

[4] T. K. Kohonen. Self-organizing and associative
memory. Springer-Verlag, Berlin, 3rd edition,
1989.

[5] Seong-Gon Kong and Bart Kosko. Adaptive fuzzy
systems for backing up a truck-and-trailer. IEEE
Trans. on Neural Networks, 3(2):211-223, 1992.

[6] D. Nguyen and B. Widrow. Neural networks for
self-learning control systems. IEEE Control Sys-
tems Magazine, 10(3):18-23, 1990.

[7] H. Ritter, T. Martinetz, and K. Schulten. Neural
computation and self-organizing maps: an intro-
duction. Addison-Wesley, Reading, MA, 1992.

[8] Robert O. Shelton and James K. Peterson. Con-
trolling a truck with an adaptive critic CMAC
design. Simulation, 58(5):319-326, 1992.

[9] T. Troudet and W. Merrill. Neuromorphic learn-
ing of continuous-valued mappings from noise-
corrupted data. IEEE Trans. on Neural Net-
works, 2(2):294-301, 1991.

[10] IIT W. Thomas Miller, Richard S. Sutton, and
Paul J. Werbos. Neural Networks for Control.
MIT Press, Cambridge, MA, 1990.

[11] N. Woodcock, N. J. Hallam, and P. D.Picton.
Fuzzy BOXES as an alternative to neural net-
works for difficult control problems. Artificial In-
teligence in Engineering, pages 903-919, 1991.

