
Teams to exploit spatial locality among agents

James Parker and Maria Gini
Department of Computer Science and Engineering, University of Minnesota

Email: [jparker,gini]@cs.umn.edu

Abstract—In many situations, task allocation is highly depen-
dent on the spatial locality of the agents and the tasks. In this
paper we explore task allocation in complex spatial environments,
where the cost of completing a task can vary over time. This
work focuses on a subset of cost functions for tasks that grow
over time and presents the real-time Latest Finishing First (RT-
LFF) algorithm, which strikes a balance between the optimal zero
travel time solution and minimizing the amount of time agents
spend transferring to tasks in different locations. We also present
how spatial knowledge can be used to infer missing knowledge
in partially observable spaces.

I. INTRODUCTION

Multi-agent systems offer robustness, flexibility, and ef-
ficiency over single-agent systems. The fields of wide-area
surveillance, exploration and mapping, transportation, and
search & rescue are all being enriched by incorporating mul-
tiple agents. In all these examples, not only must agents travel
through the spatial topology of the environment to accomplish
their goals, but the topology itself can effect how the agent’s
goals can change over time. However, the benefits of multi-
agent systems increases the burden on coordination.

In dynamic environments where the set of agents might
change over time, as agents fail or new agents are added to
the system, and where new tasks can appear and old tasks can
expire, task allocation has to be done in real-time to handle the
uncertainty as to location, completion requirements and size of
tasks. Also agents travel through unknown and possibly unsafe
areas to reach the tasks. Unlike most task allocation problems
[1], we focus on domains where the amount of resources that
a task requires changes over time.

We present the Latest Finishing First (LFF) algorithm for
task allocation in domains where the cost of tasks increases
with time (Section IV). These types of problems can occur
in nature, such as invasive species or forest fires, where if
a task is not completed quickly, then it can become difficult
or impossible later. We then extend our LFF algorithm to a
real-time heuristic version for partially observable dynamic
environments where new tasks can appear as time progresses
(Section V). Finally, we propose a novel way of incorporating
partial information in RoboCup Rescue to accurately predict
a model for clustered tasks (Section VI), and we evaluate
experimentally our work against other methods (Section VII).

II. RELATED WORK

Multi agent task allocation is well known to be an NP hard
problem, giving rise to many different techniques for finding an
approximate solution. One example is swarm robotics, where
agents often use threshold based methods to individually assess
the constraints and their ability to complete each task. If an
agent’s abilities surpass a threshold on the constraints, then

the agent allocates itself to the task. If not, the agent passes
the information to other agents. An example is [2], which uses
distributed constraint optimization (DCOP) as a basis for task
allocation. A comparison between DCOP and other swarm
techniques is provided in [3]. In comparison, market inspired
auction methods typically require more communication and
are more centralized. Zhang et al. [4] present an auction based
approach to form executable coalitions, allowing multiple
agents from different locations to reach a task and compete
it efficiently. Recently, decentralized applications have been
designed that add flexibility to the system (e.g., [5]). Our work
strikes a balance between swarm and centralization, each agent
is directed to an area by a central authority, but upon reaching
the destination, agents act on their own individual abilities.

Other approaches have been developed, such as modeling
task allocation as a potential game [6]. Sandholm et al. [7]
present a generalized coalition formation algorithm which pro-
duces solutions within a bound from the optimal via pruning
a subset of the search tree. Dang et al. [8] improve on it
by further pruning, but the search time is still exponential.
The work in [9] focuses on tasks that require more than
one agent to do them, while simultaneously trying to use
efficiently the agent’s resources and time. Our approach also
assumes multiple agents are required, but we also allow the
requirements of tasks to change over time.

Our work specifically applies to urban search & rescue
using the RoboCup Search and Rescue Simulator [10], pro-
viding simulations based off street and building maps of real
cities. Emergency situations are very time critical and often
lacking in information, as demonstrated by [11]. Most notably,
when the emergency occurs agents are spatially spread out in
a disorganized fashion and must quickly coordinate and form
teams to accomplish tasks.

III. PROBLEM DESCRIPTION

Our problem is task allocation for multi-agent systems,
where agents must travel on designated pathways. The agents
are scattered at random initially and need to converge on
tasks. These tasks require more work to be completed as time
progresses, which necessitates multiple agents being allocated
to them. Thus, simply going to the nearest task can cause
overallocation and other tasks might grow out of control.

We denote the set of homogeneous agents by A =
{a1, . . . , a|A|} and the set of tasks by B = {b1, . . . , b|B|}.
The set of assignments of agents to a task is denoted by
N(t) = {n1(t), . . . , n|B|(t)}, where ni(t) is the set of agents
from A that are assigned to task bi at time unit t. An agent
ai ∈ A can only work on one task, bj , at a time and at most
one assignment nj(t) ∈ N can contain ai. All agents and tasks

have a spatial location in the environment and the travel time
between two locations is assumed to be computable.

Each agent provides the amount of work w per time unit
towards the task it is assigned. Every task bi ∈ B has a cost
function f ti : (f t−1i , |ni(t− 1)|)→ R with the relationship:

f t+1
i (f ti , |ni(t)|) = f ti (f

t−1
i , |ni(t− 1)|) + ∆f ti (1)

where ∆f ti has the form:

∆f ti = gi(f
t
i)− w × |ni(t)| (2)

and gi : R>0 → R>0 is a monotonically increasing function
with initial value f0i . For simplicity, we will treat f ti as
a value rather than a function if the values of f t−1i and
|ni(t − 1)| are clear in the context. This means f ti is strictly
monotonically increasing when gi(f

t
i) > w × |ni(t)| and

strictly monotonically decreasing when gi(f ti) < w × |ni(t)|.
When the cost function f ti reaches or passes zero at some time
ti(0), the task is considered complete and is removed from the
problem. In our problem the cost of completing a task increases
over time, therefore the goal of task allocation is to minimize
the time the last task is completed.

IV. LATEST FINISHING FIRST

With perfect knowledge about how a task grows, we can
predict what allocation of agents would be ideal. This ideal
solution is not reachable due to travel time being required to
reach tasks, but even in this ideal setting task allocation is not
as simple as it seems. Even neglecting the spatial limitations,
when tasks grow over time some allocations of agents are
better than others. Taking into account the spatial limitations,
we derive the Latest Finishing First (LFF) algorithm, which
we present after first describing properties of the dynamic cost
functions we will use. Throughout this section, we assume that
time t is sufficiently small to enable us to treat t as continuous
and we assume a solution exists. TT (x, y) is defined to be the
travel time between location x and location y.

A solution is found at some time ts if and only if all bi ∈ B
have f tsi = 0. Using (2), we can write the previous equation
as f0i +

∑
t<ts

∆f ti = 0. Since this is true for every bi ∈ B a
solution is reached if and only if:∑

bi∈B

(
f0i +

∑
t<ts

(
gi(f

t
i)− w × |ni(t)|

))
= 0 (3)

Note that
∑
bi∈B f

0
i is a constant and

∑
bi∈B

∑
t<ts

w ×
|ni(t)| = p̄ × ts × w × |A|, where p̄ is the overall percent
of time the agents are working. We can then rewrite (3) as:∑

bi∈B

f0i +
∑
bi∈B

∑
t<ts

gi(f
t
i)− p̄× ts × w × |A| = 0 (4)

This means that
∑
bi∈B

∑
t<ts

gi(f
t
i) is the amount of work

added to the system from time t = 0, which we call Rts or the
global regret. We define ∆Rt = Rt −Rt−1 =

∑
bi∈B gi(f

t
i).

Theorem 1: Minimizing Rts is an optimal solution when
TT (x, y) = 0 ∀x, y.

Proof: When TT (x, y) = 0 ∀x, y we can assume p̄ =
1, since agents can instantly move between tasks. Suppose

a better solution f̂ ti exists, then R̂tŝ =
∑
bi∈B

∑
t<tŝ

gi(f̂
t
i)

where Ŝ < S with R̂tŝ > Rts . Rewriting (4) for Rts yields:

Rts = w × |A| × ts −
∑
bi∈B

f0i

Solving (4) for R̂tŝ in terms of ts:

R̂tŝ + w × |A| × (ts − tŝ) = w × |A| × ts −
∑
bi∈B

f0i

Using our two assumptions, we can then write:

Rts + w × |A| × (ts − tŝ) < R̂tŝ + w × |A| × (ts − tŝ)

which implies that Rts satisfied (3) at time tŝ. This is a
contradiction.

Theorem 2: Minimizing ∆Rts for every time unit t also
minimizes the global regret, Rts , when 1. TT (x, y) = 0 ∀x, y,
2. gi = gj ∀i, j, 3. limx→0+ g(x) = 0, and 4. ∂2

∂t2 gi(f
t
i) ≥ 0.

Proof: Since gi = gj ∀i, j, we will denote gi with g
to simplify notation. Assume there exists a better solution
F̂i = {f̂1i , f̂2i , . . .} which differs from the greedy minimiza-
tion Fi = {f1i , f2i , . . .}. This means that at some time td
the better solution must assign agents differently than the
greedy solution. By definition the greedy minimization is a
minimum ∆Rtd at time td, thus ∆Rtd ≤ ∆R̂td , where
∆R̂t =

∑
bi∈B g(f̂ ti). After time td, the greedy minimization

will allocate agents exactly in the same way as the better
solution and because TT (x, y) = 0 ∀x, y this is possible
from any configuration. Next we prove by induction that∑
bi∈B f

t
i ≤

∑
bi∈B f̂

t
i . At time td,

∑
bi∈B f

td
i =

∑
bi∈B f̂

td
i

combined with the fact that fxi = f0i +
∑
t<x ∆fxi along with

Fi is a greedy choice implies
∑
bi∈B f

td+1
i ≤

∑
bi∈B f̂

td+1
i ,

which is the base case in the induction. If we write f̂ ti = f ti+ci,
then we can conclude

∑
bi∈B ci ≥ 0. We can then compute

for f t+1
i as:

f t+1
i = f ti + g(fi)− w × |ni(t)|

and f̂ t+1
i as (ni(t) is the same since assignments are copied):

f̂ t+1
i = (f ti + ci) + g(fi + ci)− w × |ni(t)|

If we use the monotonicity of g, then we can see g(fi+ ci) =
g(fi) + δi × ci for some δi > 0. This means f̂ t+1

i − f t+1
i =

ci + δi × ci or rearranging: f t+1
i + ci + δi × ci = f̂ t+1

i . Since
∂2

∂t2 gi(f
t
i) ≥ 0 we know δi ≥ δj when ci > cj ∀i, j. Thus,∑

bi∈B δi × ci ≥ 0 since
∑
bi∈B ci ≥ 0. We can conclude

that
∑
bi∈B f

t+1
i ≤

∑
bi∈B f̂

t+1
i , the inductive step. Using a

similar logic to extracting the definition of ∆Rt from (3), we
drop

∑
bi∈B f

0
i and

∑
t<ts

∑
bi∈B w×|ni(t)| from both sides

and get:
Rts ≤ R̂ts

where R̂ts =
∑
bi∈B

∑
t<ts

g(f̂ ti). This is a contradiction to
the fact that F̂ is a better solution, therefore minimizing ∆Rt
at every time t also minimizes Rts .

Before concluding the proof, we must consider the cases
when F completes a task that F̂ did not and vice versa. If F
completes a task that F̂ did not, then the greedy minimization

will assign agents from an already completed task to a random
unfinished tasks. This does not invalidate any of the inequali-
ties above. When F̂ completes a task that F has not, this task
will never be completed by direct mimicry from the greedy
minimization solution, instead this will be finished by the
random assignment described above. There is no discontinuity
in the sums since we require limx→0+ g(x) = 0, so when a
task is completed it simply disappears from the equations.

Unfortunately, the assumption that TT (x, y) = 0∀x, y is
rather strong. When agents require time to move between
different task clusters, every time an agent is allocated to a
different task, p̄ decreases in (4). To address this issue, we
introduce Latest Finishing First (LFF) in Algorithm 1. The
inspiration behind LFF is to create a stable assignment that will
try to maintain p̄ close to 1 to maximize the overall output of
agents in the system. To do this, each task is prioritized and the
closest agent to the highest priority task is assigned to that task.
After an agent has been assigned, the priority of the highest
priority task is recomputed and this process is repeated.

The priority of a task is the expected time to complete that
task, so tasks that take longer have a higher priority. Since gi
increases work needed to complete a task, all tasks initially
start out never completing (or ti(0) = ∞, ∀i). In case of
ties, the task which has the largest current cost is allocated
the closest agent. This causes the completion times of all the
tasks to be as balanced as possible, which in turn reduces the
amount of travel needed for agents.

Algorithm 1 Latest Finishing First
1: while ∃ai ∈ A and @j such that ai ∈ nj(0) do
2: Find bi for argmax

bi∈B
ti(0) {Task bi ends last}

3: if ∃bi, bj where ti(0) =∞ and tj(0) =∞ then
4: Find bk for argmax

bk∈B
f0k with tk(0) =∞

5: Assign argmin
aj∈A and aj unassigned

TT (aj , bk)

6: else
7: Assign argmin

aj∈A and aj unassigned
TT (aj , bi)

8: end if
9: end while

V. REAL-TIME LATEST FINISHING FIRST

This section extends LFF outlined in Algorithm 1 to a de-
centralized real-time solution for dynamic partially observable
environments in Algorithm 2. The LFF algorithm assumed all
the tasks were known initially, but without this assumption
it becomes impractical to try and minimize agent movement.
When new tasks are discovered, it is crucial that agents are
reallocated to the new tasks. The Real-Time Latest Finishing
First (RT-LFF) algorithm assumes that new tasks are identified
from an oracle, and when a new task is identified agents are
reallocated to try finish all tasks at the same time.

When the task allocation first starts, the normal LFF is
used to compute the assignments of agents. While time is
progressing, if a new task, bj , is identified then RT-LFF uses
a greedy heuristic to reallocate agents to bj . Tasks are ordered
based on spatial proximity to bj , and tasks that are closest to
the new task attempt to reallocate agents first. Let t−i (0) be the

time for task bi to complete with one fewer agent and t+j (0)
be the time for task bj to complete with one additional agent
including the delay from the agent traveling. An agent is only
reallocated from bi to bj if t−i (0) < t+j (0), namely a greedy
heuristic which only transfers agents if the original task will
still finish first even after reallocating an agent.

If the oracle informs all agents of the new task, each agent
can compute this algorithm and agree on which agents should
transfer without any communication. In the case where agents
have limited computational power, a single more powerful
agent at or nearby each task could direct this algorithm. If the
oracle only informs the agents closest to the newly identified
task, these agents would run the RT-LFF algorithm, since they
are the highest priority, and after any assignments pass on
updated information to the next closest agents.

Theorem 3: RT-LFF has at most |B| − 1 misallocated
agents from LFF at any time assuming zero travel time.

Proof: We show that using RT-LFF a task b1 will never
be assigned more than one agent when using LFF by breaking
it down into two cases. First, assume that we have two tasks
b1 and b2 and let t++

j (0) be the time task bj is completed with
two additional agents assigned to it and similarly t−−i (0) be
the time task bi is completed with two less agents assigned to
it. Without loss of generality assume t2(0) < t1(0). If RT-LFF
did not reallocate an agent from b2 to b1, then t−2 (0) > t+1 (0).
We notice that reallocating two agents from b2 to b1 means
t−−2 (0) > t−2 (0) and t++

1 (0) < t+1 (0), which is a contradiction
to the RT-LFF algorithm since b1 would allocate an agent back
to b2 since t−2 (0) > t+1 (0).

Next we show that a task b1 would never receive a single
agent from more than one cluster. The argument is similar to
the first part, only it now involves task b3. If b2 and b3 did not
reallocate an agent to b1 under RT-LFF, then t+1 (0) < t−2 (0)
and t+1 (0) < t−3 (0). Suppose LFF did have both b2 and b3
reallocate an agent to b1, then without a loss of generality
assume t−2 (0) < t−3 (0). Then t++

1 (0) < t+1 (0) < t−2 (0) <
t−3 (0). This is a contradiction to how LFF works. Currently
t−3 (0) is the last finishing and t++

1 (0) is the fastest finishing,
and from the equation above if b1 gave back an agent to b3
then t+1 (0) < t−2 (0). This means the transfer back has reduced
the time of latest finishing task, thus under RT-LFF b1 will be
not allocated an agent from more than one cluster compared
to LFF. This implies a task in RT-LFF cannot have more than
one agent under the allocation of LFF for each time step. The
worst case is when |B| − 1 tasks have one agent fewer than
LFF’s allocation with the last task over allocated.

Algorithm 2 Real-Time Latest Finishing First
1: Use LFF for initial allocation
2: while t < ts do
3: for bi ∈ B do
4: if ∃bi 6= bj where t−i (0) < t+j (0) with argmin

bi
TT (bi, bj) then

5: Reassign ak ∈ Ni(t) to bj with argmin
ak

TT (ak, bj)

6: end if
7: end for
8: end while

VI. MODELING COST OF TASK COMPLETION FOR
EXTINGUISHING FIRES

In this section we focus only on the subproblem of dealing
with fires in RoboCup Rescue and present a way of modeling
how fire spreads and assigning agents to fires. The RoboCup
Rescue simulator is designed for urban search & rescue after an
earthquake, which fires to start in buildings. The environment
is large (see Figure 1) with upward of 100 agents. The full
simulator uses heterogeneous agents, but for this work we
focus only on the agents that can extinguish fires, i.e. firetrucks.
The other agents simulate the oracle and constantly search for
new fires, and relay the location and estimated size when a
new fire is found.

Fires are the most dangerous hazard in RoboCup Rescue.
While a single building on fire can be dealt with quickly,
if too many buildings ignite the fire becomes very difficult
to tackle both due to its size and re-ignitions of buildings.
We present two novel contributions. First, fire clusters are
modeled as single tasks that have a cost which increases as
time passes. Second, we present a method to estimate the
number of buildings on fire in a cluster when only a few
buildings from that cluster have been observed. The RT-LFF
algorithm is then shown to out-perform more naı̈ve heuristics.

A. Growth of Fire Clusters

Each building on fire individually has a chance to ignite
nearby buildings based primarily on distance. This means the
rate of growth, g, is proportional to the number of current
buildings on fire, x:

(a) δx
δt = g × x (b) x = C × eg×t (5)

Ten simulations with a single fire starting in various locations
were used to empirically evaluate g to be roughly 0.0687. This
is a first order linear differential equation that can be explicitly
solved by separation of variables to yield the well known
exponential growth function given by (5b). A constant C is
introduced by integration to satisfy the initial conditions. Eq.
(5a) can be modified to incorporate fire agents extinguishing
effect on a fire. If there are n fire agents assigned to a fire
cluster that each extinguish at a rate w, then the rate of growth
of a fire of a fire cluster will be reduced by n× w:

δx

δt
= g × x− n× w (6)

The constant w was also empirically calculated to be about
0.184 by running ten simulations with a single fire agent and
tracking the total number of fires extinguished after 100 cycles.
Matters are further complicated since the intensity of the fire
has an effect on the amount of time it takes to extinguish,
thus, w is biased higher than the real value. Agents can
extinguish small fires much more quickly than larger fires,
which often causes the agent to repeatedly put out small fires
as they are reignited from nearby larger fires. Nevertheless,
w gives a reasonable estimate for the agent’s capabilities as
shown in Section VII. Since both n and w are constants,
this still is a linear differential equation which simplifies to
a slightly modified exponential growth function shown in (7).
This satisfies all the conditions in Theorem 2 except the zero
travel-time assumption.

x =
n× w
g

+ C × eg×t (7)

Fig. 1. Pink and blue buildings’ average position determine the two points
on the red fire cluster circle.

B. Estimating the Size of a Cluster

Clustering is commonly done to group similar objects into
a single abstract object to reduce the complexity and to enable
a macro-level analysis. Running a probabilistic model for every
single building to predict the fire spread would require a large
amount of computation and have a low probability for every
possible state. Furthermore, the model will change based on
which fires agents are assigned to extinguish, so ideally the
model should be recomputed after every assignment. This
method will not scale and is too complex for a scenario in
which a large amount of information is already missing. For
that reason fires are abstracted into clusters and the macro-level
behaviors of these clusters are analyzed instead.

The lack of full information in RoboCup Rescue makes
clustering difficult and requires some assumptions to be made.
If a large number of agents were available to circle around the
fire cluster and monitor its growth, then direct clustering using
(6) with current known information would be a good estimate.
However, normally agents are not able to dedicate this much
time to information gathering, so it is necessary to come up
with a way of estimating the size of a fire cluster while only
being able to see a few buildings. To do this we need to
make one assumption: on average fire propagates equally in
all directions.

From this assumption, a circle is a good estimate of the area
on fire. This circle is identified by two points on its edge in the
following manner: First, the most recently seen building and
the 9 closest burning buildings (or all known nearby burning
buildings if fewer than 9 are on fire) are included in a set. Then
k-means clustering with k = 2 is run to find two subsets. The
average position of each subset is then used as the two points
to fit the circle upon, shown in Figure 1.

The method for finding the radius can be extended from the
exponential model given in Section VI-A. If x is the number
of buildings on fire, then we can estimate π × r2 = A × x,
where r is the circle radius and A is the average building area
(estimated over all buildings on the map). This can be rewritten

as: x = π×r2
A which can then be substituted into (5a) yielding:

δr

δt
=
g

2
× r, and r(t) = D × e

g
2×t (8)

To overestimate the radius of the circle, we initially assume
the fire started at the beginning of the simulation. For example
if a fire is found at time t = 50, we would assume this fire
started as a single burning building, D = 1, at time t = 0.
Thus the radius would simply be r(50). With a radius and
two points on a circle, there are two possible circles to choose
from. The circle with the highest ratio of burning buildings to
total buildings is the one chosen as the fire cluster.

Since this radius is the worst case estimate, we should
incorporate current information to refine the estimate. For all
buildings in the circle, we check their status at the last time
viewed. If a building has never been seen, we neglect it. If there
is a conflict between past information and the assumption that
the fire started at time t = 0, we assume the center of the circle
is still the same and recompute D for a radius that satisfies the
information. This new initial condition gives a smaller radius to
be fit on the two circle points and this time we choose the circle
whose center was inside the old overestimated circle. This
process is repeated until there is no conflicting information.

C. Assignment to Fire Clusters

The goal of assigning agents to clusters is to extinguish
fires as quickly as possible. Eq. (7) can be solved for t when
x = 0 as shown in (9). If the constant C is nonnegative, then
the fire is growing faster than the n agents can extinguish it.
Thus the fire will grow indefinitely and t(0) is set to∞. When
C is negative, (9) will be computable and will give the time
when the fire will be fully extinguished.

t(0) = (ln
n× w
g ×−C

)/g (9)

Algorithm 3 shows the implementation of the RT-LFF
algorithm for the case when g(x) = x in RoboCup Rescue.
Normally in RoboCup Rescue no fire clusters are known
initially, so when the first fire cluster is found all agents are
assigned to that cluster. When a new fire cluster is found,
multiple agents may need to be transfered from the old clusters.
This is why any time an agent was transfered, we should run
the algorithm again until no more useful transfers exist.

The order in which the fire clusters are labeled is important,
since every cluster first attempts to transfer an agent to b1.
When a new fire is discovered, it will initially have no agents
assigned and will need to receive agents from other clusters.
Since this fire cluster is in the greatest need of agents, it is
assigned b1. All other clusters are then reordered based on
their distance from cluster b1, the newly discovered fire. Thus
b2 will be the closest fire cluster to b1, b3 the second closest
and so forth. This helps reduce the travel time TT (i, j) in
order to more efficiently use fire trucks.

VII. RESULTS

In this section, we show the validity of our exponential
model and RT-LFF by empirical evaluation in RoboCup Res-
cue. First, we show how the exponential model accurately fits
the real fire growth data. Then the model is used to estimate

Algorithm 3 RT-LFF for g(x) = x
Require: Ci, Cj , ni, nj , w, g, t {Ci is the integration constant

and ni(t) is the number of agents on task bi, Cj and
nj correspond to similar things on task bj , w is the task
completion rate of agents, g is the growth rate of fires and
t is the current time.}

1: change← true
2: while change do
3: change← false
4: for i = 1 to k do
5: t−i (0) ← (ln (ni(t)−1)×w

g×−Ci
)/g {Compute the time to

extinguish fire i with one less agent than it currently
is assigned.}

6: for j = 1 to k do
7: x̂j ← nj(t)×w

g + Cj × eg×(t+TT (i,j)) {Before
the agent from fire cluster i arrives to cluster j,
compute the effect of the agents.}

8: Ĉj ← (x̂j − (nj(t)+1)×w
g)/(eg×(t+TT (i,j))) {Once

the agent from cluster i arrives, we need to recom-
pute Cj .}

9: t+j (0) ← (ln
(nj(t)+1)×w
g×−Ĉj

)/g {Finally compute
when fire j is fully extinguished.}

10: if t−i (0) < t+j (0) then
11: Transfer an agent from i to j
12: ni ← ni − 1
13: nj ← nj + 1
14: change← true
15: end if
16: end for
17: end for
18: end while

the time a fire is extinguished and compared against the real
time it took for agents to extinguish the fire. Finally RT-LFF is
compared against a random assignment method and a closest
distance greedy heuristic.

A. Model Fitting

A single fire was tracked over 5 simulations on two maps
(Virtual City and Berlin) and the actual number of fires is
compared against the exponential function best fit in Figure 2.
The exponential function slightly under estimates the fire
cluster between t = 40 and t = 60 but is otherwise fairly
accurate.

Fig. 2. Average fire spread estimated by best exponential fit to data.

The estimate of fire cluster size described in Section VI-B

was tested by assigning a static amount of fire trucks to
extinguish the fire cluster and comparing the estimated and real
extinguish time. The estimated size of the cluster is recomputed
every time step and increases in accuracy as a larger number
of buildings in the cluster is observed. For worst case analysis
the real extinguish time is compared against the estimated
extinguish time when the fire cluster is first discovered.

A histogram of 54 fires extinguished with the normalized
error is shown in Figure 3. The error in estimation had a mean
of 0.0268 and standard deviation of 0.2526. The distribution
is close to Gaussian and fairly unbiased at overestimating
or underestimating. Some error may be due to imprecise
empirically derived constants in the modeling equation or a
lack of incorporating the intensity in the model.

Fig. 3. Relative error of extinguish time when a cluster is first discovered.

B. Performance Comparison of Different Allocation Strategies

Each map was run with 5 simulations and the time the last
fire was extinguished is reported in Figure 4. In each case,
the oracle is simulated by a fixed number of agents randomly
searching the environment for new tasks and broadcasting the
location of the tasks when they are discovered. The fixed
number of agents searching the environment do not interact
with any of the tasks directly. RT-LFF method does much
better in Virtual City (8.3% better than the closest heuristic
approach) than in Berlin (4.0% better). This is probably due to
Virtual City being an artificial map with similar building sizes
and a compact building arrangement. Berlin has open spaces
where there is a river or park that throws off the accuracy of
the circle estimating method. There is also a larger discrepancy
in building size in Berlin which can again effect the circle
estimate. If a large building is chosen for one of the two
clusters to estimate the two points on the circle, the buildings
in this cluster will be more spread out and would give an
inaccurate point estimate since the center of the large building
is far away from the others. The random method performs
poorly on both maps, due to lack of cooperation.

VIII. CONCLUSIONS AND FUTURE WORK

This paper addresses task allocation with multiple agents,
where each task has a cost that changes over time. This
adds a substantial amount of complexity and requires more
coordination between agents. We limited the investigation of
dynamic cost tasks to a general family of functions in order
to reduce the complexity. We presented the Latest Finishing

Fig. 4. Average finish time (no fires left) per map for each configuration.

First algorithm, which attempts to minimize the time when
the last task finishes. We documented properties exhibited by
dynamic tasks and went on to present a real-time solution,
which approximates LFF for partially observable spaces. The
algorithms currently work only for homogeneous agents with
identical abilities. We hope to expand the current model to
include other agent types. The choice of metric for evaluating
an algorithm for dynamic cost functions is also an open
question, especially when no solution exists. Completing fewer
tasks at the expense of ignoring others might be beneficial
more than keeping the current total cost low.

REFERENCES

[1] S. D. Ramchurn, M. Polukarov, A. Farinelli, C. Truong, and N. R.
Jennings, “Coalition formation with spatial and temporal constraints,”
in Proc. Int’l Conf. on Autonomous Agents and Multi-Agent Systems,
2010, pp. 1181–1188.

[2] P. Scerri, A. Farinelli, S. Okamoto, and M. Tambe, “Allocating tasks in
extreme teams,” in Proc. Int’l Conf. on Autonomous Agents and Multi-
Agent Systems, 2005, pp. 727–734.

[3] P. R. Ferreira, Jr., F. dos Santos, A. L. C. Bazzan, D. Epstein,
and S. J. Waskow, “RoboCup Rescue as multiagent task allocation
among teams: experiments with task interdependencies,” Journal of
Autonomous Agents and Multi-Agent Systems, vol. 20, no. 3, pp. 421–
443, 2010.

[4] Y. Zhang and L. E. Parker, “Task allocation with executable coalitions
in multirobot tasks,” in Proc. IEEE Int’l Conf. on Robotics and
Automation, 2012.

[5] M. Nanjanath, A. Erlandson, S. Andrist, A. Ragipindi, A. Mohammed,
A. Sharma, and M. Gini, “Decision and coordination strategies for
robocup rescue agents,” in Proc. SIMPAR, 2010, pp. 473–484.

[6] A. Chapman, R. A. Micillo, R. Kota, and N. Jennings, “Decentralised
dynamic task allocation using overlapping potential games,” The Com-
puter Journal, 2010.

[7] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohmé,
“Generation with worst case guarantees,” Artificial Intelligence, vol.
111, no. 1–2, pp. 209–238, 1999.

[8] V. D. Dang and N. R. Jennings, “Generating coalition structures with
finite bound from the optimal guarantees,” in Proc. Int’l Conf. on
Autonomous Agents and Multi-Agent Systems, 2004, pp. 564–571.

[9] X. Zheng and S. Koenig, “Reaction functions for task allocation to
cooperative agents,” in Proc. Int’l Conf. on Autonomous Agents and
Multi-Agent Systems, 2008, pp. 559–566.

[10] H. Kitano and S. Tadokoro, “RoboCup rescue: A grand challenge for
multiagent and intelligent systems,” AI Magazine, vol. 22, no. 1, pp.
39–52, 2001.

[11] Álvaro Monares, S. F. Ochoa, J. A. Pino, V. Herskovic, J. Rodriguez-
Covili, and A. Neyem, “Mobile computing in urban emergency situa-
tions: Improving the support to firefighters in the field,” Expert Systems
with Applications, vol. 38, no. 2, pp. 1255 – 1267, 2011.

