Small Team Exploration with Communication Restrictions

Elizabeth A. Jensen, Ernesto Nunes, and Maria Gini

Abstract

Exploring an unknown environment comes with many risks
and complications, and using a team of robots is a practical
means to reduce the risk to humans, while still accomplish-
ing tasks such as creating maps or locating points of interest.
In space exploration, these teams of robots may be used to
scout and prepare sites for later human outposts. In search
and rescue, these robots can be used to locate unstable areas
or survivors in the aftermath of an earthquake or fire. One fea-
ture of both scenarios is that communication is often limited,
either by the disaster, or by distance, so the robots need to be
able to operate autonomously. In this paper, we present an
algorithm for a small team of robots to explore an unknown
environment even if communication restrictions. We provide
proofs of correctness and guarantee full coverage of the envi-
ronment, even in the event of attrition.

Introduction

If we are to expand into space, and set up outposts on the
Moon or Mars (NASA 2004), there is much work to be done
in preparing the area and constructing preliminary buildings
and utilities. One aspect that must not be overlooked is ex-
ploring, in detail, the locations and determining if there are
complications or dangers to construction that cannot be de-
tected from Earth. Sending a team of robots to scout the
planned site of an outpost can give us this information and
allow us to make appropriate decisions for building and fa-
cilities placements. However, there is a limit on communica-
tion with such a team of robots, so the human operators can-
not be expected to keep a constant watch over the robots and
direct their every move. Instead, as Leitner (2009) argues,
the robots used in space exploration must have at least some
degree of autonomy, and must be able to coordinate amongst
themselves to accomplish their tasks. There has been much
research into exploration using robots to map out points of
interest, particularly in search and rescue scenarios, where
the robots can be used to locate survivors or weak structural
supports in areas too dangerous for human search and rescue
workers to enter.

While this is necessary, many of these previous avenues
of research have considered using only one robot for the ex-
ploration, or a pairing of a ground robot and an aerial robot

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to reach more locations. Instead, we are interested in al-
gorithms which allow teams of robots to enter and explore
unknown and dangerous environments, leveraging greater
numbers of robots to more quickly cover the environment,
but also providing guarantees of full coverage even in the
face of individual robot or beacon failures. In addition, a
feature common to both disaster scenarios and space explo-
ration, is that communication is more limited than we are
accustomed to in everyday life, so these robots cannot rely
on having constant contact with operators during the ex-
ploration. We therefore focused on developing algorithms
which can function under various communication restric-
tions, even considering chemical or line-of-sight means of
communicating between robots.

Our primary contribution in this work are two distributed
algorithms for exploration using small teams of robots. The
innovation in these algorithms comes from how the robots
disperse into and subsequently explore the environment,
even with communication restrictions. We provide proofs
that the algorithms will achieve full coverage of the envi-
ronment, return all functioning robots to the entry point, and
that points of interest are marked in such a way that the hu-
man rescuers can go directly to those points when the envi-
ronment is deemed safe for them to enter.

Related Work

In recent years, multi-robot systems have gained popular-
ity (Arai et al. 2002). There are several advantages to the
use of a multi-robot system over the use of a single robot,
including cost, efficiency and robustness. A single robot can
be designed to efficiently complete its task, but it may then
be suitable for only a small set of tasks, and added func-
tionality increases the cost, size and energy requirements.
In addition, if even a small part fails, the robot may be un-
able to complete the task. In contrast, a multi-robot system
comprised of smaller, individually less-capable robots, with
several of each type needed to complete the different parts
of the task, can still accomplish their goal even if some of
them fail. A multi-robot system has an inherent redundancy
that increases the system’s robustness (Choset 2001).

There are multiple methods for a team of robots to explore
an unknown environment. Gage (1992) proposed three types
of coverage. In blanket coverage, the robots cover the entire
environment simultaneously. In barrier coverage, the robots

set up a perimeter around an area such that nothing can pass
into or out of that area without being seen by at least one
agent. In sweep coverage, the robots make a pass over the
environment and ensure every point has been seen by at least
one robot, but don’t stay in any one location, instead moving
progressively through the environment. Choset (2001) pre-
sented an extensive overview of coverage path planning al-
gorithms according to those categories. Most coverage algo-
rithms are focused on surveillance, and thus aim to achieve
either blanket or barrier coverage. However, both of these
types of coverage require enough robots to provide the full
coverage, and that number can be prohibitively large.

In contrast, sweep coverage can be done with a small
team, down to a single robot, if necessary, when all other
robots on the team have failed (Fazli et al. 2010). Since the
environment is unknown, the required number of robots for
blanket coverage is also unknown, and, even if known, may
well exceed the number of robots available on site. Thus, in
our approach, we use an exploration algorithm in which the
team of robots completes a single sweep of the environment
to locate points of interest that can be relayed to the search
and rescue team.

In addition to the type of coverage provided, one must
consider whether a centralized or distributed algorithm
would provide more benefits to the overall exploration. In
a centralized multi-robot system, an external controller is-
sues instructions to the others and keeps the group coordi-
nated. While this requires less of individual robots, if the
controller fails, then the entire system will fail, even if the
robots are still functional. In addition, a centralized ap-
proach does not scale well, because one machine can con-
trol only a limited number of robots at once. In small en-
vironments, however, a centralized approach can be effec-
tive. Stump et al. (2008), made a single robot a base station,
while the other robots formed a communication bridge as
they moved into the unknown region. Similarly, Rekleitis et
al. (1997) used one robot as a stationary beacon for another
robot, thus reducing odometry error in the robot that was
moving. The centralized approach also has the advantage of
making it easy to create a global map, which can be used
to direct other agents, human or robot (Burgard et al. 2005;
Stachniss and Burgard 2003; Wurm et al. 2008). These ap-
proaches require constant monitoring of the robots in order
to keep the map consistent and the exploration efficient.

A distributed approach, on the other hand, is inherently
more scalable and can also take better advantage of the ro-
bustness of having multiple robots. Each robot is respon-
sible for its own movements and data collection, and re-
lies on only local neighbors for coordinating exploration
and dispersion. It may seem that the robots are working
together on a global scale, but in actuality the decisions
are made individually on a local scale. Information can be
passed throughout the group, similar to the communication
bridge (Stump et al. 2008), but using broadcast messages
rather than point-to-point messages. A distributed system
thus allows an individual to work independently, while also
sharing data with neighbors as necessary.

Ma and Yang (2007) show that the most efficient disper-
sion of mobile nodes is triangular, producing the maximal

overall coverage and minimal overlap or gap in the coverage.
The dispersion formation is achieved through the nodes’ lo-
cal communication, in which they determine distance and
bearing to their neighbors, so that they can move towards
the optimal formation. Liu et al. (2005) have shown that
repeated location updates can lead to better coverage over
time. Similar approaches by Howard et al. (2002) and Cortes
et al. (2004) used potential fields and gradient descent, re-
spectively, to disperse the nodes. In simulation, these meth-
ods successfully spread the nodes throughout the environ-
ment to achieve blanket coverage, but a sufficient number of
robots may not be available outside of simulation.

Another recent trend has been to model distributed multi-
robot algorithms on insect behavior. The robots have very
little individual ability, but can communicate with local
neighbors and arrange themselves according to a desired dis-
persion pattern. McLurkin and Smith (2004) have devel-
oped robots and several algorithms for dispersion and ex-
ploration in indoor environments. Their algorithms rely on
the robots maintaining connectivity in order to perform cor-
rectly, passing information amongst themselves to spread
out in particular patterns, such as uniform and cluster dis-
persions, as well as maintaining a frontier for exploration.
These algorithms are similar to those in (Cortes et al. 2004;
Howard et al. 2002; Liu et al. 2005), but allow for
greater variability in the dispersion pattern, including clus-
ters and perimeter formations. The robots can also per-
form tasks such as frontier exploration and following-the-
leader. Additional work based on insect behavior includes
pheromone-based algorithms (Batalin and Sukhatme 2007;
Koenig and Liu 2001; Mamei and Zambonelli 2007; O’Hara
et al. 2008), which rely on items placed in the environment
for communication and navigation.

Dirafzoon et al. (2012) provide an overview of many sen-
sor network coverage algorithms which can be applied to
multi-robot systems as well. However, many of these rely on
individual robots knowing the distance and bearing of other
robots around them, which requires more sophisticated sen-
sors. For example, Kurazume and Hirose (2000) developed
an algorithm in which the team of robots was split into two
groups, one of which remained stationary while the other
moved, and then they traded roles. This made for effective
movement through an unknown environment, but the robots
relied on sophisticated sensors to perform dead reckoning
to determine the locations of the stationary robots. On the
other hand, research has shown that a team of robots can dis-
perse into an unknown environment using only wireless sig-
nal intensity to guide the dispersion (Ludwig and Gini 2006;
Jensen and Gini 2013). This method allows the use of sim-
ple robots, without the need to carry a heavy payload of
sensors, so that the robots can run longer and explore fur-
ther. Smaller, simpler robots are also less expensive, so more
robots can be acquired for a task.

Communication-Restricted Exploration

Our primary objective is for our algorithms to achieve full
exploration of an unknown environment using a team of
robots. Our algorithms can function with a single robot,
if needed (due to availability or attrition), and with robots

that have limited individual capability. This means we can-
not provide blanket or barrier coverage, but sweep cover-
age is all that is necessary to locate and relay back informa-
tion about points of interest. Using a distributed approach
takes advantage of the robustness inherent in having multi-
ple robots, and is not impeded by the communication restric-
tions, especially since only local communication and infor-
mation is needed for the robots to complete the exploration.
Lastly, based on some of the insect-based algorithms, the
robots carry and drop off beacons (such as ZigBee motes or
RFID tags) to provide longer lasting trails and information
to mobile agents, human or robot, that may pass by later.

We assume that the robots used have proximity sensors
to avoid collisions, some capability for communication (wi-
fi, line-of-sight, chemical, etc), and the means to carry and
drop off beacons. We also assume that the specifics of the
environment are currently unknown, even if pre-disaster in-
formation, such as a map, is available.

Our algorithms use the communication signal intensity
to direct the robots’ movements, keeping them linked as a
group during the entire exploration. This provides the bene-
fits of reducing the likelihood of robots getting lost and the
possibility that part of the environment will be missed. Our
innovation lies in making the algorithms independent of the
type of communication used, and still making the robot team
capable of achieving full coverage in a manner that is robust
and complete even with some attrition.

Algorithm Details

The first algorithm, the Rolling Dispersion Algorithm
(RDA), is presented in Algorithm 1. In this algorithm, the
robots are either explorers, which move into the frontier, or
sentries, which maintain a path to the entrance. Beacons are
used to block off explored areas, or mark the path to a fron-
tier that had to be temporarily abandoned in favor of fully
exploring a different frontier. Each robot uses information
about connectivity with its neighbors and nearby obstacles
to choose which of the following behaviors it will execute
on each iteration of the algorithm.

Avoid Collisions: Use the proximity sensors to avoid col-
liding with walls, objects, and other robots.

Disperse: Move towards open space, checking wireless sig-
nal intensity between myself and my sentry. Move away
from beacons marking explored areas.

Follow Path: Alert neighbors that I can fulfill a request.
Follow the path to the requesting robot.

Guard: Stay in place and act as a sentry for other robots.

Retract: Drop a beacon to mark the explored area and re-
turn to my sentry’s location.

Seek Connection: Re-establish communication with the
rest of the group.

Figure 1 shows a finite state machine of the algorithm and
when a robot decides which behavior to apply each iteration.
The numbers correspond to lines in Algorithm 1, and the let-
ters are the initials of the behaviors: AC = Avoid Collisions,
D = Disperse, FP = Follow Path, G = Guard, R = Retract,
and SC = Seek Connection.

Figure 1: A finite state machine for Alg. 1. Numbers refer
to lines in Alg. 1 and letters are behavior initials.

Algorithm 1 Rolling Dispersion Algorithm

1: loop
2: Update connectivity graph using signal intensities
3: Share new connectivity graph with neighbors
4: Check for open paths, and update branch_count
5 if I am too close to an obstacle then
6: set behavior to Avoid Collisions
7: else if I am disconnected from all neighbors then
8: set behavior to Seek Connection
9: else if I am in a dead end then
10: drop a beacon set to explored
11: set behavior to Retract
12: else if my sentry’s intensity is below threshold then
13: change status to sentry
14: set behavior to Guard
15: if my only neighbor is my sentry then
16: request additional explorers
17: else if I am an explorer approaching a beacon then
18: set behavior to Disperse
19: if the beacon is marking an explored area then
20: pivot before continuing on
21: else if I have received a request then
22: if I am an explorer then
23: drop a beacon set to unexplored
24: set behavior to Follow Path
25: else if I am a sentry then
26: if my only neighbor is my sentry then
27: if my branch_count is lower then
28: drop a beacon set to explored
29: change status to explorer
30: set behavior to Follow Path
31: else
32: set behavior to Guard
33: pass the request on to my neighbors
34: else if I have reached the requesting robot then
35: set behavior to Disperse
36: else if if I am an explorer then
37: set behavior to Disperse
38: else
39: set behavior to Guard

40: Apply chosen behavior

Table 1: Sweep Exploration Algorithm Transitions and Finite State Machine

Current State | Input Next State | Side Effect Finite State Machine
Intersection Branch Send call Taiarsection
Explorer Edge of Range Sentry Send call
Dead-end Retractor Drop explored beacon
Retract Retract Path | Send retract
Call-no child Explorer Drop unexplored beacon z
Sentry Call-has child Call Path Send call :
Failure call-no child | Explorer Drop unexplored beacon g
Failure call-has child | Failure Path | Send failure call f
Branch Dead-end Retractor
Call Path Explorer passed by Sentry
Failure Path Explorer passed by Sentry
Retract Path Dead-end Retractor Drop explored beacon
Retractor At branch Explorer

The robots initially disperse to the furthest extent of their
communication range. When the robots can no longer move
apart without losing communication with another robot, they
call for reinforcements, which leap-frog their way to the
frontier, leaving behind beacons to mark the path to the
entrance and any unexplored regions as necessary. When
robots encounter a dead-end, which can be any location in
which any direction the robot might move is blocked either
by an obstacle (such as a wall) or another agent (robot or
beacon), they drop off a beacon to mark the area as explored,
and retract to the previous intersection before moving to a
new frontier. This retraction process is repeated for every
robot along that path until the last robot along that path turns
onto a new path at the intersection, leaving the entire path
marked as explored by the sequence of beacons left behind.
The direction of the dispersion and exploration is primar-
ily informed by the the wireless signal intensities between
agents, as in Ludwig and Gini’s (2006) work, though the
individual robots also make decisions based on their prox-
imity sensors to avoid collisions. When there are no more
paths left to explore, the robots will retract back to the entry
and we can then guarantee that all parts of the environment
have been covered at least once.

The second algorithm, the Sweep Exploration Algorithm
(SEA), is based on RDA, but is intended for use in scenarios
with much more restrictive communication, such as chemi-
cal signals, or line-of-sight using a camera and color LEDs,
or even in cases where there is too much loss in the signal to
reliably send long messages. With limited means of commu-
nication, it is critical to reduce the number and size of mes-
sages to ensure full exploration. However, this also means
that only one robot can be moving at a time, or the messages
get mixed up and parts of the environment may not be ex-
plored. Therefore, instead of the robots initially dispersing
in any direction as in RDA, they travel one at a time down a
single path, until it is completely explored, and then retract
and explore a new path. We show the finite state machine for
robots using SEA and give the transitions in Table 1. In the
finite state machine, the nodes are labeled with the initials of
the states, which are listed in the transition table. We provide
the full transition table because some of the transitions have

side effects beyond the robot changing states, such as drop-
ping a beacon or changing a beacon’s state. SEA uses the
same general method of exploring the environment as RDA,
and the changes are mainly in how and what the agents com-
municate, though there is also the limitation on the number
of robots moving at any given time.

Algorithm Correctness

We present here formal proofs that the robots running our
algorithms will, even with communication restrictions, com-
plete the exploration without missing any point in the envi-
ronment, will not end up in infinite loops (so that the robots
exit when done), and can succeed in these goals even with
robot and beacon failures. We will later show results of run-
ning the algorithms in simulation.

Lemma 1. The algorithms avoid unnecessarily repeated ex-
ploration.

Proof. We will do this proof in two parts: first assuming
that the beacons do not fail and then assuming that they may
fail. In either case we will prove by contradiction that the
algorithms will avoid unnecessary repeated exploration.

First, assume that the robots explore an area that has been
previously explored. However, as previously explained, in
our algorithms, if an exploring robot reaches a dead-end it
drops a beacon to mark the explored area. Any robot that
subsequently approaches that area would detect the beacon,
receive the message that the area had been explored, and turn
away to explore a new area. Thus, any re-explorations are
prevented by the presence of these beacons.

Definition 1. An exploring robot is in a dead-end when ev-
ery direction it might move in is towards an obstacle, be it
a wall, a beacon marking an explored area, or towards an-
other robot, either the previous robot along the exploring
robot’s path, or a robot on a different path (in the case of a

loop).

Second, in the case when a beacon marking an explored
area fails, the area around that beacon is unmarked. If the
beacon is down a path with other beacons marking the path
as explored, then the area will not be re-explored, because

the other beacons act as a buffer. If, however, the beacon was
on the edge of either an unexplored area or the path to the en-
trance, the robots will have to re-explore the now unmarked
area until reaching a dead-end, at which point they will drop
new beacons to once again mark it as explored, preventing
future unnecessary visits. The important caveat here is that
we need to assume a finite number of beacon failures, oth-
erwise robots would re-mark areas infinitely, which would
lead to other areas not being explored or the robots not re-
turning to the entrance to report the completed exploration.
Hence, given a finite number of beacon failures, which is a
reasonable assumption, we again derive a contradiction. [

Lemma 2. The algorithms avoid infinite loops.

Proof. We will again consider two cases in this proof: (1)
assume that the beacons do not fail; and (2) assume that they
may fail. In both cases, we will prove by contradiction that
the algorithms will not get stuck in infinite loops.

First, assume that a robot is repeatedly exploring a loop
in the environment. This is immediately a contradiction of
Lemma 1 because the point at which the exploring robot first
closed the loop (by reaching a previously explored location),
it would have detected it was in a dead-end, and dropped
a beacon to mark the area as explored. That beacon will
break the loop, since the robots will treat it as an impassable
obstacle no matter the direction from which they approach.

Second, in the case where beacons fail, the area surround-
ing the beacon’s location becomes unmarked. If there are
still beacons on either side marking the area as explored,
then there will be no effect on the robots’ exploration. If
the beacon is neighbors with a robot or beacons on the
path to the entrance, then the area will be re-explored, as
in Lemma 1, but will again be stopped when a dead-end is
once again located. We must assume that there will be a
finite number of beacon failures, which is a reasonable as-
sumption, so we again derive a contradiction. O

Lemma 3. The algorithms achieve full coverage with a sin-
gle robot.

Proof. Assume we start with only one robot and an infinite
number of beacons. In both algorithms, the robot will ad-
vance, leaving beacons to mark the return path and areas
that have been explored. The explore/retract behaviors are
the same as Depth-First search, which is complete in a finite
search space when repeated states and loops are avoided.
By Lemmas 1 and 2, we have proven that our algorithms
avoid repeated states and loops. Our environment is finite.
Thus, our algorithms will achieve full coverage with only
one robot. O

Theorem 1. The algorithms will achieve full coverage of the
environment with multiple robots, and all functional robots
will return to the entrance.

Proof. We prove by induction that the algorithms function
correctly when multiple robots are used.

Base Case: The base case is that the algorithm achieves
full exploration when only one robot explores the environ-
ment. The proof for this case is given in Lemma 3.

Induction Step: Assuming that the algorithms achieve
full exploration with k robots and the remaining functional
robots return to base, we want to prove that the algorithms
achieve full exploration when 1 more robot is added. Sup-
pose that there are k+1/ robots, then we need to show that:
(1) the robots will not continuously explore overlapping ar-
eas, and (2) that the robots will not miss an area because they
lost contact with the other agents, and (3) that no robot will
be stranded in the environment.

First, in Lemma 1, we have already shown that there will
not be unnecessary repeated exploration of an area, so long
as the beacons remain active. Every robot that approaches
the area will detect the beacons and move to a different area,
and this remains true no matter how many robots are added.

Second, both algorithms enforce the restriction that the
robots remain in contact with at least one other robot (or
beacon, when there is only one robot) at all times, and when
that connection is lost, the robots will immediately stop ex-
ploring and retreat in order to reconnect to the rest of the
group. This is required to ensure complete coverage, be-
cause connectivity means robots will not miss an area, and
will not re-explore areas that have been previously covered.

Third, the connectivity keeps the robots from being
stranded in the environment, because only the exploring
robot in a dead-end will mark an area as explored. The re-
traction step then brings the robot back into the group be-
fore the next robot marks an area as explored, so that no
robot is left behind or trapped between two beacons blocking
the path. In addition, the fact that the robots explore a path
and then retract to the previous intersection, and then repeat
the process, similar to Depth-First search with backtrack-
ing, means that all functional robots will eventually retract
back to the entrance when the exploration is complete. Once
again, adding another robot to the team does not change the
functionality of the algorithms.

Thus, with k+1 robots, the algorithms still achieve full
exploration, and the remaining functional robots return to
the entrance when the exploration is complete. O

Algorithm Properties

In addition to the previous proofs, there are several impor-
tant properties of the algorithms. Using multiple robots re-
duces the individual load on each robot, but the coordination
adds costs in location visits and number of messages.

We can represent the environment as a graph, in which
nodes represent locations that are separated by the distance
of the communication range, in order to keep it to a finite
number of nodes. With a single robot, each node is visited at
most twice (leaf nodes are visited only once), assuming there
are no failures. With multiple robots, each intermediate node
n is visited at most 2n’ times, where n’ is the number of
nodes beyond node n on that path. In the case where the
total number of robots is less than n’, the number of visits
to each intermediate node is 2r, where r is the number of
robots.

In RDA, the robots must send many messages to confirm
that they are still within communication range of each other,
since multiple robots can move at the same time. This is
quite costly in terms of bandwidth, processing, and power

100.00% -

80.00% -
60.00% -

40.00% A

.
g
_

Percent Coverage

- 20.00% A

Both--1 Robot
——-SEA--5 robots
—— RDA--5 robots
——-SEA--8 robots
——— RDA--8 Robots

0.00%
0

Figure 2: Cave-like environment used
for experiments.

consumption, and not practical with some kinds of commu-
nication. If we use chemical signals, flooding the environ-
ment with those chemicals will cause us to lose new mes-
sages in the old ones. But in restricting the communication
in SEA, we lose the ability for multiple robots to move at the
same time. However, it does reduce the number of messages
being sent, which in turn makes the coordination easier as
well. In SEA, we require only seven message types to com-
plete the exploration, which correspond directly to the seven
states shown in the transition table.

Consider starting with only two messages/states. The ex-
plorer and retract path are the most straightforward, and both
are needed in order to create the backbone of paths to the
frontier and back to the entrance. But there is no way to re-
quest additional robots to the frontier when the last explorer
reaches the edge of the communication range with its near-
est neighbor. So we need a third state, the call path, which
both makes the request and leads the new explorer to the
frontier. But then the explorer hits a dead-end, and without
the repel state, the robots might explore the same area over
and over, or go into an infinite loop. This brings us to four
states. Without the retractor state, the agents on the retract
path wouldn’t know when to either change to the repel state
(for beacons) or retract themselves (for robots). Without the
branch state, each retractor robot would go all the way back
to the beginning, and a branch might be cut off from further
exploration because the retraction protocol requires that the
robots leave repel beacons along the way. Lastly, since we
are working in an unknown and potentially dangerous envi-
ronment, it is essential that we have a means of identifying
and replacing failed agents along the frontier and path back
to the entrance. Thus, we require seven messages to com-
plete the exploration.

Simulations and Results

We have conducted experiments in Player/Stage and
ROS/Stage, using the same robot models and move-
ment/sensor attributes, in order to test the viability of our
algorithms. The testing environment, shown in Figure 2, is

105 210 315
Time in seconds

Figure 3: Average time to full exploration using 1, 5 and 8 robots with
each algorithm.

very open, with several large obstacles at varying intervals
and in non-uniform shapes that leave wide open areas and
potential loops. In all experiments, the robots start in a clus-
ter between several obstacles near the upper left corner.

Figure 3 shows the rate of coverage for the RDA and SEA
algorithms. With a single robot, both algorithms perform in
the same manner, so only one line is plotted to show the rate
of coverage with a single robot, and our algorithms perform
only 10 seconds slower, at 337 seconds, than the shortest
path to achieve full coverage at the same speed. Upon com-
pleting the coverage, it then takes an average of 45 seconds
for the robot to return to the entrance, which varies by the
path taken to complete the coverage.

With multiple robots, both algorithms improve upon this
time. While in most cases the simulations show fairly steady
increase in the percentage of coverage, the RDA with 5
robots does show some plateaus, due to the fact that the
robots initially disperse in all directions, and then must wait
for others to leap-frog out to the frontier before additional
progress can be made. The SEA algorithm, on the other
hand, does not show these plateaus as much because the
robots start by exploring along a single path at a time. The
experiments using SEA start with a higher initial coverage,
due to the fact that the algorithms use different initial disper-
sion methods, and using the exact same cluster at the start
led to many robot collisions. Accounting for that difference,
and comparing times from the same starting percentage to
full coverage, SEA is 1.35 times faster at achieving full cov-
erage than RDA.

Upon further examination, it became clear that SEA will
outperform RDA in environments where there are long
paths, because SEA fully explores only one path at a time,
while RDA will attempt to explore as many paths at a time
as possible, but will run into issues when robots have to be
pulled from other paths to fully explore long paths. In that
case, RDA shows the plateaus in coverage rate because the
robots are having to traverse longer paths to complete one
path before going back to complete the exploration of an-
other. In an environment such as an office building, which

is primarily made up of corridors with single room offices,
RDA would have the advantage, because many rooms would
then be explored at simultaneously, without long paths re-
quiring lots of sentries. SEA does not do as well in this
case, because it still allows only one robot to move at a time,
so adding more robots does not provide the same benefit in
time to completion as is seen in RDA.

Conclusion

We have presented here two distributed algorithms for multi-
robot exploration of unknown environments. Both algo-
rithms make use of their communication signal intensity to
direct the movement of the robots, and beacons are used to
mark explored areas in the environment in addition to creat-
ing a trail to the entrance and other points of interest within
the environment. We have provided formal proofs that each
of the algorithms will allow a team of robots to fully explore
the environment, so long as at least one member of the robot
team is still functional at the end of the exploration. Since
space exploration is, by nature, exploration of unknown en-
vironments, we feel that our algorithms can provide promis-
ing means of utilizing small teams of rovers. In addition,
the ability of the algorithms to function even with commu-
nication restrictions, while also keeping communication a
priority, meshes well with intermittent and limited commu-
nication between such robot teams and human operators on
Earth.

In future work, we plan to test the algorithms in other
types of environments that include multiple loops, very large
open areas, and many short paths. We will also run experi-
ments with physical robots, and bring human interaction into
both the exploration stage to make changes to the robots’
planned course of exploration, such as to prevent a robot
from trying to traverse a hole.

References

T. Arai, E. Pagello, and L. E. Parker. Guest editorial ad-
vances in multirobot systems. Robotics and Automation,
IEEE Trans. on, 18(5):655-661, October 2002.

M. A. Batalin and G. S. Sukhatme. The design and analysis
of an efficient local algorithm for coverage and exploration
based on sensor network deployment. Robotics, IEEE Trans.
on, 23(4):661-675, Aug. 2007.

W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider.
Coordinated multi-robot exploration. Robotics, IEEE Trans.
on, 21(3):376-386, June 2005.

H. Choset. Coverage for robotics — a survey of recent results.
Annals of Mathematics and A.1., 31:113-126, 2001.

J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage
control for mobile sensing networks. Robotics and Automa-
tion, IEEE Trans. on, 20(2):243-255, April 2004.

A. Dirafzoon, S. Emrani, S. M. Amin Salehizadeh, and
M. B. Menhaj. Coverage control in unknown environments
using neural networks. Al Review, pages 237-255, 2012.

P. Fazli, A. Davoodi, P. Pasquier, and A. K. Mackworth.
Complete and robust cooperative robot area coverage with

limited range. In IEEE/RSJ Int’l Conf. on Intelligent Robots
and Systems, pages 5577-5582, 2010.

D. W. Gage. Command control for many-robot systems. In
19th AUVS Technical Symposium, pages 22-24, 1992.

A. Howard, M. J. Mataric, and G. S. Sukhatme. Mobile
sensor network deployment using potential fields: A dis-
tributed, scalable solution to the area coverage problem. In
Proc. Int’l Sym. on Distributed Autonomous Robotic Sys-
tems, pages 299-308, 2002.

E. A. Jensen and M. Gini. Rolling dispersion for robot
teams. In Proc. Int’l Joint Conf. on Artificial Intelligence,
pages 24732479, 2013.

S. Koenig and Y. Liu. Terrain coverage with ant robots: a
simulation study. In Proc. Fifth Int’l Conf. on Autonomous
Agents, pages 600-607, 2001.

R. Kurazume and S. Hirose. An experimental study of a
cooperative positioning system. Autonomous Robots, pages
43-52, 2000.

Jiirgen Leitner. Multi-robot formations for area coverage in
space applications. 2009.

B. Liu, P. Brass, O. Dousse, P. Nain, and D. Towsley. Mobil-
ity improves coverage of sensor networks. In MobiHoc 05,
pages 300-308, 2005.

L. Ludwig and M. Gini. Robotic swarm dispersion using
wireless intensity signals. In Proc. Int’l Sym. on Distributed
Autonomous Robotic Systems, pages 135-144, 2006.

M. Ma and Y. Yang. Adaptive triangular deployment algo-
rithm for unattended mobile sensor networks. Computers,
IEEE Trans. on, 56(7):946-847, July 2007.

M. Mamei and F. Zambonelli. Pervasive pheromone-based
interaction with rfid tags. ACM Trans. Autonomous Adaptive
Systems, 2(2):4, 2007.

J. McLurkin and J. Smith. Distributed algorithms for disper-
sion in indoor environments using a swarm of autonomous
mobile robots. In Proc. Int’l Sym. on Distributed Au-
tonomous Robotic Systems (DARS), 2004.

NASA. The vision for space exploration. Technical Report
Technical Report: NP-2004-01-334-HQ, NASA HQ, 2004.

K. J. O’Hara, D. B. Walker, and T. R. Balch. Physical path
planning using a pervasive embedded network. Robotics,
IEEE Trans. on, 24(3):741-746, June 2008.

I. Rekleitis, G. Dudek, and E. Milios. Multi-robot explo-
ration of an unknown environment, efficiently reducing the
odometry error. In Proc. Int’l Joint Conf. on Artificial Intel-
ligence, volume 2, pages 1340-1345, August 1997.

C. Stachniss and W. Burgard. Exploring unknown environ-
ments with mobile robots using coverage maps. In Proc.
Int’l Joint Conf. on Artificial Intelligence, 2003.

E. Stump, A. Jadbabaie, and V. Kumar. Connectivity man-
agement in mobile robot teams. In Proc. IEEE Int’l Conf. on
Robotics and Automation, pages 1525-1530, May 2008.

K. M. Wurm, C. Stachniss, and W. Burgard. Coordinated
multi-robot exploration using a segmentation of the environ-
ment. In Proc. IEEE/RSJ Int’l Conf. on Intelligent Robots
and Systems, pages 1160-1165, Sept. 2008.

