Proceedings of the 2016 IEEE International Conference on
Simulation, Modeling, and Programming for Autonomous Robots
San Francisco, USA, Dec 13-16, 2016

Decentralized Allocation of Tasks with Temporal and Precedence
Constraints to a Team of Robots

Ernesto Nunes!, Mitchell McIntire2, Maria Gini!

Abstract— We propose an auction-based method for a team
of robots to allocate and execute tasks that have temporal
and precedence constraints. The robots use our priority-based
iterated sequential single-item auction algorithm to allocate
tasks among themselves and keep track of their individual
schedules. The key idea is to decouple precedence constraints
from temporal constraints and deal with them separately. In
this paper we demonstrate how the allocation scheme can be
extended to handle failures and delays during task execution.
We demonstrate the effectiveness of our method in simulation
and with real robot experiments.

I. INTRODUCTION

Service robots operating in large areas may have tasks that
are distributed in space and need to be executed within spe-
cific time intervals while satisfying precedence constraints.
Examples include robots in warehouses, hospitals, and of-
fices. Our framework enables autonomous mobile robots
to divide work among themselves, so that the makespan
— the difference between the overall latest finish and the
overall earliest start time — is minimized without violating
any constraint. In this paper we show how robots can handle
delays or failures during the execution of the tasks.

This task allocation problem is NP-hard even in its most
basic form, a single-robot without precedence constraints,
which is a special case of the elementary shortest path prob-
lem with resource constraints [1]. Our problem falls under
the XD [ST-SR-TA = Single-Task robot, Single-Robot task,
Time-extended Assignment] category in the iTax taxonomy
[2]. The cross-scheduling constraints [XD] among robots
induced by precedence constraints make the problem harder:
tasks assigned to a robot might depend on tasks assigned to
other robots. Any delay or execution failure in one robot’s
schedule will affect other robots’ schedules.

For scalability and robustness we use a decentralized
approach, where each robot owns its schedule for the subset
of tasks assigned to it. A schedule is represented as a simple
temporal network (STN) [3], which stores the execution
times. To handle the precedence constraints, we use our
prioritized iterated auction (pIA) [4]. pIA uses a hierarchical
approach to “peel” off layers of the precedence graph. The
tasks in each precedence layer are incrementally allocated
and moved from more to less constrained. Once they be-
come unconstrained they are auctioned off using a modified
temporal sequential single-item auction [5].

1 Ernesto Nunes and Maria Gini are with the Department

of Computer Science and Engineering, University of Minnesota.
enunes@cs.umn.edu, gini@cs.umn.edu. 2 Mitchell McIn-
tire is with the Department of Computer Science at Stanford University.
mcint286@stanford.edu.

978-1-5090-4616-4/16/$31.00 ©2016 |IEEE

Our main contribution is a framework that uses a variant of
pIA for task allocation at planning time and combines it with
an executive that monitors the execution of tasks, reallocating
tasks via a one-shot greedy auction when needed because of
execution delays or failures. In addition to the precedence
constraints already handled in pIA [4], this framework ex-
tends pIA to handle general time window constraints. Unlike
[4], which is solely a planning algorithm, the framework
herein proposed supports task execution and recovery via a
planning-execution-replanning cycle. We present a thorough
evaluation of the framework in simulation and through
experiments with real robots. The robot experiments are
done using the Robot Operating System (ROS) and three
Turtebot2 robots. Our algorithm is compared to a simple but
effective greedy auction, and to a centralized implementation
of a mixed integer linear program (MILP) with two different
optimization objectives.

II. RELATED WORK

Methods for task allocation with precedence constraints
have been proposed in several areas, such as multiprocessor
scheduling, and vehicle routing problems (VRP). However,
most problems studied in the parallel processing literature
are simpler than ours because they do not account for robot
travel, and standard VRP methods are unsuitable for our
problem because they are centralized.

Distributed Constraint Optimization Problem (DCOP) [6]
algorithms provide a viable option for modeling constraint
problems in a distributed way. However, solving DCOP
exactly is NP-hard and impractical for real problems [7].
To overcome this shortcoming approximate methods such
as Max-Sum have been proposed [8], yet we are not aware
of any DCOP algorithm that handles task allocation with
precedence and time window constraints.

Auction-based approaches have become popular for their
flexibility, decentralized nature, and robustness to failure.
The sequential single-item (SSI) auction [9] is effective
and computationally inexpensive compared to other auction
schemes, but it does not easily extend to include precedence
and temporal constraints (see [5] for an extension).

Decentralized solutions have been proposed in [10], where
the coupling introduced by precedence constraints is main-
tained by adding to each robot schedule a set of “remote”
nodes, which have inter-dependency with the local tasks. Our
approach avoids the very large temporal representation they
need for dense precedence graphs when predecessors and
successors of tasks are assigned to other robots, and the high

197

computation and communication costs needed to update the
temporal model when the environment changes rapidly.

In [11], a distributed solution is presented for tasks that
have precedence and resource constraints, but no temporal
constraints. In [12] a multi-tier auction and a genetic algo-
rithm are proposed for tasks that have intra-path and prece-
dence constraints, but again no temporal constraints. Luo
et al. [13] introduced an auction-based algorithm for multi-
robot task assignment for a special case when precedence
constraints are in a form called set precedence constraints.
The tasks are partitioned into disjoint sets of size at most
equal to the number of robots. Robots can do at most one
task per set. Instead, we allow general precedence constraints
in addition to the temporal constraints.

III. PROBLEM DEFINITION AND MODEL

We assume a set R of m robots. Each robot r; has an
initial pose, a maximum velocity, and a set of sensors. The
maximum velocity is the same for all robots, but robots
can travel at different speeds. Every robot is given a graph
representation of the environment. The graph’s vertices are
waypoints and its edges connect pairs of vertices between
which there are no obstacles.

Additionally, we have T, a set of n tasks, each with a
location, an earliest start time EStj , a latest finish time Lth R
and a duration (DUy,). Together, (ES;,, LF;,;) define the
bounds for the task’s time window. Robots need to arrive to
a task before its latest start time LStj, which, if not specified,
can be computed as LSy, = LF;, — DUy, .

While time windows impose in-schedule constraints for
individual robots, precedence constraints can create cross-
scheduling constraints since those tasks can be allocated to
different robots. We use a directed acyclic graph (DAG) to
model precedence constraints. Nodes in the graph represent
tasks, and edges represent precedence relations. For example,
t; < to means that ¢; precedes to, or equivalently, (¢1,t2) €
E, where E is the set of directed edges in the DAG. In our
problem, a valid schedule consists of a partition of 7 across
R in which a task is assigned to a single robot, and the
execution times assigned to tasks respect their time windows
and precedence constraints.

IV. BACKGROUND ON PRIORITIZED ITERATED AUCTION

pIA [4] is an auction-based algorithm in which
precedence-free tasks are auctioned in each iteration. The
auction alternates between precedence graph layering and
rounds of a re-purposed temporal sequential single-item
auction [5] until all feasible tasks are allocated.

Hierarchical Decomposition of the Precedence Graph. In
each iteration the auctioneer divides the precedence graph
(Gp) into three layers: the free layer (Tr), the second layer
(Tr), and the hidden layer (Ty). T contains tasks without
any predecessor, T, contains tasks with parents in T, and
all the remaining tasks not yet touched by the planning
algorithm are in 7T'y.

Graph layering leads to a decomposition that allows
individual robots to bid on tasks that are independent
(precedence-wise) in each iteration of the auction.

Task Prioritization. Tasks are assigned a priority depending
on their criticality. Not all tasks in the free layer affect
equally the temporal problem. This means that more “crit-
ical” tasks, i.e., tasks that are precedence constraints for
longer chains of tasks, should be auctioned off first. We use
a simple priority assignment heuristic (also used in [4]) that
is based on the shape of the precedence graph.

We define U(t) and L(¢) for ¢ € T to be the length of the
longest path in Gp rooted at ¢, respectively with and without
travel time between tasks. More precisely, we let

max

L(ty) =d L(t;
(k) Ut + t]‘GChi]drCIl(tk)((J)) ’

Ulty) = dug, + (tt(te,t;) +U(L5)) »

max
t; Echildren(ty,)
where we use the convention that maxg(xz) = 0, so that L
and U for a task without children are equal to the task’s
duration. Then we let

priog(tx) = (1 = B)L(tk) + BU(tx) , 0<B <1 (1)

where U () represents the total time it would take a single
robot (in the absence of any constraint) to execute a task
chain that starts with ¢;. L(¢x) is the least unconstrained time
required to execute these tasks. The priority function in (1)
ranks tasks depending on how much they add to the longest
path in Gp’s. The tasks in the set of free tasks that add more
will be chosen, provided that their critical value is higher
than that of the most critical second-layer task. This allows
the auction to defer non critical tasks to the next auction
iteration. The parameter 5 balances its two components. 3
can be thought of roughly as the proportion of travel time
that is accounted for in task priorities. 8 can be adapted
according to the tasks and precedence configurations. The
values of priog(t;) are computed in linear time by using
bottom-up dynamic programming starting from tasks that do
not have successors.

Auction and Robot Bidding. In each iteration of the auction,
a subset of high priority tasks in T are auctioned-off.

Upon receiving a list of tasks up for auction, each robot
computes a bid for each task. To compute the bid the
robot temporarily inserts one task at a time in its schedule.
If the insertion is feasible, the bid value is computed as
a xm+ (1 —«a) x Att, where m is the makespan after
inserting the task and Att is the additional travel time the
robot incurs for the new task. « is a parameter used to specify
the relative importance of makespan vs. travel time. Travel
time is estimated using the distance and a constant fraction
of the robot maximum speed.

Each robot sends to the auctioneer only one bid, its
smallest one. The auctioneer keeps a priority list of the bids
received and selects the overall minimum bid efficiently (in
time logarithmic in the number of bids). The task is assigned
to the robot that submitted that minimum bid. Only one task
is allocated in each round of the auction. The auctioneer

198

marks that task as scheduled and removes it from 7.

The auction terminates when all feasible tasks in T are
allocated. Some tasks might end up not being allocated
because there are not enough robots, or because choices
made early in the auction are never revisited. When the
auction terminates, the auctioneer updates the earliest start
times for the tasks in 77, to account for the maximum finish
times over all their predecessors in T (see Temporal Model
and Validity Checking), and the process restarts with the next
layer of the precedence graph.

To prevent the algorithm from looping forever trying to
allocate tasks that cannot be allocated, pIA terminates after a
maximum number of iterations, which in our implementation
is set to the total number of tasks. Once the tasks in T are
allocated, they are removed from Gp and tasks in 77, that
follow the removed tasks are promoted to 7.

Temporal Model and Validity Checking. Temporal con-
straints are modeled as a simple temporal network [3]. In our
model, each robot keeps its own STN (see [5] for details),
which grows as more tasks are allocated to the robot. The
auctioneer keeps a DAG with all the tasks’ start times that
account for the precedence constraints.

To improve efficiency we employ a simple propagation and
consistency checking scheme inspired by [14]. Our scheme
takes advantage of the hierarchy imposed by the precedence
constraints to compute the start and finish times of tasks
in time linear in the number of tasks in the schedule. This
checking is done during the bidding phase, to ensure that the
insertion of a task in a robot’s schedule does not lead to an
infeasible schedule. The start time of task ¢, S, , is set to
zero if the task is the dummy task representing the robot’s
initial location. Otherwise, it is set to max(S;, , ES;,, F; —
tt;, +,) where Sy, is the maximum finish time over all ¢; <
ti. This only if the resulting value of Sy, < LS, i.e. the
start time is not greater than the latest start time. If not,
the value of Sy, is set to co. The task’s finish time is then
computed as Fy, = S;, + DUy, .

After the tasks in T'r are assigned and before the tasks in
Ty are promoted to T, the auctioneer computes the value
S’tk for all the tasks ¢ € T, and sends them to all the robots.
This ensures that the constraints created by the schedule of
T tasks are accounted for when bidding for 77, tasks.

If no tasks in a robot’s schedule have oo as start time,
the robot inserts the task in its schedule and computes the
makespan which is the finish time of its last task. If any
of the start times is assigned the value oo it means that the
schedule is inconsistent, in which case the makespan will
also be oo and the task cannot be assigned to that robot.

V. DISPATCHING AND RE-AUCTIONING TASKS

Robots communicate with each other and the auctioneer
via ROS publishers and subscribers. We run an auction topic
in which requests for bids and bids are sent back and forth.
Bidding is done synchronously, the auctioneer waits until all
robots send their bids prior to choosing the winner.

After the tasks are allocated, when the start time arrives
robots execute the tasks in their schedules in real time in

ROS/Gazebo. The robots we used are Turtlebot 2. When
delays occur the auctioneer, which monitors execution across
schedules, updates the robots’ schedules with adjusted start
times to ensure they still respect the precedence constraints.

Robot Schedule Dispatching and Task Execution. At
any time during execution the robot is either traveling to
a task, executing a task, waiting to perform a task, or
aborting execution. These states are directly correlated to
the following execution outcomes: succeeded — the task was
successfully executed, aborted — the assigned robot estimates
that it cannot arrive to the task on time but there is still
time to perform the task, failed — due to temporal constraint
violation no robot in the system can do the task.

When the execution starts, a robot retrieves the first task in
its schedule and travels to that task. In each ROS cycle, the
robot computes the estimated start time of its next task by
adding the travel time from its current location to the task’s
location to the already elapsed time (since the start of the
traveling action). If the estimated start time is smaller than
the start time computed during planning, the robot continues
execution. If not, there are different cases. If the estimated
new start time is smaller than the task’s latest start time,
the task can still be executed, but the new start time could
cause inconsistencies with other tasks for which this task
is a precedence constraint. Since those other tasks could
have been assigned to other robots, the delayed robot needs
to check with the auctioneer for any potential violation. If
there are no violations, the robot assigns the estimated new
start time as the task’s start time and continues executing.
Otherwise, the robot notifies the auctioneer that it is unable
to execute the task within its temporal constraints. The
auctioneer runs an auction to try to reallocate that task.

When a robot has completed the execution of a task, it
marks it as succeeded, notifies the auctioneer, and proceeds
to its next task. This way the auctioneer can keep track of
the overall progress.

Auctioneer Execution Updates. As execution unfolds the
auctioneer updates information on the tasks that have been
completed and the tasks whose start times need to be updated
due to execution delays.

To stay updated, the auctioneer subscribes to ROS topics
in which robots post their tasks’ execution status. In each
ROS cycle it checks if a task has been completed. If a task
is marked as aborted, the auctioneer auctions that task to all
the robots to see if any of them can add it to its schedule.
Each robot computes its bid, as it did during planning, and
sends the bid to the auctioneer, which allocates the task to
the robot with the smallest bid, if any. If no robot can do the
task (i.e., all robots submit oo as their bid value), the task
and all the tasks in its induced subgraph are marked as failed
and removed from the scheduled tasks. To keep precedence
constraints consistent failed tasks are never executed.

When a robot experiences a delay it attempts to set a new
value to its task start time and any task whose execution
time depends on the delayed task. The auctioneer needs to
check if the new start time causes inconsistencies for other

199

"”VV’JVVV

|
F r
r > |
» r“
p r | -
» |
r |
P > -
| 4 e e L B A A A,
F - d
F .
| . - o &
F u '
f 4 F | B ' N G G G
’.
F r

F

v
L .
‘ e’ o
"%, o
|2 5 0 e L

Fig. 1. (Left) Example indoor Gazebo simulation scenario with two robots and eight tasks (cubes). Tasks (colored cubes) can be thought as hazardous
materials than can only be cleared at certain times of the day. The colors represent dependencies between tasks: the precedence order is red, blue, green,
and yellow. The goal is to minimize the time to clear the last hazard or the distance covered. (Right) Three Turtlebot 2 robots used for our physical robot

experiments, which operated in the room and corridor environment shown.

robots. The auctioneer keeps a DAG that encodes precedence
constraints and start and finish times of tasks, which are
updated during execution. When a robot asks the auctioneer
to check for inconsistency of a potential time update, it sends
the new start (and finish) times. The auctioneer proceeds by
temporarily updating the finish times of all remaining tasks in
the DAG. Next, it performs a topological sort on the DAG
to compute a linear ordering according to the precedence
constraints. The auctioneer uses the sorted graph to compute
S'tk for all tasks. It then checks if S’tk < LSy, , Vi, if that
is the case, the auctioneer accepts the temporal updates and
the robot is sent an “OK” message. Otherwise, the auctioneer
rejects the time updates, the robot aborts the task, and the
auctioneer resets the task start time to its previous value.

VI. EXPERIMENTAL SETUP

Simulation Experiments in 3D. Simulation experiments
were conducted in ROS [15], using the Gazebo plugin. We
built a model for virtual Pioneer robots, and a 3D world in
which the robots operate.

To facilitate robot localization and motion planning, the
simulator also keeps a 2D map of the world. The maps are
discretized by overlaying a graph over them. A node in the
graph represents a (z,y) location, the weighted edges rep-
resent Manhattan distances between pairs of nodes without
obstacles between them. The graph is used for path planning,
using Dijkstra’s algorithm to compute the distance between
graph nodes (or waypoints). The 100 x 100 meters map
corresponding to the world in Fig. 1 contains a total of 40
points, from which we choose task locations.

Real Robot Experiments. We also validated our algorithm
with three Turtlebot 2 robots and 12 tasks. Each robot has a
Kinect sensor, which is used for obstacle avoidance. These
experiments were run for each benchmark algorithm on a
map (54 by 51 meters) of a room and corridors (see the
right part of Fig. 1). The results for these experiments were
averaged over five runs.

Data Generation. We generated a set of tasks, each located
at a distinct waypoint. Each task’s x-y location is randomly
drawn within the map, and a nearest-neighbor search with
Manhattan distances is used to assign the task to the nearest
waypoint. In our data sets, each task is assigned an earliest
start time that is randomly drawn from 2/ (25, 400), which are
the numbers of seconds from the beginning of the simulation.
The length of the tasks time windows is uniformly drawn
from ¢/(100,1200), hence the time window with the latest
possible end point closes roughly 26 minutes after the sim-
ulation starts. Tasks’ durations range from 20 to 40 seconds.

We also generated precedence graphs randomly. To pre-
vent the generation of over-constrained problems, we placed
restrictions on the number of edges in the graph. In our
experiments, we created precedence graphs with random
density. This randomization is important to test the algorithm
sensitivity to graph shapes and sizes. Graphs can have at most
3n edges, where n is the number of nodes (or tasks) in the
graph. The algorithm that generates the precedence graph is
described in [4]. Each data set is created by keeping tasks’
locations fixed, while the tasks’ time windows are allowed to
change. We generated 10 data sets for each map and number
of tasks.

Benchmark Algorithms. In addition to pIA, tasks are allo-
cated using a greedy auction and two implementations (OPT-
M) and (OPT-Duo) of the MILP in [4]. In the greedy auction,
the auctioneer allocates up to m tasks, one per robot per
round, which is equivalent to each robot greedily choosing
the task with the least cost in each round. OPT-M minimizes
the makespan, z(A, S, Fy,), where the decision variables
are the allocation A, the start S, and finish time F;; for
all tasks t; € 7. OPT-Duo minimizes the average of the
makespan and the sum of all the travel times of the individual
robots. Both optimization are solved using Gurobi [16].

VII. RESULTS AND DISCUSSION

Sensitivity Results. In the right table in Fig. 2 we report
statistics for the makespan and distance values for different

200

Task Id | ES | LF | DU 0.1 0.5 - 0.7 0.9

0 60 | 600 20 1 \ 0 m \) m \ 0 1 \ 6

1 90 | 600 20 Makespan Values (minutes)

2 100 | 800 20 0.1 | 3.86 0.72 | 3.64 0.67 3.85 1.51 3.64 0.81

3 150 | 800 20 a | 051423 1.73 3.74 098 | 3.49 0.52 | 3.61 0.66

4 70 | 600 20 09 | 3.53 0.76 | 3.91 1.02 | 4.21 129 | 4.14 0.68

5 120 | 600 20 Distance Values (meters)

6 150 | 800 20 0.1 | 153.33 | 43.20 | 131.07 | 36.35 | 114.85 | 25.81 | 150.22 | 48.37

7 100 | 800 20 a | 0.5] 126.43 | 34.51 | 142.69 | 34.99 | 142.69 | 34.99 | 144.27 | 35.33
09 | 131.23 | 46.22 | 14547 | 37.31 | 150.22 | 48.37 | 153.14 | 45.59

Fig. 2. Simulation experiments with 2 robots and 8 tasks. The left table shows earliest start, latest finish times, and duration of tasks for the case in Fig.
4. The right table shows makespan and total distance for pIA for different values of o and /3. Results averaged over 10 random precedence graphs.

. Makespan Distance Idle Time %Tasks
Configuration . .

(minutes) (meters) (minutes) completed

I) L 0 I) L 1
pIA 2 robots, 8 tasks | 3.85 | 1.51 | 114.85 | 25.81 | 2.35 | 0.97 | 100 | 0.00
2 robots, 16 tasks | 9.52 | 2.10 | 418.24 | 35.52 | 0.00 | 0.00 | 100 | 0.00
Greedy 2 robots, 8 tasks | 4.02 | 0.44 | 159.47 | 13.71 | 0.00 | 0.00 | 100 | 0.00
2 robots, 16 tasks | 9.44 | 1.64 | 494.99 | 93.36 | 0.00 | 0.00 | 100 | 0.00
OPTM 2 robots, 8 tasks | 3.47 | 0.48 | 139.58 | 39.85 | 0.00 | 0.00 | 100 | 0.00
2 robots, 16 tasks | 7.95 | 0.70 | 410.60 | 21.47 | 0.00 | 0.00 | 100 | 0.00
OPT-Duo 2 robots, 8 tasks | 2.94 | 0.17 | 99.76 | 6.08 | 0.00 | 0.00 | 100 | 0.00
2 robots, 16 tasks | 9.00 | 2.12 | 307.21 | 13.48 | 0.00 | 0.00 | 100 | 0.00

Fig. 3. Simulation results comparing the makespan, total distance traveled, total idle time, and completion percentage for pIA, greedy auction, and optimal
solutions with makespan only (OPT-M) and makespan and distance combined (OPT-Duo). Eight and 16 tasks are allocated to two robots in the simulated

environment in Fig. 1 (left). Minimum values are bold.

t7 t7
A A
pu— A pu— N
rl ey "t rl v "t
[B t5 16 [B 5 16
‘\ - ». ‘\ .' ».
e, 4 — T, 4 — —
A% A X
q4 t, q4 t, t,
.t<_ @ .t<_ [))
lz o lz o
E— o, B o,
7]
0
t \to Lo
[e [e o

Fig. 4.

Routes produced by OPT-Duo (left; makespan 2.87, distance 96.88), pIA (middle; makespan 3.06, distance 96.88) and Greedy method (right;

makespan 4.03, distance 154.26) for an instance with 8 tasks and two robots. Makespans are measured in minutes and distances in meters. The colors
represent tasks’ precedence where red precedes blue, blue precedes green, and green precedes yellow.

values of « and (3. Higher values of « increase the impor-
tance of makespan, lower values increase the importance
of travel time. Higher values of 3 place more weight on
combined duration and travel values of task chains, lower
values place more weight on durations of task chains alone.
Our pIA auction registers up to 33% change in distances
(38.5 meters) and 17% in makespan values (less than a
minute) as the a and 8 parameters change. No parameter

201

combinations result in non-dominated solutions. For lower
« values (0.1-0.5) the best makespan values are obtained by
using 8 > 0.5, this is also partly true for distances. We have
not observed much advantage in setting « values very high.
Roughly, the parametric analysis shows that the algorithm
performs better when more weight is placed on distance-
based measures.

Comparing the Methods. In Fig. 3 pIA finds solutions with

paths that are nearly 28% and 16% shorter than the paths
returned by the Greedy algorithm for the eight and 16-task
cases, respectively. The makespan of the schedules returned
by the methods are not statistically different. pIA’s solutions
are also competitive compared to optimal solutions that only
consider makespan as objective, and are less than twice the
distance and makespan values returned by OPT-Duo. The
performance differences are more evident in the 16 task case.

Results with Real Robots.

. Makespan Distance
Configuration .
(minutes) (meters)
1) 1 1)
pIA 3 robots, 12 tasks| 4.20 | 0.52 132.5 1.5
Greedy |3 robots, 12 tasks| 6.21 | 1.20 152.41 | 1.80
OPT-M|3 robots, 12 tasks| 6.40 | 0.48 99.1 1.35

Fig. 5. Real robot results comparing makespan and total distance traveled
for pIA, greedy auction, and OPM-M solutions. All the tasks are allocated
and there is no idle time.

With the real robots the initial allocations were computed
with OPT-M, pIA, and Greedy. Results are shown in Fig. 5.
The allocation returned by pIA yields a Manhattan distance
(132.5) that is nearly 34% longer than OPT-M (99.1) and
nearly 13% shorter than the one returned by Greedy (152.41).
The differences in makespan values are more modest, pIA
schedules are best with a makespan of about 4 minutes, while
both OPT-M and Greedy yield schedules of about 6 minutes.
Unlike pIA and the Greedy auction, OPT-M only uses two
of the three available robots, which explains in part why the
algorithm’s makespan is larger than pIA’s.

Analysis. Our parametric analysis shows that placing more
emphasis on the distance objective yield schedules with
shorter distances. The same is not true for makespan values.
This is partly due to the large distances robots (both real
and virtual) have to travel to get to the tasks, and the
delays that occur due to re-planning. The results could differ
for datasets with very small distances and far apart time
windows, because the time windows would dominate the
allocation decisions.

Comparison with other methods shows that pIA has a
clear advantage over the greedy method when both distance
and makespan are considered. Its schedules yield distance
and makespan values that are not larger than twice the
optimal allocations. Part of the success depends on our
careful selection of tasks to auction and balancing of spatial
and temporal objectives. However, we do not guarantee that
our method will always yield results less than twice larger
than optimal; data instances can be designed that produce
results similar to the Greedy algorithm. Lastly, all the tasks
in our experiments were completed without re-auctioning.

VIII. CONCLUSIONS AND FUTURE WORK

We extended the pIA algorithm to allocate to multi-
ple robots tasks with temporal constraints in addition to
precedence constraints, and we presented an executor that
monitors the execution of the tasks and reallocates tasks

when failures or delays will cause constraint violations. pIA
is used by the auctioneer to initially allocate tasks to robots,
forming a schedule for each robot. Robots execute their
initial schedules, and send to the auctioneer information
about their tasks start and finish times and execution status.
In case of failure or delays, a single-item auction is run to try
to reallocate tasks. Our experimental results show that our
method outperforms a Greedy method and yield schedules
with distances that are within two away from the optimal.
Future work will focus on designing more constrained data
sets that will further show the robustness of our method.

Acknowledgments: Partial support provided by the National
Science Foundation (under grants NSF IIP-1439728, NSF
CNF-1531330) and the Doctoral Dissertation Fellowship
program from the University of Minnesota.

REFERENCES

[1] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen, “An exact
algorithm for the elementary shortest path problem with resource
constraints: Application to some vehicle routing problems,” Networks,
vol. 44, no. 3, pp. 216229, 2004.

[2] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy
for multi-robot task allocation,” The International Journal of Robotics
Research, vol. 32, no. 12, pp. 1495-1512, 2013.

[3] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks,”
Artificial Intelligence, vol. 49, no. 1-3, pp. 61-95, 1991.

[4] M. Mclntire, E. Nunes, and M. Gini, “Iterated multi-robot auctions for
precedence-constrained task scheduling,” in Int’l Conf. on Autonomous
Agents and Multi-Agent Systems, 2016, pp. 1078-1086.

[5] E. Nunes and M. Gini, “Multi-robot auctions for allocation of tasks
with temporal constraints,” in Proc. AAAI Conf. on Artificial Intelli-
gence, 2015, pp. 2110-2116.

[6] R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and
P. Varakantham, “Taking DCOP to the real world: Efficient complete
solutions for distributed multi-event scheduling,” in Int’l Conf. on
Autonomous Agents and Multi-Agent Systems, 2004, pp. 310-317.

[7] R. Junges and A. L. C. Bazzan, “Evaluating the performance of
DCOP algorithms in a real world, dynamic problem,” in Int’l Conf.
on Autonomous Agents and Multi-Agent Systems, 2008, pp. 599-606.

[8] S. Ramchurn, A. Farinelli, K. Macarthur, M. Polukarov, and N. Jen-
nings, “Decentralised coordination in RoboCup Rescue,” The Com-
puter Journal, vol. 53, no. 9, pp. 1-15, 2010.

[9] M. G. Lagoudakis, M. Berhault, S. Koenig, P. Keskinocak, and A. J.
Kleywegt, “Simple auctions with performance guarantees for multi-
robot task allocation,” in Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2004.

[10] L. Barbulescu, Z. B. Rubinstein, S. F. Smith, and T. L. Zimmerman,
“Distributed coordination of mobile agent teams: the advantage of
planning ahead,” in Int’l Conf. on Autonomous Agents and Multi-Agent
Systems, 2010, pp. 1331-1338.

[11] S. Sariel, T. Balch, and N. Erdogan, “Incremental multi-robot task
selection for resource constrained and interrelated tasks,” in Proc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Oct 2007,
pp. 2314-2319.

[12] E. Jones, M. B. Dias, and A. T. Stentz, “Time-extended multi-robot
coordination for domains with intra-path constraints,” in Robotics:
Science and Systems (RSS), July 2009.

[13] L. Luo, N. Chakraborty, and K. Sycara, “Multi-robot algorithm for
tasks with set precedence constraints,” in Proc. IEEE Int’l Conf. on
Robotics and Automation, 2011, pp. 2526-2533.

[14] M. Wilson, N. Roos, B. Huisman, and C. Witteveen, “Efficient
workplan management in maintenance tasks,” in Proc. 23rd Benelux
Conference on Artificial Intelligence, nov 2011, pp. 344-351.

[15] B. Gerkey, R. Vaughan, and A. Howard, “The Player/Stage project:
Tools for multi-robot and distributed sensor systems,” in 11/th Int’l
Conf. on Advanced Robotics, 2003.

[16] I. Gurobi Optimization, “Gurobi optimizer reference manual,” 2014.
[Online]. Available: http://www.gurobi.com

202

