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Abstract. We examine how robots using only laser range data and the
ability to communicate within a certain radius may disperse in a complex
unknown environment. We demonstrate an algorithm which attempts
to maximize coverage while minimizing loss of connectivity during de-
ployment. We demonstrate using Player/Stage that this algorithm can
reliably achieve significant coverage over a variety of environments.

1 Introduction

Consider a domain such as a cave or a disaster area in which the layout is
unknown ahead of time and where we need to create a wireless network in
order to facilitate the deployment of men and material, or gather and transmit
sensor information. Automated methods to accomplish this are highly desirable
since not only they avoid placing humans in harm’s way, but they allow human
resources to be focused, either elsewhere or more precisely with information
gathered by such a network.

Robot swarm dispersion refers to a broad class of problems in which a col-
lection of robots starts out in a relatively compact space and must spread out in
order to cover as much area as possible while preserving connectivity of the net-
work. Different applications typically have different requirements. For example,
robustness to node failure may be important in a tracking application such as
radar, but less important in other applications. Metrics for the effectiveness of
dispersion involve evaluating the amount of coverage achieved at a certain time,
the rate of coverage increase over time, the time needed to deploy the network,
robustness to node failure, and degree of overcoverage, among others.

Our robots lack GPS, maps, compass, or any form of absolute localization,
but do have access to laser range-finders and wireless communication. We use
a model-free approach where robots achieve coverage in a distributed fashion
and do not attempt to build a map of the environment. We build upon artificial
potential fields [I] and use connectivity information in order to preserve network
connectivity while achieving dispersion. Our approach is empirical due to the
extreme difficulty of providing theoretical guarantees on the performance of such
systems. We present two major contributions:

1. a novel algorithm to enable dispersion of a group of minimally equipped
robots in an unknown environment. The algorithm uses leader-election, hop
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counting, and potential fields to maximize coverage while maintaining the
robots within communication range of each other.

2. extensive experimental results obtained in simulation in a variety of envi-
ronments. The results show the effectiveness of the algorithm in achieving a
significant coverage while maintaining connectivity.

In Section [2| we discuss relevant background literature. We present our al-
gorithm in Section [3] followed in Section [4] by experimental results, where we
measure the performance of our algorithm in four simulated environments. Fi-
nally, in Section [5| we wrap up with conclusions and discussion of future work.

2 Related Work

A common way of achieving robot dispersion is to use artificial potential fields [I]
to repel robots away from obstacles and attract them to their goal. There are
many variations in the way artificial potential fields are used, but all approaches
assume that the relative locations (distance and bearing) of obstacles is available
to each robot through its sensors or communication system.

Dispersion in an unknown environment was tackled in [2] using various be-
haviors [3] to achieve dispersion but without regard for network connectivity.
In [4 robots equipped with 360° laser range-finders use potential fields and a
viscous friction term in order to assure that the network converges. This is sim-
ilar to our work, since we also use 360° lasers and potential fields, but we use
communication and connectivity to prevent disconnection of the network. In [5]
mobile nodes are treated as charged particles with two forces, one repulsive that
tries to maximize coverage, the other attractive that attempts to maintain for
each node not on the boundary at least one neighbor in every 6 sector of com-
munication range. This requires each robot to know the relative position of its
neighbors. There are only convex obstacles to limit the ability of the nodes to
move, so the approach does not work for deploying a network in a building.

To maintain connectivity in [6] robots are deployed sequentially using vari-
ous heuristics to select the place for the next robot. Because of the sequential
deployment the process is very slow. The LRV algorithm [7] uses a single robot
carrying around network nodes in an unexplored area and deploying them. The
deployment is again sequential, one sensor at the time. A dispersion algorithm
that uses virtual pheromones similar to those in [8] enables small robots to ex-
plore [9]. The communication system provides range and bearing to any robot
in the communication range, and the space is open compared to the robot size.

Our work most closely resembles the clique algorithm [I0], which uses wire-
less intensity signals to prevent robots from running out of reach from each
other. Robots share connectivity information with each other so that they can
all agree on which robots should act as “sentries” and not move, allowing the
other robots to move. Additionally, we explored some of the Neighbor-Every-
Theta connectivity ideas in relation to potential fields [405], although we assume
different capabilities which alters how those ideas are applied. Lastly, we use
leader-election and hop-counting to help guarantee connectivity.



Swarm Dispersion via Potential Fields, Leader Election, and Counting Hops 3

3 Dispersion Algorithm

Our algorithm combines artificial potential fields and behaviors with selecting
a leader of the swarm, counting hops from the leader, and sending alarms to
prevent disconnection from the network.

3.1 Artificial Potential Fields

In our artificial potential fields we use three forces. The first, and largest, is a
radial force Fr whose magnitude is determined by distance to obstacles. We
use a combination of linear and exponential magnitudes to determine the force,
as shown in . Here, p is a laser measurement corresponding to a point mass
(obstacle) along a vector, d(p) is the distance of that point mass and m(p) is
the magnitude of the resulting force exerted on the robot by that point, I is an
indicator function which evaluates to 1 if its condition is true and 0 otherwise.

Fr =Y _ —m(p)p, where m(p) = 4/d(p) + Iypy<ie” ™) (1)
peP

The second force is an open force Fo that pulls a robot towards empty
regions. It is generated by a two pass algorithm which first identifies in the
range-finder data consecutive readings above a given threshold and creates an
attractive force towards the largest opening found. Let O be the collection of all
openings and O¢ the vector pointing outwards towards the center of the open
area, then:

FO = gleaé)(|0| X OC (2)

Finally, a tangential force is generated from each pair p and p’ of successive
point readings. There are two candidates with opposite directions. The ambiguity
is broken by using the one with the smaller angle relative to F g. The magnitude
of fr(p,p’) is determined by the closer of the two points, and is smaller than
Fr. The total tangent force Fr is simply this force calculated over every pair of
successive readings, p and p’ :

Fr= Y fr(p,p) (3)

{p.p'}ep
where, as illustrated in Figure

A-B . max(m(A), m(B))

fr(A,B) = A_B| -sign((A —B)oFpg- 1 (4)
Potential fields offer no innate support for preserving connectivity between
robots. Potential fields also lend themselves to a few problems. The first issue
we discovered in our experiments was that the runs were very sensitive to mi-
nor random fluctuations. Despite having the same initial conditions for each

run, the final deployed networks were very different in both positioning for each
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Fig. 1. Tangent force, fr, purple arrow, determined by two point masses A and B.

robot, and frequently in the overall pattern of dispersion, due to unpredictable
multithreading effects. The overall coverage and connectivity did not drastically
change from run to run, but the networks in existence in the end were quali-
tatively different. Another issue is that robots can become stuck in suboptimal
positions, causing the entire system to also become stuck in a suboptimal config-
uration. Less frequent, but still possible, is the occurrence of periodic oscillations
in robot actions. Finally, a small fluctuation in one robot’s position can cause
other robots to adjust their own positions and this can ripple through the entire
network. We found that incorporating a dead-zone in which a robot is less or
non-responsive to changes limits these effects since minor changes in a neigh-
bor’s position will not necessarily force a reassessment, which in turn damps the
effects of minor perturbations on the network as a whole.

3.2 Counting Hops with Alarms

There are two phases in our algorithm. In the first phase the robots select a
common reference point, or leader, and in the second phase they use the leader
to coordinate movement. We assume that each robot has a unique ID and that
the robot with ID 1 has been elected as the leader. To select a leader a O(r)
algorithm is sufficient to find the robot with the lowest ID, where r is the number
of robots. This is achieved by each robot broadcasting the minimum of its own
ID and the lowest ID that it has ever received. After r iterations, the entire
(connected) network has the same ID as the lowest, which becomes the leader.
Once the leader is established, robots count hops to the leader. A neighbor
hop count of zero is assigned to the leader itself. Other robots calculate their own
hop count by measuring broadcasts from neighbors and assigning themselves
a hop count corresponding to the lowest neighbor hop count plus one, as in
equation [5] where Hp is the hop count of robot R, and N are its neighbors:

Hp = min (Hy)+1 (5)

Figure [2| demonstrates how counting hops works. While moving, each robot
should maintain at least one neighbor with a lower hop count. The leader does
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Fig. 2. Counting hops. The leader is Robot 1. Fig.3. Robot 5 stays put since
Robots 2, 3, 4, and 5 are one hop away. Robots 6, it has only Robot 4 as a neighbor
7, 8, and 10 are two hops away. Robot 9 is three with a lower hop count. Robot 4
hops away. has two neighbors (2 and 3) with a

smaller hop count so it may move
and disconnect Robot 5.

not move and provides an anchor for the entire network. This reduces discon-
nections in the network, but it is still possible for robots to drift apart, severing
the network, as shown in Figure [3] To avoid splitting the network, we add alarm
messages. A robot sends an alarm if and only if there are no robots with a lower
hop count within a given threshold of its communication range. We use .8 of the
maximum communication range as the threshold. An alarm has a target — the
target must immediately stop and freeze. This is the algorithm each robot uses:

Algorithm 1 Alarm Counting Hops — Robot State Decision Flow
1: procedure ROBOTDECISIONLOOP
2: if robot has > 1 neighbor broadcasting an alarm signal then

3: State < Freeze

4: else if State == Freeze and robot has > 1 neighbor with lower hops then
5: State < Scatter

6: else if robot has < 1 neighbor with a lower hop count then

T robot sends alarm to neighbor with lowest hop count, then ID.
8: State < Freeze

9: else if robot is receiving an alarm then

10: State < Freeze

11: else if robot is stuck then

12: 20% chance State <+ Backup

13: 20% chance State « RandomTurn

14: 20% chance State «+ Forward

15: 20% chance State + Random

16: 20% chance State « Scatter

17: end if

18: end procedure
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The robot behaviors are:

— Random: robots pick a random turn velocity and forward velocity.

— RandomTurn: robots reorient themselves in place for 5 seconds picking a
random direction to rotate.

— Scatter: robots follow the forces in the artificial potential field.

— Forward: identical to Scatter, except the resultant vector adds a strong pos-
itive vector in the current robot direction. This has the effect of influencing
the robot to continue moving in the direction it is facing.

— Backup: also identical to Scatter, except the resultant vector adds a strong
vector in the opposite direction of the current robot direction.

— Flreeze: is triggered when either a robot is sending an alarm, or another robot
is sending an alarm to it.

The initial behavior for all robots is Scatter. When a collision occurs or a
robot gets stuck, the robot randomly picks another behavior, pursues it for a
few seconds, and keeps on picking a new behavior until it is once again in Scatter.
The exception is Freeze which instructs the robot to cease moving. The leader
stays in Freeze and does not move, thereby providing an anchor for the network.

4 Experiments

We utilized the Player/Stage [I1] robot simulation environment for our exper-
iments using virtual Pioneer robots. Robotic controllers were implemented in
python, using the SWIG python interface to the native C Player/Stage libraries.
We assume that the intensity of the wireless signal is proportional to the inverse
square of distance, with uniform degradation of signal. We also assume robots
can identify the source of a signal by ID, and that a robot’s signal cannot be
perceived outside of its communication radius.

In order to test the generalizability of our approach, we used four different
worlds: cave, autolab, hospital, and house. The first three are distributed with the
Player/Stage project. The last is a custom drawing of a house. The environments
vary in complexity with the cave and autolab environments being the easiest, the
house environment being slightly more difficult, and the hospital being the most
difficult due to the many rooms. The starting locations of the robots also have
an effect on the complexity of the dispersion problem— some arrangements are
easier to disperse from effectively than others. The robots were placed in a tightly
packed area and in such a way that the network is connected. The connectedness
is a requirement for this algorithm to work, as it does not inherently contain any
method for repair, except that a robot can reconnect via random wandering.

4.1 Theoretical Maximum Coverage

Figure [4 shows the minimum overlap of two robots which are in direct com-
munication range. The edges of each of their wireless ranges, depicted by the
circles, must include the other robot, which corresponds to the center of the
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Fig. 4. Robots R and S in communication range

other circle. Now assume that each robot has a wireless range with a radius of r

meters (in our experiments we use r = 2). The minimum region of overlap be-

tween two circles is then twice the shaded area 2(3r%m — %7‘2) = (%r’r— @7"2)

For n robots in a connected network, there must be at least n — 1 robots mu-
tually in connection range (just as when a connected graph has V nodes, there
must be at least V-1 edges). Thus, the minimum possible overlap is necessarily
(n—1)(3rr— ?7“2). It follows then the maximum possible coverage for n robots
is nr? — (n = 1)(3r?m — @rz). Note that this network corresponds to a linear
chain of robots. While this maximizes coverage, it is not necessarily feasible in
any given environments, nor is it even desirable. One severe drawback is the
brittleness of this network — the loss of any robot besides the two on the ends
would fracture the network into two pieces. Nonetheless, it serves as an upper
bound on the achievable coverage.

4.2 Computing Bounds with Incremental Greedy Algorithm

Since the theoretical upper bound is too lose and not achievable, we implemented
an incremental greedy algorithm, similar to the one in [6] but ignoring obstacles.

Algorithm [2] places sequentially each robot to maximize the total network
coverage while keeping connectivity. Robots may be placed at any legal location
within wireless range, including on the far side of walls or other obstacles. The
quantity maximized at each step is the total visual area of the robot swarm.

Note that the results depend on the sampling distance of points to produce
C. We experimented with different values, from every 32 cm down to 8 cm. The
spatial configurations of the networks obtained, shown in Figure[5] are noticeably
different, despite the same initial conditions. Figure[§]shows the results in a more
complex environment. Presumably, continuing to increase the sample rate would
yield limiting behavior, but since the run time is quadratic in the sampling rate,
this limit is expensive to find. Also since the algorithm is greedy, choosing an
initially profitable location might ultimately lead to a suboptimal placement.
With a sampling rate of 8 cm and with optimizations to reduce repeated sampling
it took about 8 hours on a 3.6GHz computer to deploy 24 robots. Once again,
our goal is to find an upper bound and provide a metric of reference.
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Algorithm 2 Incremental greedy algorithm

1: procedure INCGREEDY (R, zo0, o)

13:
14:
15:

R(l) — (iEo, y0)§

> position of first robot

C — Visual Coverage of R(1); W «— Wireless Coverage of R(1); r « 2

while r <= |R| do
Cbest — 07 Areabest —0
for w = (wa,wy) € W do

> for each robot

C.ur < Visual Coverage of R(1), ... ,R(r); Area «— sum(Ceur)

if Area > Areapes: then

Cbest — Ccuﬂ Rbest — (wzawy)
W «— Wireless Coverage of R(1), ..., R(r)

end if
end for

R(7) < Riest; C «— Cpest; r—1r+1

end while
return R, C

16: end procedure

> robot positions are in R and coverage is in C

1 2 i
@
13 24
@ 20 [ ]
L] 23
4 e ®
® :e
19 22
3 18 2
e ®
17 L4
-3 8 -5 -5 -4 3 -2 El el
- 2@
-1
5 -2
®
" 16
®
12 6 @
@ @ 14
= [ ]
11
7 8 g
10 -6
| 4 A A / -
-

01a04 8005 [0,63]

12
®
11
[ ]
2
[ )
8 7
16

19
@
.1
1
5 7 -

10
[ )

5

9

4

20g 7
23 ®
[ ]
22

18l L]

@ 321.
7 2
[ ]
3.

®

00n25.,400s [0,60]1

Fig. 5. Cave— Incremental greedy algorithm for different sample distances. (left) 32
cm, (right) 8 cm. The numbers show the order in which the network was deployed.

Figure [7] shows the coverage obtained after the placement of each successive
robot. Note that although the values are not directly comparable due to differ-
ences in the initial robot placement and the environment, the more constricted
and complex the environment, the lower is the final coverage obtained. Note
that as the complexity of the environment increases, the solution obtained by
the incremental greedy algorithm becomes unrealistic. This is because the in-
cremental greedy algorithm skips over walls and other barriers, which makes it
impossible in reality to replicate the coverage results obtained by this method.
Again though, we use this as a a bound for the coverage obtainable.
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Fig. 7. Coverage of incremental greedy algorithm for increasing numbers of robots in
different environments

4.3 Results on the Counting Hops with Alarms Algorithm

We performed three set of experiments of the Hop Counting with Alarms algo-
rithm. The first was to measure sensitivity caused by minor changes in robot
position, the second to measure performance on different environments, and the
last to measure the effects of reducing the number of laser readings.

1. Sensitivity analysis.. To measure sensitivity to initial positions we com-
pared the results of 20 runs with fixed initial positions against 20 runs with
randomized initial positions of 24 robots in the cave environment. The fixed
positions coverage increases from a starting coverage of 35.372m? to an average
of 81.443m?, After 5 minutes, the robots covered 74.002m?, and 10 minutes,
78.182m2. Thus roughly 83.85% of the expansion is done by 5 minutes, and
roughly 92.92 by 10 minutes. The final total fell well short of the maximum
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Fig. 8. Coverage over time in different environments as percentage of the coverage
achieved in 30 minutes (average of 20 runs).

coverage predicted by the incremental greedy algorithm, obtaining 81.433m? /
156.5972m? in the end, or 52.00% of the possible expansion. Again though, the
incremental algorithm is not actually possible in a real deployment.

With random placement the coverage increases from a starting coverage of

35.372m? to an average of 82.244m?. After 5 minutes, the average coverage was
74.775m?, and 10 minutes, 79.05m?2. Thus 84.07% of the expansion is done by 5
minutes, and by 10 minutes roughly 93.23% of the final coverage is completed.
There was little or no difference between the fixed and randomized cases, which
made us to conclude that at least in terms of aggregate behavior, the algorithm
was not sensitive to minor positional variations.
2. Performance in different environments. The second set of experiments
included twenty runs of each of the autolab, house, and hospital environments
mentioned earlier. The cave and autolab environments were the more forgiving,
while the house and especially the hospital proved more difficult because robots
had to leave or enter rooms to maximize coverage. To emphasize the progress
with time, the results in Figure |8 show the percentage of the coverage achieved
after 30 minutes, since at that point the coverage had plateaued.

In the house environment coverage increased from 37.792m? at the start to
73.995m?2 after 5 minutes. 75.867m? after 10 minutes, and 76.128m? after 30
mninutes. Thus, by 5 minutes, 94.44% of the expansion was complete; by 10
minutes, 99.3% was finished. In this environment, the robots spread out almost
entirely in the original room, and ignored the adjoining room. The final coverage
of 76.128m? was also short of the 160.27m? obtained by the incremental greedy
algorithm. In the autolab environment, the final dispersion achieved a coverage
of roughly 99.343m?2. After 5 minutes, the dispersion was 80.791m?, which rep-
resented 66.96% of the total dispersion; after 10 minutes, the total dispersion
was roughly 88.564m? which was 80.98% of the total dispersion. The hospital
environment highlighted the inadequacies of the algorithm in handling narrow
doorways. The robots in the hallway did manage to spread out, but robots in
the room for the most part never managed to escape the room. Frequently, the
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doorway would become blocked during the course of a run, and that would pre-
vent robots from leaving. The final expansion was on average around 59.205m2.
after 30 minutes, starting from an initial coverage of 30.833. After 5 minutes,
the algorithm covered 51.95m?2, representing 74.43% of the total expansion. After
10 minutes, the average coverage was 57.008m?, which represented an average
of 92.26% of the total expansion achieved by the algorithm. The total expan-
sion that the algorithm achieved, 59.205m? was also well short of the maximum
146.759m? that the incremental greedy algorithm obtained in this environment,
in large part because of the inability to get many robots out of the starting room.

The algorithm had similar characteristics across all environments. Most of the
coverage was obtained in the first 5 to 10 minutes, with very small gains in further
coverage after that point. The algorithm did not do well in complex environments
with doorways and enclosed rooms— the hospital environment in particular was
quite difficult. As mentioned before, robots already in the hallway fared well,
while robots in the room were unsuccessful in leaving the room. Overall the
ratio of coverage of our algorithm to the increemental greedy algorithm is 0.53
for the cave, 0.61 for the autolab, 0.48 for the house, and 0.4 for the hospital.

3. Dispersion with fewer laser measurements. The last set of experiments
was with reduced numbers of laser readings on each robot. We tried several
different conditions, from the 360 measurements we used in earlier experiments
down to 180, 90, 45, 20, and 6. In each case the measurements are equidistant.
The algorithm is fairly robust to a reduction in resolution; only when the number
of laser readings was reduced to 6 was there a significant decline in observed
coverage. However, even in that case, the robots were able to disperse to cover
183.42% of their initial coverage indicating that even very limited robots may
succeed at dispersing, although not as much as with denser sensor readings.
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Fig. 9. Coverage with fewer laser range-finder readings in the cave environment
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5 Conclusions and Future Work

We have proposed a new algorithm for robotic dispersion which uses leader-
election, counting hops, and potential fields to disperse robots and create a
mobile sensor network. We have demonstrated within Player/Stage that this
approach achieves a significant coverage, while maintaining connectivity, requir-
ing robots with only wireless communication and a laser range-finder. We have
also shown that the approach is robust to changes in initial conditions, that it
can be applied effectively to robots with range-finders with significantly reduced
resolution, and that it works in different types of environments.

There are new and exciting directions for future research. A systematic ap-
proach to set values of parameters, such as that provided by a learning algorithm
or an evolutionary approach, would likely improve the performance across en-
vironments. Another extension is to incorporate visual data to enable robots
to move more intelligently. Currently robots do not distinguish robots in their
visual field from other obstacles. This would help deal with some of the issues in
narrow openings and help robots to spread out in a more coordinated fashion.
Finally we would like to implement this approach with real robots.
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