
XRobots: A Flexible Language for Programming Mobile Robots Based on
Hierarchical State Machines

Steve Tousignant, Eric Van Wyk, and Maria Gini

Abstract— This paper introduces a domain-specific language
for programming mobile robots that is based on hierarchi-
cal state machines. Following Brooks, we refer to states as
behaviors. A novelty of this language is that behaviors are
treated as first class objects in the language and thus they
can be passed as arguments to other parameterized behaviors.
The language has template behaviors which allow generalized
behaviors to be customized and instantiated. This makes the
language quite flexible in terms of programming styles. An
example of its flexibility are presented, followed by a description
of the challenges in the language design.

I. INTRODUCTION

As advances in robotics have allowed mobile robots to
gain greater complexity and therefore be used to address
more challenging tasks, programming them in a general
purpose programming language has become a more arduous
job. Even the simplest robotic program needs to take input
from the sensors, run it through some type of a control
algorithm, and write the output to the actuators of the
robot. More complex algorithms may add other steps, such
as preprocessing the sensory inputs, building a Brooksian
subsumption architecture [1] into the control algorithm, or
doing more complex computations.

Thus, writing robotic programs in a general purpose
programming language poses a number of challenges. For
example, sensors and actuators tend to be used as global
variables which makes modularity difficult. The conceptual
pattern that a given stimuli causes a given reaction becomes
difficult to trace in the code. Any problem involving states,
transitions, sensors, and actuators leads to complex represen-
tation in an imperative language.

These challenges are not unlike those found in other
areas of software development in which domain-specific pro-
gramming languages have been proposed (Van Deursen [2]
presents a nice survey). Thus, to address these challenges we
propose a domain-specific language (DSL) called XRobots.
The concept of a DSL is neither new nor uncommon in
language design. An advantage of DSLs is that programmers
can write code at a higher level of abstraction and in the
notation of the problem domain.

XRobots is based on hierarchical state machines (HSMs).
HSMs have their origins in the STATECHARTs introduced
by Harrel [3] and their evolution is documented by Yan-
nakakis [4]. They have been used in several areas of com-
puter science and are widely used in the engineering fields.

S. Tousignant, E. Van Wyk, and M. Gini are with the Department of
Computer Science and Engineering, University of Minnesota, Minneapo-
lis, MN 55455 stousig@cs.umn.edu, evw@cs.umn.edu,
gini@cs.umn.edu

HSMs use states and transitions as do regular finite state
machines (FSMs), and the states typically contain a set of
actions which occur on the entry of a state and another set
of actions that occur on the exit of a state. HSMs extend
FSMs by introducing the notion that states can be nested in
a hierarchical manner. Therefore, a HSM can be in multiple
states simultaneously as long as those states have a parent-
child relationship.

XRobots facilitates a high degree of code reuse. Modules
can be designed such that there is a clear separation be-
tween hardware-control behaviors and hardware-independent
behaviors which specify the algorithm. Information can be
passed between behaviors that interface with the hardware
and those that do not in several ways.

The ability to parameterize behaviors and treat behaviors
as first class objects allows programmers to pass information
from one behavior to the next. We allow parameters to be
passed in two ways, by-value and by-reference, as is done in
C++. Since behaviors are first class objects, they can also be
passed into other behaviors either by-value or by-reference.
This allows a programmer to write a general behavior for
robotic algorithms and plug in hardware specific behaviors
in order to customize that algorithm for a specific robot.

We present XRobots using the example of the
followWall algorithm instantiated with hardware-specific
behaviors and discuss its execution in Section II. We describe
behaviors in Section III and discuss the nuances of behavior
passing in IV. Template behaviors, described in Section V,
are another feature of the language that allows one to
instantiate behaviors to create a customized behavior that
can be invoked at some future step in the algorithm. While
behaviors passing and template behaviors are advantages of
this programming style, they do present certain challenges,
which we discuss in Section VI. Section VII summarizes
related work. The foundational work presented in this paper
provides continuing research opportunities, which are dis-
cussed in Section VIII.

II. EXAMPLE OF XROBOTS PROGRAM EXECUTION

We begin describing an algorithm to follow a wall for
the iiRobot Create robot. Our design for the algorithm
combines hardware-specific behaviors, with an algorithm
specific behavior. The state machine defined by the algorithm
specific behavior is shown in Fig. 1, and most of the code
is shown later in Fig. 5

The algorithm first enters the initial behavior FindWall
(denoted by the small arrow). After a short delay, it transi-
tions to the hardware-specific behavior senseWall, which

bu

findWall

senseWall

followLeftCorner

followRightCorner

WallOnSide

repelWall

intoWall

outOfWallgt

gt

FollowWall

wasFollowingOnRight=false

clock>t0

N
o

O
b

st
ac

le

clock>t0

clock>t0

wasFollowingOnRight=true

O
b

st
ac

le
D

et
ec

te
d

Fig. 1. High-level sub-behaviors for the Follow-Wall program

is passed into the followWall behavior as a parameter.
Because senseWall is a hardware-specific behavior argu-
ment to followWall, we represent it with double rectangles
in the diagram. As a note, in this example we use other
hardware-specific behaviors. senseWall transitions to the
WallOnSide behavior when an obstacle is detected, as indi-
cated by the condition labelling that directed edge. Otherwise
it transitions back to findWall. Once it has transitioned
to wallOnSide, due to the detection of an obstacle, it
transitions through the three sub-behaviors; as it transitions
from one of these sibling behaviors to another, it must exit
the former and enter the latter. It will continue iterating over
those sub-behaviors until it fails to detect the wall it is fol-
lowing. While following the wall, the program stores true in
a boolean if the wall was on its right, and false otherwise.
We call this boolean wasFollowingOnRight. Immediately
after losing the wall, it will follow the left or right corner,
depending on the value of wasFollowingOnRight. If an-
other wall is found, presumably after the corner is navigated,
it will resume iterating the wallOnSide behavior otherwise,
if no wall is found after the suspected corner, the algorithm
will return to the findWall behavior.

With the example in mind, we define some general nomen-
clature. At any specific point in the execution of the program,
we say that any behavior that has been entered, but not exited
is an active behavior. Furthermore, the behavior that was
most recently entered (but not exited) is the current behavior.

So in this example, when intoWall is the current behavior
both wallOnSide and followWall are active behaviors.
The order in which behaviors are entered and exited follows
a first-in-last-out ordering and thus we can view behaviors as
being pushed onto a stack when they are entered and popped
off when they exit. The top element of this stack of active
behaviors is the current behavior.

Note that every program has a root behavior which is, by
definition, an ancestor of all the behaviors in the program.
The parameters to root are the values of the robot’s sensors
and references to its actuators (see Fig. 6).

III. EXAMPLE OF THE XROBOTS BEHAVIOR CONSTRUCT

Behaviors are the fundamental building-block of XRobots.
They correlate to states in HSMs and thus can be nested in
XRobots. The language provides the option of labeling one
of the behaviors specified in another as an initial behavior
to be entered when the parent is also entered. We show the
code from repelWall in Fig. 2 as an example; this behavior
corresponds to the repelWall behavior in Fig. 1.

/* #1 name and parameter list */
Behavior repelWall () {

/* #2 Empty declaration Block */

/* #3 Entry Block */
Entry {
clock := 0.0;

}
/* #4 Transition block */
Under Condition clock > 0.2
Apply Behavior

outOfWall(wasFollowingOnRight);
Under Condition True
Apply Behavior bu(200.0, 1);

/* behaviors outOfWall and bu not shown */

/* #5 Empty Exit block */
Exit { }

}

Fig. 2. A simple behavior to move away from a wall

This example, in Fig. 2, illustrates the following com-
ponents of a behavior which are referenced by numbered
comments.

1) Name and parameter list: Every behavior has a name
and a list (possibly empty) of parameters, which is a
list of typed formal arguments which need to be passed
into the behavior when it is called. repelWall has no
parameters, but if it did there would be a list of names
and types in the parenthesis similar to C++ syntax.
Also like C++, we can pass parameters by-value or
by-reference. The qualifiers ByRef and ByVal indicate
how the parameter will be passed. If no qualifier is
present, the default of pass-by-value is used. Passing
references and values will be discussed later.

2) Declaration block: A list of declarations, including sub-
behavior definitions, used in the behavior. Variables

defined within a behavior are local to that behavior
and visible to any sub-behavior. In the example the
declaration block is empty.

3) Entry Block: A block of statements that are executed
when the behavior is entered. In this case we set
the variable clock. This variable is declared in the
ancestor behavior followWall, shown in Fig. 5.

4) Transition block: A list of transitions, each consist-
ing of a boolean expression used as a condition
and a behavior invocation. When the condition eval-
uates to true the transition is enabled. Transitions
are written in order of priority, So the first enabled
transition will be invoked. In this case, we pass
wasFollowingOnRight into outOfWall and 200.0

and 1 into bu. bu is the hardware-specific behavior
argument for backing up.

5) Exit Block: A block of statements that are executed
when the behavior is exited. In this case the exit block
is empty.

IV. BEHAVIOR PASSING

As mentioned earlier, in XRobots behaviors can be de-
clared within other behaviors, can be parameterized, and,
since they are first class objects, they can be passed into other
behaviors as arguments. These arguments, regardless of type,
can be declared as either pass by-reference or pass by-value.
The same is true for the primitive data types supported by
XRobots. Passing behaviors, however, is more interesting.

When a behavior is passed by-value a local copy of
the behavior is instantiated. Thus it is similar to a sub-
behavior of the behavior into which it was passed. In other
words, it is local to the behavior into which it was passed
in terms of how transitions operate; however, the passed-
in sub-behaviors cannot access the local variables of the
behavior into which it was passed. Alternatively, if we pass
a behavior by-reference, we are simply passing a pointer to
the behavior in the program hierarchy. When we transition
to the referenced behavior, we simply follow that pointer and
transition to the target behavior.

Using the examples we have seen so far, we can show
the two ways behaviors can be passed as arguments to other
behaviors, by-value and by-reference. The hardware specific
behaviors passed into the behavior followWall are passed
by-value, (see Fig. 5). Behaviors passed by-value act as if
they are sub-behaviors of the behavior into which they are
passed. This feature allows us to pass into followWall a set
of hardware specific behaviors, such as those in Fig. 3 and
Fig. 7, and they are treated as sub-behaviors. The behavior
followWall (Fig. 5) has the sub-behaviors shown in Fig. 1.
This, and all the sub-behaviors of the behavior followWall,
do not use the sensors or actuators of the robot, but hand off
interfacing with the sensors to hardware specific behaviors
which are passed in as parameters. We could swap one set
of hardware-specific behaviors for another quite easily.

The arguments of the behavior created by the template
behavior bumpObject, shown in Fig. 7, are good examples
of passing behaviors by-reference. In this case, pointers to

behaviors wallOnSide and findWall are passed in so
that the behavior can later transition to these behaviors.
It is noteworthy that an instance of bumpObject created
in root is passed into the senseWall parameter of the
instantiation of followWall, see Fig. 5. So when intoWall

calls senseWall, see Fig. 5, senseWall is actually a locally
instantiate version of bumpObject.

The parameters for senseWall and bumpObect are ref-
erences to behaviors; as a note the parameter types for
bumpObject have to match those for senseWall because
we are passing the former as the actual parameter for the
latter, which is the formal parameter. Now in intoWall,
when we apply behavior senseWall we pass references
to wallOnSide and findWall, both sub-behaviors of fol-
lowWall. Since bumpObject will either transition to one of
the two passed- in behaviors, we want it to transition to the
proper behavior in its location position, hence we pass in a
reference to it.

V. TEMPLATE BEHAVIORS

Template behaviors outline a general, parametric structure
for a behavior, but do not create a behavior until the
template is instantiated in a behavior’s declaration block.
They have the same five components of a behavior. However,
template behaviors have an additional component, a template
parameter lists, which is a list of parameters for the template
itself.

A template behavior is shown in Fig. 3. This behavior
takes two template parameters, lVel and rVel, which are
both references to the actuators of the differential-drive robot.

// From module Create
Template Behavior gentleTurn

< ByRef float lVel, ByRef float rVel >
(float rspeed, float lspeed)

{
Entry {
rVel := rspeed;
lVel := lspeed;

}
}

Fig. 3. The gentle-turn template behavior for a differential drive robot

// From module v_omega
Template Behavior gentleTurn

< ByRef float v, ByRef float omega >
(float rspeed, float lspeed)

{
float radius;// a constant for the robot
Entry {
radius := 16.0
v := sqrt(rspeedˆ2 + lspeedˆ2);
omega := (rspeed - lspeed)/radius;

}
}

Fig. 4. The gentle-turn template behavior for a v-omega robot

Using template behaviors we can generate reusable be-
haviors that control the sensing or actuation of a robot. In

this example, the template behavior expects to receive the
references to the differential drive actuators. Then after it is
instantiated, two parameters will be passed into the behavior
when it is invoked which are the speed of the two wheels.
In general, we pass in two unequal floats getting the robot
to make a slight turn. We have written a similar template
behavior to move a robot with a “v-omega” drive system;
this behavior is shown in Fig. 4. The convenience here is that
both have the same interface, in this case the interface of a
differential-drive robot. However, if we wanted to given them
both the interface of a “v-omega” robot, we easily could. In
either case, the invocation of the behavior resulting from
either of these template behaviors will be identical.

In Fig. 5 we show followWall and some of the nested be-
haviors that correspond to the diagram shown in Fig. 1. The
outer most behavior in both is followWall which has the
sub-behaviors followRightCorner, followLeftCorner,
and wallOnSide in both the figure and the code. The double
rectangles such as bu and gt are hardware specific behavior
arguments in the code.

Template behaviors can be instantiated in a behavior’s
declaration block to create a sub-behavior. The program will
act as if the sub-behavior had been defined at the point
of instantiation in terms of stack behavior; however, the
variables that are visible to the parent behavior will not
be visible in the instantiated behavior since XRobots uses
static scoping. Instantiation happens at runtime, unlike C++
templates which are instantiated at compile-time.

In general, we write a set of template behaviors to rep-
resent the hardware specific code and use them in specific
algorithms. We have implemented a rudimentary module
system that allows the user to organize and combine a generic
algorithm with specific modules for hardware.

Therefore, we could instantiate different template behav-
iors inside a program to implement a follow-wall algorithm
on a differential drive robot as shown in Fig. 6. The pa-
rameters to root, as previously mentioned, are the set of
the robot’s sensors and actuators used in the program. This
program is intended to specialize the followWall algo-
rithm for a Create robot with a differential drive. Since the
followWall module contains a behavior, importing it makes
the followWall behavior local to the root. Conversely,
the Create module only has template behaviors, so its
import gives root access to instantiate the hardware-specific
template behaviors defined in that module. We instantiate
these template behaviors in the declaration block of root,
giving them any valid local name; in this case we chose bu,
gt, r, bo. Lastly, we invoke followWall unconditionally
passing to it the hardware specific behavior we have just
instantiated.

To invoke the followWall behavior, (Fig. 5), we must
provide the following hardware specific behaviors:

1) A backup behavior for the specific robot
2) A gentle turn behavior for the specific robot
3) A behavior which gives the specific robot some random

motion
4) A behavior which senses a wall given the sensors of

// From module followWall
Behavior followWall

(ByVal Behavior bu(float v, int c),
ByVal Behavior gt(float rv, float lv,

bool tb),
ByVal Behavior random(),
ByVal Behavior senseWall (

ByRef Behavior wallAlg(bool rb),
ByRef Behavior clearAlg())

)
{

float clock;

Behavior followRightCorner () {...}
Behavior followLeftCorner () {...}
Initial Behavior findWall () {...}

Behavior wallOnSide (
bool wasFollowingOnRight)

{
Behavior repelWall() {

Entry {
clock := 0.0;

}

Under Condition clock > 0.2
Apply Behavior
outOfWall(wasFollowingOnRight);

Under Condition True
Apply Behavior bu(200.0, 1);

}

Behavior outOfWall() {
Under Condition clock > 0.7

Apply Behavior
intoWall(wasFollowingOnRight);

Under Condition True
Apply Behavior
gt(25.0,250.0, wasFollowingOnRight);

}

Behavior intoWall() {
Under Condition

clock > 1.7 && wasFollowingOnRight
Apply Behavior
senseWall(wallOnSide, findWall);

Under Condition clock > 1.7
Apply Behavior
senseWall(wallOnSide, findWall);

Under Condition
clock > 1.2 && wasFollowingOnRight
Apply Behavior followRightCorner();

Under Condition clock > 1.2
Apply Behavior followLeftCorner();

Under Condition True
Apply Behavior
gt(200.0,25.0, wasFollowingOnRight);

}

Under Condition True
Apply Behavior bu(100.0, 10);

}
} // end of wallOnSide

} // end of followWall

Fig. 5. The followWall behavior

Import "FollowWall";
Import "Create";

Behavior root
(ByRef float rvel, ByRef float lvel,
ByRef bool rbump, ByRef bool lbump)

{
Behavior bu := backup<lbump, rbump,

lvel, rvel> ;
Behavior gt := gentleTurn<rvel, lvel> ;
Behavior r := random<rvel, lvel> ;
Behavior bo := bumpObject<rbump, lbump> ;
Under Condition True
Apply Behavior followWall(bu, gt, r, bo);

}

Fig. 6. An instantiation of the follow wall behavior for the Create.

that robot.
For the Create the senseWall behavior is named

bumpObject, which is shown in Fig. 7. However, the formal
argument represents a hardware independent way to sense the
wall, and this argument is called senseWall (see Fig. 5).
The gentle turn template behavior for the Create is provided
in Figure 3. Backup and random are not shown.

Template Behavior bumpObject
< ByRef bool lbump, ByRef bool rbump >
(ByRef Behavior wallAlg (bool b),
ByRef Behavior clearAlg ())

{
Under Condition rbump
Apply Behavior wallAlg(True);

Under Condition lbump
Apply Behavior wallAlg(False);

Under Condition True
Apply Behavior clearAlg();

}

Fig. 7. A sense wall template behavior for the Create

The template behaviors for the hardware are instantiated
inside the root behavior whose parameters are references
to actuators and values of sensors. This was previously
described and shown is Fig. 6.

We have described the major capabilities of XRobots.
We view the ability to write software for various robotic
platforms by combining sets of template behaviors as a
strength of the language. It allows roboticists to encapsulate
hardware-specific code in one set of modules and robotic
algorithms in another. A simple module system is used to
enable reuse of the interfaces to various robotic hardware.
Documenting the entire syntax and semantics of XRobots
is beyond the scope of this paper. However, the denotational
semantics is detailed in an unpublished manuscript report [5].

For our implementation, we have chosen to use Silver [6],
an attribute grammar system, to translate XRobots programs
into Haskell code and to use C for the interface between
the Haskell program and the robotic hardware itself. The
C program collects sensor data from the robot and passes
them through a pipe to the Haskell program. When the

Haskell program returns data, the interface captures them
and uses the actuator values to control the robot. The key to
this interface in the bidirectional conversion between Haskell
and C data types. We have prototypes that interface both
with Player/Stage and the Create API. By using Haskell, we
use a modern, functional language in robotics. Historically,
functional languages where considered a key tool in AI and
robotics, and we see value in their continued use.

VI. CHALLENGES OF THE LANGUAGE

With the added expressivity of passing behaviors by-value
and by-reference come some challenges in language design.
We describe here the three most important:

1) ensuring that invoking a by-reference behavior follows
standard rules;

2) error detection when passing by-value behaviors;
3) dealing with the pragmatics of the language.
Transitions with a by-reference target behavior should use

the same protocol as transitions where the target behavior has
been hard coded, such as outOfWall in the transition block
of Figure 2. The only difference, and thus the challenge,
is retrieving the reference to the behavior so that it is in a
similar form as a hard coded behavior. We must, for example,
not attempt to transition to a behavior that is nested several
layers deeper in the hierarchy than the current depth. What
we wish to avoid is having one algorithm for each case since
they fundamentally do the same operation.

Passing behaviors by-value introduces the possibility for
some interesting errors to arise. Say, for instance, we have a
behavior that accesses variables from an ancestor behavior,
and we pass that behavior by-value into a behavior in another
branch of the hierarchy. When that other branch tries to make
that behavior the current behavior, the ancestor variables it
tries to access may not be accessible if the ancestor behavior
that defined them is no longer active. It will be fairly straight
forward at runtime to throw an error that the variable is not
defined, but it would be preferable to detect this situation at
compile time and flag the error at that point.

The last challenge deals with the pragmatics of the lan-
guage. We are unsure how easy it may be for the programmer
to reason about programming in this model. The higher-order
nature of the language (i.e. behaviors as first class objects)
may be problematic to people who are not used to such con-
ventions. This claim may be especially true for those whose
background is solely in imperative programming. Therefore,
one of the challenges for us as language developers is how
to minimize this barrier.

VII. RELATED WORK

We examine briefly programming languages whose main
purpose is to simplify robotic programming. Such languages
can mostly be classified as either reactive languages, or
imperative languages, or languages based on a standardized
middle-ware, such as CORBA. Domain specific languages
are starting gaining popularity in the robotics community,
because they promise to simplify the process of developing
the large and complex programs that are needed for robots.

In a major change from the approaches that were com-
monly used in robotics, Brooks [7] introduced the subsump-
tion architecture, an architecture based on layers of com-
ponents connected to each other, that operate on sensor data
and produce control commands to the robot. The components
use “inhibition” and “suppression” mechanisms to override
input or output from other components, enabling the building
of complex programs that are scalable and modular. Brooks
later introduced the Behavior Language to make it easy
to implement his subsumption architecture [8]. Since the
subsumption architecture is based on Augmented Finite State
Machines (AFSM), so is the language.

Player/Stage [9] is currently the most widely used pub-
lic domain software for programming real robots and for
simulating them. The Robotic Operating System (ROS) [10]
provides a standardized interface between robotic algorithms
and hardware. Popular packages, such as Player, can be
wrapped and used in ROS. Its developers argue its advan-
tages include being: thin, it is small memory-wise; peer-
to-peer, it does not require a central server; multi-lingual;
tool based, a large set of small tools is used to handle the
workflow; and free and open source.

A survey of development environments for robotics is
in [11]. ASEME (Agent Systems Engineering Methodol-
ogy) [12] has been proposed recently for developing software
for agents. The approach uses the model-driven engineering
paradigm, which relies on model transformations, and is
intended to cover all the phases of the design and develop-
ment of software for a complex distributed system of agents.
ASEME is being used to program robots for RoboCup.

XABSL [13] is a recent example of an extensible behavior
specification language designed for robotics. The language
has been used for multiple robotics platforms, most notably
to program robots for RoboCup.

Reckhauss et al. [14], proposed a “platform independent
model” coupled with a “platform specific model.” They
develop a platform independent model to control a whole
array of robots, and a platform specific model to control
each specific robot. Clearly this is a way to handle robot
heterogeneity. However, each platform specific model can
have its own syntax so you may end up with a number of
related, but disparate languages with identical semantics. The
authors cite this as an example of model driven development.

We presented a preliminary version of XRobot with no
discussion of how to make programs hardware independent
and of programming styles in [15].

VIII. FURTHER WORK AND CONCLUSIONS

We currently have a working version of the compiler for
XRobots built in Silver [6]. The compiler generates Haskell
code, which can interface with C code to control the robot
directly or via some other platform such as Player/Stage.

We intend to expand this work on several fronts. We would
also like to build a simple simulator so that we can test
programs while examining the internal flows of data. Visual
inspection of a robotic program may not be sufficient, but
tracing though a program step by step will be helpful.

We intend to test the language by comparing it to some
known code base. A possibility is using the challenge
problems from the CURIE project [16] and comparing both
our results and the quality of our code to their findings.
Eventually, we will look for user feedback on the ease of
development in our language.

In this paper we have discussed the benefits of a language
for programming mobile robots based on an augmented
HSM model. What augments the HSM model is the use of
parameterized behaviors (states), the ability to treat behaviors
as first class objects, and template behaviors, which allow the
user to instantiate a behavior based on a predefined template.
The programming model has potential advantages over the
state of the art in that there is some history of using state-
base behavioral models in robotics and it has significant
higher-order capabilities. We have defined the language and
described how the language functions. The opportunities and
difficulties of passing around behaviors as by-value and by-
reference parameters has been discussed.

REFERENCES

[1] R. A. Brooks, “A robust layered control system for a mobile robot,”
Massachusetts Institute of Technology, Cambridge, MA, USA, Tech.
Rep., 1985.

[2] A. van Deursen, P. Klint, and J. Visser, “Domain-specific languages:
an annotated bibliography,” SIGPLAN Not., vol. 35, pp. 26–36, 2000.

[3] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
Comput. Program., vol. 8, pp. 231–274, June 1987.

[4] M. Yannakakis, “Hierarchical state machines,” in Theoretical Com-
puter Science: Exploring New Frontiers of Theoretical Informatics, ser.
Lecture Notes in Computer Science, J. van Leeuwen, O. Watanabe,
M. Hagiya, P. Mosses, and T. Ito, Eds. Springer Berlin / Heidelberg,
2000, vol. 1872, pp. 315–330.

[5] S. Tousignant and E. Van Wyk, “The syntax and semantics of
XRobots,” an unpublished language specification. [Online]. Available:
http://wwww-users.cs.umn.edu/∼stousig/synsem.pdf

[6] E. Van Wyk, D. Bodin, J. Gao, and L. Krishnan, “Silver: an exten-
sible attribute grammar system,” Science of Computer Programming,
vol. 75, no. 1–2, pp. 39–54, January 2010.

[7] R. Brooks, “A robust layered control system for a mobile robot,”
Robotics and Automation, IEEE Journal of, vol. 2, no. 1, pp. 14 –
23, Mar. 1986.

[8] ——, “The behavior language: User”s guide,” Massachusetts Institute
of Technology, Cambridge, MA, USA, Tech. Rep., 1990.

[9] B. Gerkey, R. T. Vaughan, and A. Howard, “The Player/Stage project:
Tools for multi-robot and distributed sensor systems,” in Int’l Conf.
on Advanced Robotics, Coimbra, Portugal, June 2003.

[10] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[11] J. Kramer and M. Scheutz, “Development environments for au-
tonomous mobile robots: A survey,” Autonomous Robots, vol. 22, pp.
101–132, 2007.

[12] M. P. Spanoudakis N., “Modular JADE agents design and implemen-
tation using ASEME,” in IEEE/WIC/ACM Int’l Conf. on Intelligent
Agent Technology, Toronto, Canada, 2010.

[13] M. Lötzsch, M. Risler, and M. Jüngel, “XABSL - A pragmatic
approach to behavior engineering,” in Proc. IEEE/RSJ Int’l Conf. on
Intelligent Robots and Systems, Beijing, China, 2006, pp. 5124–5129.

[14] M. Reckhaus, N. Hochgeschwender, P. G. Ploeger, and G. K. Kraet-
zschmar, “A platform-independent programming environment for robot
control,” in 1st Int’l Workshop on Domain-Specific Languages and
models for Robotic systems (DSLRob10), Oct. 2010.

[15] S. Tousignant, E. V. Wyk, and M. Gini, “An overview of XRobots: A
hierarchical state machine based language,” in Workshop on Software
development and Integration in Robotics, IEEE Int’l Conf. on Robotics
and Automation, May 2011.

[16] [Online]. Available: http://web.mae.cornell.edu/hadaskg/outreach/
curie2010.html

