
Rolling Dispersion for Robot Teams

Elizabeth Jensen and Maria Gini

University of Minnesota,
Department of Computer Science and Engineering

Abstract. Dispersing a team of robots into an unknown and dangerous
environment, such as a collapsed building, can provide information about
structural damage and locations of survivors and help rescuers plan their
actions. We propose a rolling dispersion algorithm, which makes use of a
small number of robots and achieves full exploration. The robots disperse
as much as possible while maintaining communication, and then advance
as a group, leaving behind beacons to mark explored areas and provide
a path back to the entrance. The novelty of this algorithm comes from
the manner in which the robots continue their exploration as a group
after reaching the maximum dispersion possible while staying in contact
with each other. We use simulation to show that the algorithm works in
multiple environments and for varying numbers of robots.

Keywords: multi-robot systems, robot teams, search and rescue

1 Introduction

In the event of a fire or earthquake, it is not always possible for a rescue team
to enter a building immediately, due to safety concerns for the human rescuers.
However, a team of small robots could be deployed to explore the building, locate
survivors, and mark pathways to the exits. This information can then be relayed
back to the human search and rescue team, who can use it to prioritize tasks
and plan their actions when it becomes safe for them to enter the building.

There are multiple methods for robots to explore an unknown environment.
Gage [7] proposed three categories of coverage–blanket, barrier and sweep cover-
age. In blanket coverage, the agents provide continuous coverage of every point in
the environment. Barrier coverage is often used in surveillance, where a perime-
ter is set up around an area such that nothing can pass into or out of that area
without being seen by at least one agent. Sweep coverage makes a pass over the
environment and ensures that every point has been seen at least once, but the
agents don’t stay in any one location, instead moving progressively through the
environment. Choset [4] later presented an extensive overview of coverage path
planning algorithms according to those categories. Most coverage algorithms are
focused on surveillance and usually entail creating a sensor network to provide
either blanket or barrier coverage of the environment. Attempting to provide
blanket coverage can require a prohibitively large number of robots and some
algorithms still don’t achieve full coverage.



2 Elizabeth Jensen and Maria Gini

In our scenario, blanket coverage isn’t necessary, nor is a static sensor net-
work. Since the environment is unknown, the required number of robots for full
coverage is also unknown, and, even if known, may well exceed the number of
robots available on site. Thus, we have developed an algorithm for rolling disper-
sion, in which the team of robots completes a single sweep of the environment to
locate points of interest that can be relayed to the search and rescue team. We
want the robots to disperse, while maintaining communication, and then move
through the environment as a group to ensure that each point in the environment
is viewed at least once.

Our main contribution is a novel distributed algorithm, which guarantees
that the entire environment is seen, that the robots maintain communication,
and that they return to the entry point upon completion of the task. The key
feature of the algorithm is that the robots advance as a group as they explore the
environment, leaving behind beacons to mark explored and unexplored areas, as
well as the path to the exit. The robots use wireless signal intensity to ensure
that they stay in communication with at least one other robot at all times, so
no robot gets lost or is left behind. The algorithm is fully distributed, and each
robot makes its own decisions on which behavior to execute depending on the
situation and on the robot’s current role, yet the robots operate as a team.

2 Related Work

In recent years, multi-robot systems have gained popularity due to decreases in
the cost and size of the components made possible by hardware advances [1].
There are several advantages to the use of a multi-robot system over the use of
a single robot, including cost, efficiency and robustness. A single robot can be
designed to efficiently complete its task, but it may then be suitable for only
a small set of tasks. Added functionality increases the cost, size and energy
requirements, while reducing maneuverability. In addition, if part of the robot
fails, it may fail at the entire task. In contrast, a multi-robot system comprised
of 10 or 100 smaller, individually less-capable robots, with several of each type
needed to complete the different parts of the task, can still accomplish their goal
even if some of them fail. The multi-robot system has an inherent redundancy
that increases the system’s robustness [4].

In a centralized multi-robot system, either a small set of more powerful robots
or an external controller issues instructions to the others and keeps the group
organized and coordinated. This requires less of the individual robots, but more
of the controller, and the system is also then susceptible to a complete failure if
the central controller goes down, even if the robots are still running. In addition,
a centralized approach does not scale as well, because one machine can efficiently
control only a limited number of robots at a time. It also reduces the distance
the robots can move from the central controller because they must maintain
connectivity.

In small environments, however, this can be an effective approach. Stump
et al. [22], made a single robot a base station, while the other robots formed a



Rolling Dispersion for Robot Teams 3

communication bridge as they moved into the unknown region. Similarly, Rek-
leitis et al. [20] used one robot as a stationary beacon for another robot, thus
reducing odometry error in the robot that was moving through the environment.
The centralized approach also has the advantage of providing a global map, used
by the central controller to direct the movements of the robots [3, 21, 23]. Some
previous work assumes that, if the robots do split up, they will be able to make
perfect maps of their explorations and it will be trivial to merge these when the
team regroups [9, 13], but this is actually quite difficult to achieve in practice.
These approaches require constant monitoring of the individual robots in order
to keep the map consistent and the exploration efficient. Further, the range is
limited by communication restraints.

Though a centralized system has the advantage of global maps, and thus more
knowledge to make coordination decisions, it is effective only in small environ-
ments, as it does not scale well. In contrast, distributed coverage algorithms
are designed to scale well, and can also better take advantage of the robust-
ness inherent in the multi-robot system, making them more reliable than the
centralized systems, which have a single point of failure. Much of the work on
distributed methods for coverage comes not from the multi-robot field, but from
sensor networks research. This research is applicable to multi-robot systems be-
cause of the similar nature of the problems, and the similarity of the constraints
such as limited communication, sensors and power.

Ma and Yang [16] show that the most efficient dispersion of mobile nodes is
triangular, producing the maximal overall coverage and minimal overlap or gap
in the coverage. The dispersion formation is achieved through the nodes’ local
communication, in which they determine distance and bearing to their neighbors,
so that they can move towards the optimal formation. Liu et al. [14] have shown
that repeated location updates can lead to better coverage over time. Similar
approaches by Howard et al. [10] and Cortes et al. [5] used potential fields and
gradient descent, respectively, to disperse the nodes. In simulation, both methods
effectively spread the nodes throughout the environment.

A recent trend has been to model distributed algorithms for multi-robot sys-
tems on insect behavior. The robots have very little ability individually, but
can communicate with local neighbors and use simple distributed algorithms
to arrange themselves according to a desired dispersion pattern. McLurkin and
Smith [18] have developed both a physical robot and several algorithms for dis-
persion and exploration in indoor environments. Their algorithms rely on the
robots maintaining connectivity in order to perform correctly, passing informa-
tion amongst themselves to spread out in particular patterns, such as uniform
and cluster dispersions, as well as maintaining a frontier for exploration. The
robots keep lists of their neighboring robots, and use gradients based on the net-
work of robots to direct their movement. These algorithms are similar to those in
Cortes et al., Howard et al., and Liu et al. [5, 10, 14], but allow for greater vari-
ability in the dispersion pattern, including clusters and perimeter formations.
The robots can also perform tasks such as frontier exploration and following-
the-leader, which is not considered in sensor network research. Additional work



4 Elizabeth Jensen and Maria Gini

based on insect behavior tends more towards pheromone-based algorithms [2, 11,
17, 19]. However, these often rely on items already placed in the environment for
communication and navigation. While this is simple to implement in simulation,
it is much more difficult in a physical environment, and infeasible in a disaster
scenario. Those algorithms that don’t rely on pre-placed beacons usually do not
have communication between the robots, except through the information on the
beacons. In contrast, our algorithm requires communication between the robots
themselves, and the beacons are placed as the robots explore.

Distributed systems can be deployed over a large area, and are more resilient
to failure than a single robot. Instead of a central controller issuing commands
and collating data, each robot is responsible for its own movements and data
collection, and relies only on local neighbors for coordinating exploration and
dispersion. This spreads through the entire group, so that it may seem that the
robots are working together on a global scale, but in actuality the decisions are
made individually on a local scale. Information can be passed throughout the
group, similar to the communication bridge in Stump et al. [22], but it is more
of a broadcast than a directed message along a single path. On a city-wide scale,
a search and rescue team does not need information about the entire city, but
only the few blocks under its supervision. A distributed system allows a local
group to work independently, while also sharing data with neighboring groups
as needed.

Dirafzoon et al. [6] provide an overview of many sensor network coverage al-
gorithms, both centralized and distributed, which can be applied to multi-robot
systems as well. However, many of these rely on individual robots knowing the
distance and bearing of other robots around them, which requires more sophisti-
cated sensors and defeats some of the purpose of using a team of basic robots. For
example, Kurazume and Hirose [12] developed an algorithm in which the team
of robots was split into two groups, one of which remained stationary while
the other moved, and then they traded roles. This made for effective movement
through an unknown environment, but the robots relied on sophisticated sensors
to perform dead reckoning to determine the locations of the stationary robots.
At the other end of the spectrum, there is research that has shown that a team
of robots can disperse into an unknown environment using only wireless signal
intensity to guide the dispersion [15]. This method allows the use of small, simple
robots, without the need to carry a heavy payload of sensors, so that the robots
can run longer and explore further. Smaller, simpler robots are less expensive, so
more robots can be acquired for the same task. However, attempting to provide
blanket coverage can require a prohibitively large number of robots and may still
be unable to achieve full coverage.

3 Rolling Dispersion Algorithm

In our algorithm, we wish to achieve full coverage–every point in the environment
has been viewed by a robot at least once, so that nothing is overlooked–but
we wish to do it with a team of small, basic robots. This rules out blanket



Rolling Dispersion for Robot Teams 5

coverage, due to team size, and dead reckoning methods for determining robot
locations, due to limited sensor and computational capability. We have also
chosen a distributed method so that we can take advantage of the redundancy
and robust nature of a team of robots.

Keeping the above items in mind in designing the rolling dispersion algo-
rithm, we established one major constraint on the scenario–that there are not
enough robots to provide blanket coverage of the environment. We assume that
the robots have some sort of proximity sensor to allow them to avoid collisions,
a wireless card with a minimum range of 10 meters for communication and a
means for carrying and dropping beacons (which would be small items such as
a ZigBee mote or an RFID tag). We also assume a disaster scenario, so the
specifics of the current environment are unknown, even if information for the
pre-disaster environment (such as a map) is available.

During the dispersion and exploration of the environment, each robot will
execute the algorithm and make decisions as an individual, but it will have input
from the beacons and other robots. Beacons are dropped by the robots for three
reasons. The first is to mark a path that has been fully explored, thus preventing
multiple explorations of the same area. The second is to mark the path to an
unexplored area, which was temporarily abandoned to complete exploration in
another area where more robots were needed. The third is to mark the path to the
entry/exit, so that the robots can leave the environment when the exploration
is complete.

The robots use the wireless signal not only for communication, but also to
direct their movement, both in dispersing to explore a larger area and to return
to the starting point. Wireless signal intensity can fluctuate due to obstacles
between robots, and may not be the same at every point a set distance from
the origin, but this is not critical to the operation of our algorithm. The goal
is to maintain communication, so the robots only need to know if the signal
intensity is increasing or decreasing to inform their decision on which direction
to move. This may not lead to the maximal dispersion, but suboptimal dispersion
is acceptable since our main priority is to achieve full coverage without loss of
communication.

While our algorithm uses wireless signal intensity to disperse the robots, and
beacons to mark locations, the innovation in our approach lies in the manner
in which the robots continue the exploration past the bounds of their initial
dispersion. The robots are not allowed to move in isolation, but must always stay
within communication range of the team. The highest priority of a robot that has
lost communication with the team is to reestablish that communication. When
there is an area to be explored that is beyond the reach of the robots nearby,
because they would have to move out of communication range to reach it, the
entire team of robots will move towards the unexplored area. This approach has
two main benefits. First, the robots are less likely to get lost, since they will
have a wireless signal to follow to get back to the entrance. Second, the robots
will clear each room and corridor in a methodical manner, similar to the pattern
used in law enforcement, thus reducing the likelihood of missing an area.



6 Elizabeth Jensen and Maria Gini

3.1 Algorithm Details

The robot team explores using the Rolling Dispersion Algorithm (Alg. 1). Each
robot uses information about connectivity with its neighbors and nearby ob-
stacles to choose which of the following six behaviors it will execute on each
iteration of the algorithm.

Avoid Collisions: Use the proximity sensors to avoid colliding with walls,
objects, and other robots.

Disperse: Move towards open space, checking wireless signal intensity between
myself and my sentry. If wireless signal intensity is not decreasing, change
direction and continue moving forward. Move away from beacons marking
explored areas.

Follow Path: Alert neighbors that I can fulfill the request. Concatenate my
path with that of the requester, and follow it to the requesting robot.

Guard: Stay in place and act as a sentry for other robots.
Retract: Drop a beacon to mark the explored area and return to my sentry’s

location by following the wireless signal intensity.
Seek Connection: First go in reverse to see if a connection can be reestab-

lished. If that doesn’t work, turn around and move forward, changing direc-
tion occasionally until a connection with another robot is made.

At any given time in the exploration, each robot has a status of either sentry
or explorer, but it can switch between roles as needed. The sentries provide
the backbone of the communication network and do not move while in that
role. Explorers move away from sentries guided by the wireless signal intensity,
with some directional input from their proximity sensors. An explorer becomes
a sentry when it reaches the edge of its sentry’s wireless range and there are
no other sentries or explorers that it can use to stay connected to the group. A
sentry can become an explorer under three conditions. One, if the path it was
marking has been fully explored and all robots beyond it have returned past it,
then it follows a path to an unexplored area and continues on as an explorer
there. Two, if there are no explorers left, a sentry marking an unexplored path
with no dependent robots will become an explorer and explore a different path;
the robots will return to the unexplored path it was marking at a later time.
Three, if there are no explorers left, the sentry closest to the entry, with only
one dependent sentry will become an explorer, leaving behind a beacon to mark
the path to the entrance.

All robots maintain an up-to-date connectivity graph, which is comprised of
all the robots and beacons that are within wireless range of the individual robot,
as well as a list of robots or beacons that have become disconnected from the
individual robot. This connectivity graph is shared with the robot’s neighbors on
each iteration of the algorithm, and the information may be used in the robot’s
decision to move in a certain direction. Each robot also stores its path back
to the entry (consisting of sentry and beacon IDs), its sentry, and its current
branch count, which is the number of open pathways from the robot’s current
location.



Rolling Dispersion for Robot Teams 7

Algorithm 1 Rolling Dispersion Algorithm

1: loop

2: Update connectivity graph using signal intensities
3: Share new connectivity graph with neighbors
4: Check for open paths, and update branch count

5: if I am too close to an obstacle then

6: set behavior to Avoid Collisions

7: else if I am disconnected from all neighbors then
8: set behavior to Seek Connection

9: else if I am in a dead end then

10: drop a beacon set to explored

11: set behavior to Retract

12: else if my sentry’s intensity is below threshold then

13: change status to sentry

14: set behavior to Guard

15: if my only neighbor is my sentry then

16: request additional explorers

17: else if I am an explorer approaching a beacon then

18: if the beacon is marking an explored area then

19: turn before continuing on

20: set behavior to Disperse

21: else if I have received a request then
22: if I am an explorer then
23: drop a beacon set to unexplored

24: set behavior to Follow Path

25: else if I am a sentry then

26: if my only neighbor is my sentry then

27: if I am at the entrance then

28: drop a beacon set to entry

29: else if my branch count is lower OR my path length is shorter then
30: drop a beacon set to unexplored

31: change status to explorer

32: set behavior to Follow Path

33: else

34: pass the request on to my neighbors
35: set behavior to Guard

36: else if I have reached the requesting robot then
37: set behavior to Disperse

38: else if if I am an explorer then
39: set behavior to Disperse

40: else

41: set behavior to Guard

42: Apply chosen behavior

As the robots move through the environment, they establish a path of sentries
and beacons back to the entrance. This path can also be used to guide a robot
to the edge of the explored area, which is the rolling aspect of the dispersion.



8 Elizabeth Jensen and Maria Gini

Robots retract along their path when they have completed the exploration of
that branch. During the retraction step, beacons are left at all intersections to
mark the explored area to prevent multiple explorations of the same area. These
beacons have a status of explored, which they send to any approaching robot
to let the robots know not to go in that direction. When a robot has retracted
to the beginning of its path, it then moves out along another path, which may
already have some robots exploring it, or it may be a completely unexplored
path. When all the robots have become sentries, but there are still areas to be
explored, a sentry with no dependent sentries will drop a beacon with the status
of unexplored and move to explore another path. When there are not enough
robots to both maintain the path to the entrance and continue the exploration,
the sentry at the entrance will drop a beacon to mark the path, and then move
down the path to the unexplored area. This beacon will have a status of entry, to
differentiate it from the other beacons. However, other sentries along the path to
the entrance will drop beacons set to unexplored if they are needed as explorers
elsewhere. A beacon’s status can be changed from unexplored to explored when
the robots retract past it after exploring the area.

In summary, the algorithm works by first having the robots disperse. This
movement is primarily directed by the wireless signal intensities between the
robots, as in Ludwig and Gini’s [15] work, though the robots’ direction is also
influenced by the proximity sensors, to avoid collisions. Once the robots have
reached the maximum dispersion coverage without losing communication with
at least one other robot, the majority of the robots will stay in place, while a few
leave their frontier and move along another path to complete the exploration of
that path. When a path has been fully explored, those robots will retract until
they reach a robot that marks an intersection with unexplored paths, dropping
beacons as appropriate, and then continue along one of the unexplored paths to
complete the exploration. When there are no more paths to explore (i.e. every
point in the environment has been covered at least once), the robots will retract
to the entry.

3.2 Algorithm Example

We provide here a detailed example of how the algorithm works in the envi-
ronment of Figure 1. The letters denote locations where the robots are likely
to stop, and the numbers denote doorways. We will use six robots, identifying
them as R1 through R6. In practice, the robots are not likely to stop exactly
at a doorway, or in the center of the corridor or room. However, this example
is intended to demonstrate the basic concepts of the algorithm, so for ease of
illustration, we have laid it out on a grid system.

At the start, all the robots will be located around location A. R1 will act
as the first sentry and stay at the entry. There are two potential paths from
there–through doorway 1 or to location B. R2 will move to location E and stay
there as a sentry, with one open path (location F). R3 will move to location B

and stay there, with two open paths (doorway 2 and location C). Both robots
will call for additional explorers. Since R2 has fewer open paths, R4 will move



Rolling Dispersion for Robot Teams 9

Fig. 1: A small example environment. Letters are locations where robots might stop
and numbers are doorways. Circles with identifiers in them are robots.

Fig. 2: Initial dispersion is complete. Robots are shown as circles with identifiers inside
and explored beacons are shown as smaller, red circles.

to location E and then on to location F. From there, R4 will be able to connect
to R3, and, since they have different sentries, R4 will move towards doorway 2

and leave a beacon set to explored, and then move back to location F. Now both
R3, at location B, and R4, at location F have only one open path each. Both
will request additional explorers, but R4 has the longer path. Therefore, R5 will
move out to location F and then on to location J, where it has two open paths
(locations I and K). R6 will follow R5’s path and then move on to location I,
where it finds itself in a dead end. R6 leaves a beacon set to explored and returns
to location J, where R5 has updated its branch count to 1. R6 then moves to
location K, where it has two open paths (doorway 6 and location L). Figure 2
shows the dispersion at this point.



10 Elizabeth Jensen and Maria Gini

A request for more explorers reveals that there are no explorers left. Since
R3 is at the end of its explored path, and has a branch count of 1, which is less
than R6’s branch count, it drops a beacon set to unexplored and follows the path
to R6 (A-E -F -J -K ). R3 continues on to location G where it has one open path
(doorway 3). Again, there are no free explorers, so R1 drops a beacon set to
entry and follows the path to R3 (E -F -J -K -G). R1 then moves to location C,
and from there it can detect the beacon at location B, so it moves a bit towards
location B and drops a beacon set to explored and then returns to location C,
where it has one open path (location D). Another explorer is needed, so the
process is repeated to bring R2 from location E past R1 to location D, R4 from
location F past R2 to location H and R5 from location J past R4 to location L.
Once there R5 detects R6 at location K. The current state of the dispersion is
shown in Figure 3.

Fig. 3: The robots have fully explored the environment. Robots are shown as large
circles with identifiers inside, unexplored beacons are shown as small green circles and
explored beacons are shown as small red circles.

R5 then drops a beacon set to explored and begins retracting. The robots
retract along the path to the entrance (L-H -D-C -G-K -J -F -E -A), with each
sentry waiting until the only robot it can hear is its sentry before dropping a
beacon set to explored and moving towards its sentry. The unexplored beacons
at locations J, F, and E provide the path between R6 (at location K) and the
entry beacon (at location A). When R6 (the last robot to retract) passes these
beacons, it resets them to explored. From location A, the unexplored beacon at
location B can be detected, so R2 approaches it (shown in Figure 4). R2 can
detect the explored beacons near location C and in doorway 2, so it sets the
beacon at location B to explored and retracts to location A. The exploration is
now complete, so the beacon at location A is set to explored and the robots exit
the environment.



Rolling Dispersion for Robot Teams 11

Fig. 4: Retraction to location A is complete, and R2 is investigating B. Robots are
shown as circles with identifiers inside, unexplored beacons are shown as small green
circles and explored beacons are shown as small red circles.

3.3 Algorithm Correctness

The primary goal of the algorithm is to achieve full coverage of the environment
by having each point in the environment viewed at least once by a robot. To
ensure that this occurs, the robots explore along a path until they are very close
to the wall in front of them (to help reach the corners) before turning around.
Additionally, the beacons are left at the explored side of an intersection to push
robots away from that path, but leaving other paths off that intersection open
for exploration. When the robots retract, they go back to the last intersection
with open paths and explore those paths before retracting further. If a path was
temporarily abandoned, the beacons will be set as unexplored, and any robots
along the path will request explorers to complete the exploration. When the
robots reach the end of the environment and begin retracting towards the exit,
if they run across a beacon marking an unexplored path, they will then complete
the exploration of that path.

One further concern in completing the exploration is preventing infinite loops,
where the robots end up going around an obstacle or cycling through a set of
rooms repeatedly. This is accomplished through the use of both beacons and
sentries. If a robot is exploring an area and comes upon a robot that was not
previously its neighbor and they have different sentries, then the robots have
reached that point from two different paths. The robot on the longer path (or
the explorer, if one is a sentry), will begin retracting, and drop a beacon to mark
an explored area. If an explorer finds a beacon marking an unexplored area, on
a path that wasn’t intentionally leading to that beacon, it begins retracting and
drops a beacon set to explored. Thus far, these two actions have been sufficient
to prevent infinite loops. A formal proof of correctness is left to future work.



12 Elizabeth Jensen and Maria Gini

Fig. 5: A simple environment with exploration partially completed. The robots (red
and blue) are moving right to left, and have dropped two beacons (green) so far.

4 Experimental Results

We ran our experiments in the Player/Stage [8] simulation environment. Each
experiment used the Pioneer robot model for the mobile robots, and a modified
Pioneer robot for the beacons. Each robot was equipped with 16 sonar sensors
and a laser rangefinder for obstacle detection.

4.1 Experiment 1: Simple Corridor

The first set of experiments used the environment in Figure 5 to test the main
properties of the algorithm. The environment has a simple topological structure,
but it is large enough to require nine robots for blanket coverage. We did our
experiments with two and four robots. It took an average of 275 and 192 seconds,
respectively, for the robots to completely explore the environment using the
rolling dispersion algorithm. The robots dropped six beacons in total, marking
the entrances to each room.

4.2 Experiment 2: Cave

In the second set of experiments, we used a cave-like environment, which is more
complicated in part because of how open the area is, and how many cycles are
possible in the exploration. Though the area to be covered is smaller than that
of the simple corridor environment, the cave environment requires ten robots
(one more than the simple environment) for blanket coverage due to the many
corners and odd angles of the obstacles. We ran these experiments with five and
eight robots. Figure 6 shows the simulation view and coverage map for the start



Rolling Dispersion for Robot Teams 13

Robot positions at start. Coverage map at start.

Robot positions at full coverage. Coverage map at full coverage.

Fig. 6: Five robots in the cave environment.

and end of a simulation run with five robots. In the simulation view, one can see
the five robots as well as their sensors’ field of view. The coverage maps show
the area that was viewed by the robots’ sensors, with locations that were viewed
multiple times shaded darker than locations that were viewed only once.

With five robots, it took an average of 170 seconds to complete the explo-
ration. With eight robots, it took an average of 161 seconds to complete the
exploration. Figure 7 shows the percentage of the environment covered over
time for three runs with five robots, and Figure 8 shows the same for three runs
with eight robots. There was a greater variability in the simulations with eight
robots, in part due to the robots interfering with each other at the start of the
simulation. This also slowed the exploration down with eight robots, so there is
not as great a difference between the times as we had expected. There are some
plateaus in the graphs, which indicate where the robots on one path returned to



14 Elizabeth Jensen and Maria Gini

Fig. 7: Percentage of environment covered over time with five robots. All three runs
complete in less than 185 seconds.

Fig. 8: Percentage of environment covered over time with eight robots. All three runs
complete in less than 210 seconds.

the start and then moved out along another path while the robots on that path
had extended as far as possible at the time.

5 Conclusions

We have developed an algorithm to disperse a small team of robots into an
unknown environment to completely explore the space while staying connected
at all times during the exploration. The algorithm requires fewer robots than



Rolling Dispersion for Robot Teams 15

would be needed for blanket coverage, but still provides the necessary informa-
tion about the environment. The algorithm makes use of beacons and wireless
signal intensity to direct the robots’ movements, and the robots move together
to explore beyond the bounds of their initial dispersion area. Our algorithm
also ensures that the robots maintain communication, and are able to exit the
environment upon task completion. Our experiments show that the algorithm
works both in a simple and orderly environment, such as a corridor with rooms
on each side, and in an open complex environment with lots of cycles and few
logical places to drop beacons.

In future work, we will test the algorithm in larger and more complex en-
vironments in simulation, such as the one shown in Figure 9, which is the full
environment from which the example environment (see Figure 1) was taken.
This environment is provided with Player/Stage, and has been used in previous
exploration and dispersion research. It has proven difficult to fully cover this
environment (requiring more than 100 robots for blanket coverage), so we feel
it makes a good candidate to show the effectiveness of our algorithm, as well as
providing a direct comparison to previous work. We will also be running experi-
ments with physical robots, including testing both 802.11 and Bluetooth signals
to see which is best suited to our purposes. These experiments are critical to
show that the wireless signal intensity can be used to disperse the robots and
maintain communication without interfering with the end goal of fully covering
an environment. We will also run experiments with different types of beacons to
determine which is most effective. In addition, we will develop formal proofs of
algorithm correctness, and models for determining the most effective number of
robots and beacons for a given scenario. Additional extensions to the algorithm
include using the beacons to guide mobile survivors to the exit, and developing
the interface and protocols for working with human search and rescue members
in performing the exploration.

Fig. 9: A complex environment. Blanket coverage requires more than 100 robots.



16 Elizabeth Jensen and Maria Gini

References

1. Arai, T., Pagello, E., Parker, L.E.: Guest editorial advances in multirobot systems.
IEEE Robotics and Automation Magazine 18(5), 655–661 (October 2002)

2. Batalin, M.A., Sukhatme, G.S.: The design and analysis of an efficient local al-
gorithm for coverage and exploration based on sensor network deployment. IEEE
Trans. on Robotics 23(4), 661–675 (August 2007)

3. Burgard, W., Moors, M., Stachniss, C., Schneider, F.: Coordinated multi-robot
exploration. IEEE Trans. on Robotics 21(3), 376–386 (June 2005)

4. Choset, H.: Coverage for robotics – a survey of recent results. Annals of Mathe-
matics and Artificial Intelligence 31, 113–126 (2001)

5. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing
networks. IEEE Trans. on Robotics and Automation 20(2), 243–255 (April 2004)

6. Dirafzoon, A., Emrani, S., Salehizadeh, S.M.A., Menhaj, M.B.: Coverage control
in unknown environments using neural networks. Artificial Intelligence Review 38,
237–255 (October 2012)

7. Gage, D.W.: Command control for many-robot systems. In: 19th Annual AUVS
Technical Symposium. pp. 22–24. Huntsville, Alabama (June 1992)

8. Gerkey, B., Vaughan, R., Howard, A.: The player/stage project: Tools for multi-
robot and distributed sensor systems. In: Proc. 11th Int’l Conf. on Advanced
Robotics. vol. 1, pp. 317–323 (2003)

9. Hazon, N., Mieli, F., Kaminka, G.A.: Towards robust on-line multi-robot coverage.
In: Proc. IEEE Int’l Conf. on Robotics and Automation. pp. 1710–1715 (May 2006)

10. Howard, A., Matari, M.J., Sukhatme, G.S.: Mobile sensor network deployment
using potential fields: A distributed, scalable solution to the area coverage problem.
In: Proc. Int’l Symp. on Distributed Autonomous Robotic Systems. pp. 299–308
(2002)

11. Koenig, S., Liu, Y.: Terrain coverage with ant robots: a simulation study. In: Proc.
Int’l Conf. on Autonomous Agents. pp. 600–607. ACM (2001)

12. Kurazume, R., Hirose, S.: An experimental study of a cooperative positioning
system. Autonomous Robots 8, 43–52 (2000)

13. Latimer IV, D., Srinivasa, S., Lee-Shue, V., Sonne, S., Choset, H., Hurst, A.:
Towards sensor based coverage with robot teams. In: Proc. IEEE Int’l Conf. on
Robotics and Automation. vol. 1, pp. 961–967 (2002)

14. Liu, B., Brass, P., Dousse, O., Nain, P., Towsley, D.: Mobility improves coverage
of sensor networks. In: Proc. Int’l Symposium on Mobile Ad Hoc Networking and
Computing. pp. 300–308. ACM (2005)

15. Ludwig, L., Gini, M.: Robotic swarm dispersion using wireless intensity signals. In:
Gini, M., Voyles, R. (eds.) Proc. Int’l Symp. on Distributed Autonomous Robotic
Systems, vol. 7, pp. 135–144. Springer Japan (2006)

16. Ma, M., Yang, Y.: Adaptive triangular deployment algorithm for unattended mo-
bile sensor networks. IEEE Trans. on Computers 56(7), 946–847 (July 2007)

17. Mamei, M., Zambonelli, F.: Pervasive pheromone-based interaction with rfid tags.
ACM Trans. on Autonomous and Adaptive Systems 2(2), 4 (2007)

18. McLurkin, J., Smith, J.: Distributed algorithms for dispersion in indoor environ-
ments using a swarm of autonomous mobile robots. In: Gini, M., Voyles, R. (eds.)
Proc. Int’l Symp. on Distributed Autonomous Robotic Systems, vol. 7. Springer
Japan (2004)

19. O’Hara, K.J., Walker, D.B., Balch, T.R.: Physical path planning using a pervasive
embedded network. IEEE Trans. on Robotics 24(3), 741–746 (June 2008)



Rolling Dispersion for Robot Teams 17

20. Rekleitis, I., Dudek, G., Milios, E.: Multi-robot exploration of an unknown en-
vironment, efficiently reducing the odometry error. In: Proc. Int’l Joint Conf. on
Artificial Intelligence. vol. 2, pp. 1340–1345. Morgan Kaufmann Publishers, Inc.
(August 1997)

21. Stachniss, C., Burgard, W.: Exploring unknown environments with mobile robots
using coverage maps. In: Proc. Int’l Joint Conf. on Artificial Intelligence (2003)

22. Stump, E., Jadbabaie, A., Kumar, V.: Connectivity management in mobile robot
teams. In: Proc. IEEE Int’l Conf. on Robotics and Automation. pp. 1525–1530
(May 2008)

23. Wurm, K.M., Stachniss, C., Burgard, W.: Coordinated multi-robot exploration
using a segmentation of the environment. In: Proc. IEEE/RSJ Int’l Conf. on In-
telligent Robots and Systems. pp. 1160–1165 (September 2008)


