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More Trees or Larger Trees: Parallelizing Monte
Carlo Tree Search

Erik Steinmetz and Maria Gini, Fellow, IEEE

Abstract—Monte Carlo Tree Search (MCTS) is being effec-
tively used in many domains, but acquiring good results from
building larger trees takes time that can in many cases be imprac-
tical. In this paper we show that parallelizing the tree building
process using multiple independent trees (root parallelization)
can improve results when limited time is available, and compare
these results to other parallelization techniques and to results
obtained from running for an extended time. We obtained our
results using MCTS in the domain of computer Go which has
the most mature implementations. Compared to previous studies,
our results are more precise and statistically significant.

Index Terms—game of Go, Monte Carlo Tree search, paral-
lelization.

I. INTRODUCTION

Monte Carlo Tree Search (MCTS) is a method of building a
search tree by successively adding single nodes to a tree, each
representing some state, and randomly choosing from available
actions beginning at the newly added node in a “playout,” until
a terminal state is reached. Each playout from a node is used to
help score the goodness of that leaf node and all its predecessor
nodes in the tree. MCTS is used when traditional tree search
methods are insufficient, such as with extremely large state
spaces and where no reasonable static evaluation function is
available. It has been applied to games, scheduling, constraints,
physics simulations, security testing, and other domains [1].

MCTS was a breakthrough in the Go domain after it was in-
troduced over a decade ago, and in 2016 achieved a milestone
by helping to beat the best human professional Go players,
first the European Go champion Fan Hui [2] and then the
world champion Lee Sedol in the “Google DeepMind Chal-
lenge Match”. The program which accomplished this, called
AlphaGo, used a combination of distributed MCTS along
with deep convolution neural networks to achieve victory. A
successor to AlphaGo called AlphaGo Zero [3] performed
even better training solely on self-play, but no longer uses
Monte Carlo playouts and involves large amounts of training,
sometimes on specialized hardware to reduce the training time.
This latter method is therefore applicable only in situations
where sufficient training and testing times are available.

Recent applications of MCTS in real-time scenarios such
as active sensing in robots [4], cooperative trajectory planning
for automated vehicles [5], and control of radiation therapy
[6] are cases where such an investment of time and effort is
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not tenable. Using MCTS thus remains a robust and easy-to-
implement solution in many domains.

With computer processors becoming not much faster, but
more numerous along with Moore’s Law, we believe that the
way forward with MCTS is through efficient parallelization.
Time is a critical factor in many of the domains listed above,
so the only hardware improvements available will be to add
more processors and more memory. In this paper we try to
outline the most efficient way of using CPU power.

Our experiments were run with the mature implementations
of MCTS which are available in the Go game domain. Al-
though there are similar comparisons available in the literature,
they show much variability in their results due to the use of
small sample sizes which lead to large confidence intervals.

II. BACKGROUND AND RELATED WORK

A. Description of the Game of Go

Go is a two-player, perfect information game played by
placing black or white stones on a 19 by 19 grid of lines, with
the black and white players alternating turns. The objective of
the game is to surround or control the territory on the board.
Once placed, the stones are not moved around on the board
as are chess pieces, but remain in place until the end of the
game, or until they are removed by capture. A player may elect
not to place a stone by passing on their turn. The game ends
when both players have passed in succession and the winner
is the player who controls the most territory. There are two
scoring systems, Chinese and Japanese, but they both produce
equivalent results, with a possible one stone variance [7].

B. Monte Carlo Tree Search

Monte Carlo methods are used to evaluate possible actions
from a given state. They are based on executing a large number
of playouts through the state space, choosing random actions
until a terminal state is reached, and its value is determined.
In an unbiased Monte Carlo evaluation, the actions chosen
in these playouts are selected entirely at random from the
possible actions available in the current state. The candidate
actions from the original root state are then scored by some
metric based on the value of the terminal states reached by
playouts through that candidate. In win/loss domains, each
candidate will have a simple count. Other methods of scoring
a candidate move involve the sum of the scores of the terminal
states of each playout through that candidate. For example, the
scale of the win or loss can be used [8].

In its simplest form, also known as flat Monte Carlo, all
possible actions from the current state are evaluated with an
equal number of playouts [9]. Flat Monte Carlo evaluation



2

does produce results, but is handicapped by a number of
shortcomings. Because so many playouts are spent on sub-
optimal actions, it does not scale well. Additionally the lack
of an opponent model in adversarial situations makes it more
likely to choose an incorrect action as the number of playouts
increases [10].

Selection Expansion Simulation Backpropagation

Tree Policy Default  Policy

Win/Loss Result:

Fig. 1. MCTS Algorithm Phases

In Monte Carlo Tree Search (MCTS), the actions of a
playout are given nodes containing the newly reached state
and added to a search tree [11]. As this tree gets created the
algorithm follows these basic steps until a resource limit (such
as time or number of iterations) has been reached: selection,
expansion, simulation, and backpropagation.

The selection phase starts at root, choosing the action or
move represented by a node in the tree according to some
selection policy. It then recursively descends the tree always
choosing a child node according to the selection policy. When
it reaches a node which has unvisited children and which
represents a non-terminal state, the selection phase stops. The
expansion phase creates a new node based as a child node
of the selected node and adds it to the tree. Then the third
phase begins: simulation plays legal actions (moves) randomly
until an end position is reached. The win or loss from this
simulation, also called a playout, is determined. This is added
to the statistics of the newly created node and all of its parents
up to the root node during the backpropagation phase. These
steps are shown in Figure 1.

A major improvement to this basic MCTS algorithm has an
extra variable to assist choosing the in-tree moves [12] during
the selection phase. This method, called Upper Confidence
Bounds Applied to Trees (UCT), chooses moves by iterating
through the scoring of candidate moves as with the normal
Monte Carlo algorithm but also uses the number of times
successor nodes in the tree are encountered along with their
win rate as a modification to the basic in-tree selection
policy. The selection of an action a depends on maximizing
Xa + C

√
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where Xa is the average reward for having
selected action a, na is the number of times a has been
selected, and n is the total number of times the current node
has been selected. The first term represents how successful
choosing the action has been so far and is known as the
exploitation factor. This term grows or shrinks depending on
the scores of playouts through the choice of action a, while
the second term represents the confidence in the score, and is
known as the exploration factor. As the number of times this

action has been chosen from its parent rises in comparison to
all the other children of that parent, this term will decrease.
If an action has only been tried a few times, its scored value
will have a low confidence, and so in order to increase the
confidence of the winning rate for that action, the odds of
selecting these actions are increased by the exploration factor
so that they will be chosen more often. If an action has not
yet been chosen at all, this second term will go to infinity
ensuring this action will be chosen before other actions from
the same parent state that have already been selected once.

In domains where the ordering of actions is not always
critical to their value, there is a modification called RAVE,
for rapid action value estimation [13]. This formula scores
actions not just based on choosing them at the current state
(of the node being scored), but also considers choosing that
action at any point during the sequence of actions. This is
known as the all-moves-as-first (AMAF) heuristic [14].

Other modifications include integrating domain dependent
knowledge [15] and heuristics [16] along with an agent-like
system for polling different agents (or algorithms) for action
choices [17]. Biasing in-tree node selection based on learned
patterns when they are available [18] or from expert play [19]
has improved play in the domain of Go. In the Go domain, a
system of modifying action choices in the simulation phase
using a lookup table based on individual action sequences
from successful playouts [20] worked well and was improved
by removing from the table those sequences which were
subsequently chosen in an unsuccessful playout [21].

C. Parallelization of MCTS

There are generally three ways to parallelize search in an
MCTS tree [22] [23]: (1) at the leaves of the search tree, (2)
throughout the entire tree, and (3) at its root.

In leaf parallelization, after a node is selected in the tree
for expansion, multiple playouts originating at that node are
conducted in parallel. When all the playouts have finished,
the combined score from those playouts is propagated back
up the tree. Depending on the number of parallel threads this
can greatly increase the speed at which the win-rate statistics
are gathered, however since each playout may take a different
length of time, some efficiency is lost waiting for the longest
playout to complete. Some implementations have moved these
playouts to a GPU [24]. Unfortunately many of the playouts in
leaf level parallelization are wasted due to their simultaneous
nature: if the first eight playouts all are losses or very low-
scoring, it is unlikely that the next eight will do any better,
leading to an inherent limitation of this technique.

In tree parallelization, multiple threads perform all four
phases of MCTS (descend through the search tree, add nodes,
conduct playouts, and propagate statistics) at the same time.
In order to prevent data corruption from simultaneous memory
access, mutexes (locks) are placed on nodes that are currently
in use by a thread. These locks lead to scalability problems
since many threads may want to be exploiting a particular
node in a tree. One solution to this mutex problem has been to
introduce virtual losses [22]. When a thread descends through
a node in the tree, it adds a virtual loss to the statistics of
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that node, making it less appealing to other threads. When the
thread updates statistics, it removes the virtual loss. Another
implementation [25] has implemented a lock-free version of
tree parallelization utilizing the virtual loss system. Without
locks this depends on a large enough virtual loss to deter
other threads to the point that overwriting of old data will
occur very rarely. Using the synchronization properties of
the atomic variables, atomic operations, and atomic variants
of the builtin types in C++ [26] the ordering of memory
accesses by the threads can be enforced [27], creating a
lock-free system. The results show better playout speedup
compared to other synchronization methods, but still no better
performance than root parallelization, unless the number of
tasks and the exploration factor are high. Similarly, separately
tracking statistics about the number of threads currently ex-
ploring through a node [28] has successfully avoided mutex
delays. Tree parallelization can be created on shared memory
systems or on distributed systems with very fast interconnects
(clusters). Clusters usually suffer from the communications
overhead, but one implementation using distributed depth-first
UCT [29] avoids some of this by not propagating results to
root at every playout.

In root parallelization, multiple independent trees are built
by separate threads with no information communicated be-
tween them while the trees are being built [23]. This can
happen either on a shared memory machine or in a cluster.
All the trees are created through the end of the time limit on
the machine or machines, and then the scores for the top layer
nodes, that is to say the nodes which represent the immediate
choice from the root node, are combined to determine which
action will be chosen. A variant of this, dubbed “slow root
parallelization” shares this top-level information periodically
throughout the search [23], [30]. Although the trees have been
created starting from the same node, the stochastic element of
MCTS means that each tree will be formed differently from
the others. When the information from the different trees is
combined, two methods of combining the values from the
trees are commonly used. The first is to add up all the scores
for each possible action from all the trees. In this case the
combined score for an action is the sum of each tree’s score for
that action. The second method is to choose the action which
“won” the contest in each of the trees. These two methods are
called “average” voting and “majority” voting respectively.

D. Comparisons of Parallelization of MCTS

Chaslot, Winands, and van den Herik [22] compared all
three of these parallelization methods. They created a new
measure of scalability which was based on the increase in
winning rates as the amount of time per move increased,
naming it the “strength speedup” measure. They concluded
that the best increase in strength was achieved by using root
parallelization, with average voting. They did not test the
majority voting method. This was tested on their (relatively
weak) Mango program. These experiments used very short
time limits per move starting at 1 second as the baseline.

Soejima, Kishimoto, and Watanabe [31] explored root par-
allelization, comparing a majority voting system versus an

average voting system, and found that majority voting was
superior. They compared results over 9×9, 19×19 with both
self play using Fuego and against MoGo. They also tested
move selection on particular board problems against an “or-
acle” version of the software which was Fuego running for
80 seconds, which is 8 times their baseline move time of
10 seconds in other experiments, but for the move selection
experiments they ranged from 1 to 64 seconds.

Schaefers and Platzner [32] analyze the effects of using a
parallel transposition table for tree parallelization along with
dedicating some compute nodes to broadcast operations to help
scaling to large numbers of machines.

Świechowski and Mańdziuk [33] measured the performance
of their “Limited Hybrid Root-Tree Parallelization” on General
Game Playing. The system combines tree parallelization with
root parallelization by building each of the separate trees in a
root parallel system using a tree-parallelized player. A similar
hybrid approach was also utilized as part of Steinmetz’s Ph.D.
thesis [34] and as part of the current work.

III. METHODOLOGY AND EXPERIMENTS

We compared the benefits of root parallelization to tree par-
allelization and measured both against a baseline of building
a larger tree utilizing more time. We ran our experiments
in playing the game of Go because the MCTS software for
computer Go has become quite mature. Additionally the game
offers a look at problems of different inherent difficulty by
varying the size of the game board. The game of Go was
the first to seriously develop MCTS, and offers a selection
of open-source programs with which to experiment, including
Pachi [35] and Fuego [36], two of the strongest computer Go
programs. In addition, in order to look at parallelization in a
domain without using the all-moves-as-first effects, we include
data from running a computer Go program with the no RAVE
implementation of MCTS.

We ran and looked at 3 different MCTS setups:
1) More time: as our baseline measurement, we increased

the time available to a single thread thereby allowing a
larger tree to be created.

2) More threads: we increased the number of threads op-
erating on a single tree, so a larger tree can be created.

3) More compute nodes: we increased the number of com-
pute nodes on which to run MCTS, and so the number
of trees that would contribute to the choice of action.

There are two highly ranked open source MCTS Go engines,
Pachi and Fuego. We used Pachi 11 and Fuego revision 1983
to conduct our experiments.

Our Go experiments consisted of running tournaments be-
tween these two programs and recording the win/loss rates
using Chinese scoring rules. We used Fuego and our mod-
ifications of Fuego as the variable program, modifying it
and its parameters. These various incarnations of Fuego were
then played against Pachi running always with the same set
of parameters. All of our results are stated in terms of the
percentage of games won by Fuego against Pachi. Pachi was
played with all default parameters except that it was run as a
single thread with a time limit of 15 seconds per turn with no
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opening book. Pachi plays with a RAVE component. Fuego
was run with no opening book, at the time limit specified in
the experiment, and on the number of threads specified in the
experiment. Fuego also runs with a RAVE component.

In order to observe the effects of parallelization in a
situation where the all-moves-as-first (AMAF) heuristic was
not applicable, we also ran experiments with a version of
Fuego which did not use the RAVE statistics.

In the game of Go two different board sizes are used to
play games, especially between computers. A game on a 9×9
board usually lasts on average about 60 moves before it is
decided or one side resigns. A game on a 19×19 board lasts
about 260 moves, and so involves a much larger state space
and takes from four to five times as long to play. These two
board sizes were used to observe effects of parallelization on
the algorithm at two different levels of problem difficulty.

The tournaments were run on a cluster of HP blade servers,
where each compute node contained 2 quad-core 2.8 GHz
Xeon “Nehalem EP” processors sharing 24 GB of memory.

Tournaments between the computer opponents were mod-
erated by the “gogui-twogtp” script [37] which communicates
with each program using the simple Go Text Protocol and
records the results of the games played.

In order to study the trend of performance in the winning
rates in an adversarial game situation we use the binomial
confidence interval p ± 1.96

√
p(1− p)/n where p is the

probability of a win and n is the number of trials in the
sample. This means that 95% of the time an experiment is run
the actual value sought will be within the confidence interval
of the value seen in the sample by the experiment. Given this
formula a reasonably large number of games must be played to
detect an improvement in the software’s ability. If the winning
rate is near 50% for example, the confidence interval for 500
games is a bit below 5%.

Where many of the previous studies used tournament sizes
in the hundreds, we chose to run tournaments of 1000 games
in order to get confidence intervals close to ±3%. When
comparing different win rates, we use the two-proportions z-
test with a null hypothesis that the better win rate is equal
or less than the smaller win rate. The p-value from this test
is thus the likelihood that the better win rate is not actually
larger.

A. More Time for a Larger Tree
We increased the time available to a single thread, thereby

allowing a larger tree to be created. The longer an MCTS
algorithm is run, the larger the search tree will become and this
usually improves the quality of the results. All trees eventually
run into memory limitations, and need to have their least
promising branches pruned to free up the memory to build
out the higher quality parts of the tree. Nonetheless, measured
by the total number of playouts conducted, the size of the
tree explored at some point, even if it has been subsequently
pruned, rises close to linearly with the time allotted.

We allowed an MCTS program to run for longer than a
typical amount of time in our domain, doubling and redoubling
the time allowed, in order to see the effect this would have on
the quality of the resultant decisions.

We chose a standard time allotment for our domain as the
baseline amount of time. In the case of computer Go, using 15
second turns for decisions is quite common. We picked this
as 1 unit of time, and then kept doubling the time allowed
based on that unit. This avoids the problems of showing large
improvements from an unrealistically small baseline time unit.
We measured the quality by comparing the winning rate of a
computer Go program playing against an opponent that was
only allowed to use the standard amount of time.

For the more time experiment in Go, we played a tour-
nament on a 9×9 board with Fuego running a single thread
for 15 seconds available per move against Pachi running a
single thread for 15 seconds per move. We then repeated this
tournament five more times, allowing Fuego 30 seconds per
move, then 60, 120, 240, and finally 480 seconds per move.
We then repeated this experiment with the no RAVE version
of Fuego along with a tournament on a 19×19 board.

The results from the tournaments between copies of Fuego
with increasing amounts of time allotted for each decision and
Pachi with the fixed 15 seconds of time per turn are shown in
Table I. As the amount of time allowed increases, the winning
rate of Fuego increases until it is playing with eight times
the base time, i.e., 120 s, after which no significant advantage
is seen. This is also seen on the 19×19 board. The results
from the no RAVE Fuego with increasing time limits show
essentially no gain from increasing the time available when it
is using the default urgency value.

TABLE I
FUEGO WIN RATES WITH INCREASING TIME PER MOVE LIMITS FOR A 9×9

GO BOARD

Time 15 s 30 s 60 s 120 s 240 s 480 s
Fuego vs Pachi 9×9 53.2% 57.5% 63.8% 70.3% 68.6% 70.7%
Fuego (no RAVE) vs Pachi 8.3% 9.5% 10.3% 8.7% 8.7% 7.9%
Fuego vs Pachi 19×19 42.1% 53.7% 59.7% 59.6% 56.0% 60.6%

B. More Threads for a Larger Tree

Another way to increase the size of the search tree is to
allow more than one thread to work on the same tree at a time:
tree parallelization. The scalability of this approach is limited
by the number of cores that access the same memory on a
machine with a shared memory architecture. Current high-end
consumer-grade processors are four-core, but act as though
they have eight cores by using hyper-threading technology.

We ran an MCTS program capable of conducting lock-free
tree parallelization on a single machine with an increasing
number of threads and recorded the quality of the win rate
results as the number of threads increased.

For the more threads experiment, we played four 9×9
tournaments matching up Fuego against Pachi, allowing Fuego
to play with 1, 2, 4, and 8 threads respectively. Pachi was kept
to a single thread. We also ran these four tournaments with
the no RAVE version of Fuego against Pachi, and another four
tournaments on a 19×19 board.

Tournaments between copies of Fuego set to run with
varying number of threads versus Pachi on a single thread
produced the results seen in Table II. As the number of threads
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increases, the strength of the program appears to increase
almost linearly up to the maximum of eight, the number of
processors in our shared-memory systems.

TABLE II
FUEGO WIN RATES WITH INCREASING NUMBER OF THREADS

Number of Threads 1 2 4 8
Fuego vs Pachi 9×9 53.2% 59.0% 65.1% 74.2%
Fuego (no RAVE) vs Pachi 9×9 8.3% 10.5% 12.4% 18.9%
Fuego vs Pachi 19×19 42.1% 57.5% 65.9% 75.5%

C. More Compute Nodes for More Trees

We increased the number of compute nodes over which to
run MCTS, and so the number of trees that would be built and
contribute to the choice of action. We implemented a parallel
version of the MCTS algorithm with root level parallelism.
Because of the success seen in [31], we used a system of
majority voting to determine the next action to be taken.

At initialization, N copies of the MCTS program are created
on different machines in a cluster. Each compute node keeps
track of the current board state. When asked to produce an
action choice, the compute node runs an MCTS search without
sharing information with the other nodes. When the decision
has been reached, each node reports its decision to the head
node, node 0, but does not implement that decision: it does
not change the state. For each possible action, compute node
0 tallies up the number of nodes on which that action was
chosen. The action with the largest number of votes, one
vote per node, is considered the winner. This decision is then
reported back to each node, which implements that winning
action and changes the state accordingly. At this point, each
compute node should have a copy of the current state and be
ready for the next request.

We ran this majority vote root-parallel version of MCTS
using an increasing number of compute nodes and recorded
the changes in the winning rates.

In the experiment with more compute nodes to create
multiple trees we played six tournaments on a 9×9 board.
In each tournament both Fuego and Pachi were run on single
threads with 15 second time limits. The number of compute
nodes Fuego was allowed to use, and hence the number of
trees it built, was varied with 1, 8, 16, 32, 64 and 128
nodes respectively in the tournaments. We then repeated these
tournaments using the no RAVE version of Fuego against
Pachi on a 9×9 board and using Fuego against Pachi with
the games played on a 19×19 board.

Tournaments played between the root parallelized versions
of Fuego with an increasing number of compute nodes against
the single-threaded Pachi are shown in Table III. In each case,
the major jump in strength is from one to eight nodes.

IV. COMPARING PARALLELIZATION TECHNIQUES

We compare the effects of these techniques in our Fuego
vs Pachi tournaments in Fig. 2. As the time or number of
threads or number of trees increases, shown in log scale on
the x-axis, all these techniques increase their strength from a

TABLE III
FUEGO WIN RATES WITH INCREASING NUMBER OF COMPUTE NODES FOR

A 9×9 GO BOARD

Number of Nodes 1 8 16 32 64 128
Fuego vs Pachi 9×9 53.2% 62.8% 66.1% 69.0% 68.5% 69.7%
Fuego (no RAVE) vs Pachi 8.3% 22.8% 25.8% 28.4% 22.8% 24.1%
Fuego vs Pachi 19×19 42.1% 62.3% 65.8% 64.5% 67.9% 66.8%

baseline value. Increasing the number of threads using a lock-
free implementation works the best (at 8× level compared to
time the p-value is 0.02887), but is limited by the number of
CPUs in a shared memory architecture. Increasing the number
of compute nodes scales almost as well as increasing the time,
but both of these see diminishing returns between the 8 and
32 multiplier levels.
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Fig. 2. Comparison of Fuego winning rates vs Pachi for increasing numbers
of compute nodes, numbers of threads, and increased time MCTS for a 9×9
Go board. Notice that the x-axis is in log scale.

We compare these effects again in our Fuego (no RAVE)
vs Pachi tournaments shown in Fig. 3. In this case the best
result is achieved by increasing the number of compute nodes
(at 8× level compared to threads the p-value is 0.01823), but
appears to maximize at 32 nodes.

10

20

30

1 2 4 8 16 32 64 128
Time Multiplier / Number of Threads / Number of Nodes

W
in

ni
ng

 R
at

e 
(%

)

Nodes

Threads

Time

Fig. 3. Comparison of Fuego (no RAVE) winning rates vs Pachi for increasing
numbers of compute nodes, numbers of threads, and increased time MCTS
for a 9×9 Go board. Notice that the x-axis is in log scale.

Finally we compare these three techniques when used on
the larger and more difficult 19×19 board (see Fig. 4). They
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appear similar to the 9×9 results except the more time results
stop improving after the 4 multiple rather than the 8 multiple.
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Fig. 4. Comparison of Fuego winning rates vs Pachi for increasing numbers
of compute nodes, numbers of threads, and increased time MCTS for a 19×19
Go board. Notice that the x-axis is in log scale.

V. DISCUSSION AND FUTURE WORK

We surveyed the effects of building larger search trees with
more time or more threads along with building more search
trees using root level parallelism. Each of these increases
performance, but have different limitations. Using more time
appears to be limited by memory available to the single-
threaded process. Using more threads appeared to be most
effective but cannot be scaled past the number of cores that
can share memory. Using more trees requires a minimum of
eight nodes in order to have enough votes to pick a winning
move: using fewer trees often results in each answer receiving
one vote. This leaves no way to pick the best action.

The increasing win rates with time appear to run into a
performance ceiling at earlier multiples than previous research
[22] where it was used as a baseline to measure parallelization
improvements. Here increasing time did not provide any
meaningful improvement after the 4 or 8 factor increase. Given
our starting unit of 15-second play, realistic in the domain,
we hypothesize that memory constraints restricted the ability
to find better moves. As search trees get large enough to
consume all allocated memory, some search nodes end up
being pruned from the tree. The rules for pruning depend
on the implementation, but involve the least likely to succeed
branches of the tree. The odd results in our Fuego no RAVE
experiment appear to bear this out. Without RAVE the scores
in the search nodes are so unreliable (they have such a high
variability) that when pruning takes place the algorithm is
unable to adequately distinguish which branches to remove
to free up space.

One interesting result using root parallelization was that
although in 9 × 9 Go performance gains appeared to level
off at 32 compute nodes, in 19 × 19 Go the gains appeared
to continue through 64 compute nodes before leveling off. We
believe this requirement for more compute nodes may be due
to the larger number of good choices available in the larger
game. As the number of voting compute nodes increases, the
likelihood of picking the best move increases, but this may

plateau at some multiple of the available good moves. For
example, if there are only three reasonable moves in a 9× 9
game having 64 instead of 32 voters choosing may not increase
the quality of the pick, but if there are ten reasonable moves
available it may require 64 or more nodes to find one of
the best as many of the votes will be spread out over the
wider selection of reasonable moves. Observing the number
of disparate moves chosen by the nodes at various parts of the
game and with different numbers of nodes available could help
answer this question, and we will include this in our future
research.

VI. CONCLUSIONS AND FUTURE WORK

Compared to previous results which have found that parallel
algorithms under-performed against simply running the algo-
rithm for a longer period of time, we have shown that parallel
algorithms keep pace with or may exceed the performance
gained by increasing the amount of time in the domain of Go.

We believe this is due to both the maturity of the algorithms
now available, and the use of a reasonable baseline time unit
for measurement. Weaker programs have more variability in
their playing strength, and it is deceptively easy to get a
jump in performance when starting from an unrealistically
low time scale. If a quality-improving measure such as RAVE
is available, multiple threads outperform multiple compute
nodes, but the opposite is true when such measures are not
applicable. Future research will explore if this is true in
domains other than Go

Additionally as more cores become inexpensive on shared-
memory machines, it will be possible to determine the num-
ber of lock-free threads at which multiple threading stops
providing gains. Other future work will include looking at
the specific impact of tree pruning on performance and at
exploring possibilities for heterogeneous algorithms in root
parallelism.

ACKNOWLEDGEMENTS

We gratefully acknowledge the Minnesota Supercomputing
Institute (MSI) for the use of their computing facilities, and
Daniel Boley for his support through the project.

REFERENCES

[1] C. Browne et al., “A survey of Monte Carlo Tree Search methods,” IEEE
Trans Comput Intell AI Games, vol. 4, no. 1, pp. 1–43, 2012.

[2] D. Silver, A. Huang et al., “Mastering the game of Go with deep neural
networks and tree search,” Nature, vol. 529, pp. 484–489, 01 2016.

[3] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of Go without human knowledge,” Nature, vol. 550, no. 7676,
pp. 354–359, 2017.

[4] G. Best, O. M. Cliff, T. Patten, R. R. Mettu, and R. Fitch, “Decentralised
Monte Carlo Tree Search for active perception,” in Algorithmic Foun-
dations of Robotics XII: Proceedings of the Twelfth Workshop on the
Algorithmic Foundations of Robotics, K. Goldberg, P. Abbeel, K. Bekris,
and L. Miller, Eds. Springer International Publishing, 2020, pp. 864–
879.
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