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Abstract

We study the forward collective behavior problem:
how to predict swarm behavior given a problem de-
scription and high level characteristics of the robot
control algorithm. We present a differential equation
model of swarm behavior which does not require post-
hoc parameter tuning or knowledge of the nature of the
problem the swarm is working on to produce accurate
predictions. Instead, our model computes its internal
parameters directly from the problem description and
robot control algorithm characteristics. We present re-
sults showing that our model accurately predicts behav-
ior and performance in swarms of up to 12,000 robots
across a wide range of object gathering scenarios.

1. Introduction

Swarm Robotics (SR) systems consist of many ho-
mogeneous robots [1] that perform tasks in a decen-
tralized manner. Originally inspired from natural sys-
tems [2], SR systems have important properties [3]
such as scalability, emergent self-organization, flexibil-
ity, and robustness. Collectively, these properties are
the main attractive aspects of SR systems, in compar-
ison with other approaches. Previous work has devel-
oped a measurement methodology for the properties of
emergent self-organization and scalability [4, 3], and a
powerful differential equation modeling paradigm for
swarm collective behavior [5, 6, 7, 8].

Models in this paradigm operate on both the for-
ward problem, i.e., predicting collective behavior from
features of the control algorithm each robot runs [5],
and the inverse problem, i.e., incorporating design con-
straints into algorithm design in order to produce a de-
sired collective behavior [6, 9]. However, models are
not very robust, and make simplifying assumptions such
as (1) homogeneous agent distributions, (2) homoge-
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neous environments (e.g., no obstacles and/or a com-
pletely visible arena), and (3) Markov/semi-Markov
scenarios [6]. Moreover, they require post-hoc model
fitting and/or experimentally defined parameters which
are specific to the implementation of the algorithm un-
der study, and contain “hard-coded” assumptions about
the nature of the scenario they are applied to (such as
arena geometry), limiting reuse. Nevertheless, many
notable applications of various flavors of this method-
ology have appeared in the literature, demonstrating its
practical utility: the stick pulling experiment [10], the
“house hunting model” [9, 6], and ant-inspired models
that collaborate with or without communication [11, 8].
We build on these works and develop a more robust
model to solve the forward collective behavior problem.
We contribute to the SR literature as follows. First,
we eliminate 4/5 of the free parameters from previous
work [5, 12, 13], greatly reducing the need for post-
hoc model fitting, in the context of an object gather-
ing task. Second, we consider scenario characteristics
when deriving analytical expressions for the free pa-
rameters, encoding their effect within our derived ex-
pressions rather than our model, improving reusability.
Third, we provide results demonstrating our model’s ro-
bustness, its accurate predictions of swarm behavior and
performance across a wide range of scenarios in swarms
of over 12,000 robots; previous work only demonstrated
accuracy in a single scenario with < 50 robots.

2. Related Work

Development of effective strategies for a SR system
can be accelerated by drawing inspiration from natural
systems, such as ants and bees, due to their shared prop-
erties [1, 14]. SR systems are well suited when robust-
ness and flexibility are key to success, such as space.
tracking lake health, clearing space in mining, haz-
ardous material cleanup, search & rescue [15, 1, 14, 2].

Many SR systems use heuristic decision making,
rather than combining nature inspiration with math-
ematical grounding [16]. Nevertheless, heuristic ap-
proaches have been effective for robots to operate with



incomplete information and limited computing power.

To develop models of swarm behavior, SR re-
searchers have used averaging of large numbers of sim-
ulation runs to obtain empirically bounded insights into
real-world problems [4]. However, the emphasis on em-
pirical rather than rigorous mathematical models, has
been the chief impediment to a wider use of SR sys-
tems; systematically varying individual agent parame-
ters to study their effect on collective swarm behavior
is impractical, even in simulation. Mathematical char-
acterization of collective swarm behavior is much more
difficult, but provides the means to precisely predict a
priori—without the need of repetitive experiments.

In a swarm S of N robots each running a con-
trol algorithm k, robots might need to respond to en-
vironmental signals that arrive at unpredictable times;
such systems are well-modeled as asynchronous, and a
macroscopic-continuous differential equation modeling
approach for the average behavior of S in the steady
state is appropriate [6]. By representing S as a dif-
ferentiable, continuous quantity, its dynamics can be
modeled with differential equations whose variables are
the population counts associated with different roles.
We emphasize that when using macroscopic differen-
tial equation models to determine behavior of S, it is
possible that actual system behaviors are far from the
average [17]. Usually, the larger the system, the smaller
the fluctuations; the master equation [18] can be used to
calculate the deviation from the average, but such cal-
culations are often intractable, or algebraically difficult.

A promising mathematically rigorous methodol-
ogy utilizing macro- and microscopic models for group
dynamics and individual behavior over time has been
developed [5, 6, 7, 8]. It uses (1) differential equa-
tions to model the behavior of the average number
of robots in S in a given state, (2) discrete difference
equations to model the stochastic transitions between
robots states, and (3) stochastic simulation of discrete
difference equations to compute state transition rates
for all the robots. It draws on implementations of the
stochastic master equation in chemistry and statistical
physics [18], which is typically used to model expected
average behavior of systems. Through the usage of rate
constants and population fractions in each state, it is
possible to mathematically assess the general behavior
of a system under a variety of stochastic circumstances.
Most importantly, this approach has predictive con-
trol and performance guarantees—crucial components
to translating laboratory models into viable real-world
solutions without needing simulation experiments.

We study this modeling paradigm in a foraging
task where robots gather blocks across a finite operating
arena and bring them to a central location (nest) under

various conditions and constraints. Foraging is one of
the most studied applications of SR, due to its straight-
forward mapping to real-world applications [14].

3. Background: Previous Modeling Work

Previous work using Ordinary Differential Equa-
tions (ODEs) from [5, 12] defines equations for dAth(l) s

dN,(t) dN3 (¢ dB .
jf ), ;‘t( ), and #. In our model, shown later in

Section 5.1, we simplify the original equations and re-
place some parameters with mathematical derivations.
The quantities modeled are listed in Table 1.

Quantity Description
a,,0p Robot encounter rate of blocks or robots

Th,Tay  Mean robot homing time, and mean time
spent avoiding collision

N,(t)  Mean robots returning to nest with blocks

Ns(r)  Mean number of robots searching for
blocks

N (t)  Mean number of robots avoiding collision
while homing

N:,(t)  Mean number of robots avoiding collision
while searching

Bj(t)* Mean number of blocks in area j of arena
a” Robot encounter rate near the nest

B(t)”  Mean number of blocks in the arena

Table 1: Summary of ODE model components. Component with a *
is only in our model, components with a " are only in previous work.
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Figure 1: State diagram for a single robot. The Avoiding state is du-
plicated to uniquely identify the collision avoidance context: Homing
or Searching. Transition rates are described in Table 1.

Each of the high level states in Fig. 1 maps directly
to a single or a set/sequence of robot behaviors. We use
a coarse-grained approach, starting from the minimum
number of states we believe are sufficient to describe the
system dynamics. Such an approach is generally more
mathematically tractable, and if the results of the analy-
sis do not sufficiently agree with the observed collective



behavior, then additional states can be added (see [5] for
examples of model refinement by adding states).

4. Contributions

Our improved version of the model described
in Section 3 has these differentiating characteristics:

1. Structurally unbiased. We encode behavioral
dynamics into our derivation of ., ¢, rather than en-
coding them in the model. This removes implicit
knowledge of scenario characteristics and increases
reusability of the model. For instance, if the nest is in
a corner of the arena, the behavior of S near the nest is
substantially different from the behavior further away;
if we use this knowledge in the model, then it will have
limited utility on dissimilar scenarios.

2. Fewer free parameters. Existing models have
several free parameters, Ty, Ty, O, (., O, computed via
post-hoc model fitting. While they do not invalidate the
theoretical basis of the models, they limit their reuse
by requiring iterative parameter refinement. Instead we
derive analytical expressions for all parameters except
T,, from scenario characteristics, greatly reducing the
need for post-hoc model fitting; 7,, is directly com-
putable from robot controller characteristics, or other-
wise obtained via experiments with a single robot. We
reduce the number of free parameters from five to one,
and introduce the scenario collision avoidance charac-
terization L, (), which allows us to extrapolate from the
“base case” (RN), where S and objects are uniformly
distributed, to other scenarios; it can be empirically de-
termined without model fitting.

3. The spatial distribution of S and blocks is in-
cluded in the model. Previous work assumes that S is
uniformly distributed in 2D space, and that blocks are
scattered randomly, hence the models are only accurate
on random distributions (Fig. 2d). Random block distri-
butions [8, 14]are appropriate in scenarios such as order
fulfillment in a warehouse, but many scenarios cannot
be modeled by such distributions. For example, trans-
ferring material from one side of a building to another
location requires a single source (Fig. 2a) or dual source
(Fig. 2b) block distribution model [19, 3]. For evacu-
ation of civilians from a disaster zone, the block distri-
bution cannot be inferred a priori, and a power law dis-
tribution in which blocks are clustered in groups of var-
ious sizes (Fig. 2c), is appropriate [14, 3]. Finally, we
assume the number of blocks to be collected as infinite,
which maps more naturally to a steady-state behavior.

By removing most free parameters and including
the spatial distribution of S and blocks in our model,
we guarantee that the model itself describes underly-
ing characteristics of collective behavior, and is robust

2 T

(]
NTRL |’|.||
TIR R

|
L

(a) Single source (SS) object distribution, with objects
on the right and the nest on the left.

(b) Dual source (DS) object distribution, with objects
on the right and left, and the nest in the center.

(c) Power law (PL) object
distribution, with the nest
in the center.

(d) Random (RN) object
distribution, with the nest
in the center.

Figure 2: Example foraging distributions.

enough to be applied to a wide range of foraging scenar-
i0s. Our experimental results show that our model can
accurately predict swarm behavior and performance in
scenarios with the block distributions shown in Fig. 2
for swarms of up to 12,000 robots.

5. Generalized Foraging Model

Our foraging model makes the following assump-
tions that enable it to make accurate predictions of col-
lective swarm behavior in the steady state for each of
the block distributions in Fig. 2:

1. § is homogeneous, and the control algorithm
used by the robots is a Correlated Random Walk
(CRW) [20, 3], which is a random walk where
the direction of the next step is biased based on
the direction of the previous step. The bias an-
gle 6 is drawn from a probability distribution f(0)
[21]. Robots do a CRW until they acquire a block,
which they then transport to the nest using photo-
taxis (i.e., motion in response to light) at a constant



speed v;,. Robots are reactive and have no memory.

2. To reduce congestion in the nest, robots do not re-
turn to the nest center to drop their carried object.
Instead, they choose a random nest interior point
along their trajectory to treat as the center; this
shortens the distance traveled when homing by an
easily computable amount.

3. Once deposited in the nest, any collected block
is redistributed immediately in the operating area,
and the overall number of blocks remains the same
over time (there might be fewer blocks available in
the arena when some are carried by robots).

4. S has reached steady state at some ¢ > 0.

5. The swarm density py is relatively low, so the be-
havior of N robots is a linear function of the behav-
ior of the swarm with N = 1 robots. An important
consequence of this is that we ignore the effect of a
robot avoiding collision and encountering another
robot during its avoidance manuevers.

5.1. ODE Model

Let M = {SS,DS,RN,PL} be the set of scenar-
ios based on the block distributions shown in Fig. 2.
In each m € M, let the area where blocks can be dis-
tributed be a subset of the overall operating area A of
the arena. Let j = 1,...,J be the sub-areas within A
in which blocks can be distributed, each described by
a tuple (Aj,c;,d;,p;). A; is the area occupied by the
sub-area j, ¢; is the center of the sub-area, d; is the di-
mension, and p; is the mean steady state block density
within the sub-area. Then, the distributable area within
A is the union of these disjoint subsets: Ay = UA ;.

Our improved ODE model is in Eqgs. (1) to (4).
We simplified the original equations from [5, 12], re-
moved @/, and replaced o, 0,7, with mathematical
derivations. Eq. (1) describes the change in the number
of robots in the searching state. It decreases as robots
pickup blocks, or encounter other robots and switch to
the collision avoidance state. It increases as homing
robots deposit blocks in the nest, or as searching robots
exit the collision avoidance state. Eq. (2) describes the
change in the number of robots in the homing state. It
increases as robots pickup blocks, or leave the collision
avoidance state. It decreases as robots enter the colli-
sion avoidance state, or deposit their block in the nest.
Eq. (3) describes the change in the number of robots
avoiding collision with other robots.

Eq. (4) uses the described block modeling method
to capture the underlying behavioral dynamics of the
swarm. To derive it, we made the following additional
assumptions about block distribution. First, whenever
a block is redistributed all j are selected with proba-

bility proportional to the fraction of distributable area
they contain. Second, blocks are distributed uniformly
within a given j. Third, all j can hold any number of
blocks, allowing for two blocks to occupy the same lo-
cation (i.e., stacking). We note that under our steady
state assumption, Eq. (4) can be solved analytically
given B(0), and does not need to be solved numerically.

dNg(t 1 1
7s( ) = —0p— 0+ ?Nh(t)+?NZv(t) (1)
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Next we derive analytical models for 7,0y, ¢
from scenario parameters: arena geometry, number of
blocks, block distribution, etc. We do not derive 17,,, be-
cause it depends intrinsically on the interference avoid-
ance strategy employed by S and cannot be derived in-
dependently from x without additional assumptions.

5.2. Derivation of Homing Time 7,

Since searching begins from the nest, the density of
N;(r) must be greater near the nest, because robots per-
form biased random walks. Consequently, we expect
that the mean distance from the nest at which a search-
ing robot encounters a block is not the same as the mean
distance of a block from the nest. The acquisition den-
sity should fall off linearly, with the falloff moderated
by the block density within a given j, p; = B;(t)/A;.
We expect a slower rate of decay of block acquisition
distance as a function of distance from the nest within
A for lower p; than for higher. We also expect that p;
would play an exponentially moderating role only when
||x —x,|| is small, such as for RN or PL block distribu-
tions. For SS and DS distributions, where the mean dis-
tance from a block to the nest is large, the effect of p;
on block acquisition locations should be minimal.

We formulate our block acquisition probability
density function for a robot at location x in the arena
as follows, modeling the nest as a single point x,,. Our
function (Eq. (5)) is a close approximation of the occu-
pancy distribution of a single random walker perform-
ing a biased random walk [21]. C is a normalization
constant to ensure our density integrates to 1 over all j.

C
(VIx—x] - 522)?

Having defined the probability density function, we
now derive the expected acquisition location by finding

pacqj (X> = (5)




the expected values of the marginal density functions in
x by integrating Eq. (5) over all j:

E[xacq] = Z//}pacjj (x)xdxdy (6)
7 Jxdy

and similarly for y. We now write an expression for ‘L',l:

I

- (N
Vi

where vj, is the phototaxis velocity of the S, specified
in the input configuration, and Xg,,, is the expected dis-
tance from the nest. vy, is not a free parameter, because
it can be obtained from controller input configuration.
To derive 7;,, we note that under our assumption of low
to moderate pg, the homing time increases linearly with
N [5]. Specifically 7;, increases linearly with the ex-
pected value of time lost due to inter-robot interference,
averaged across all robots:

arTuV}
N
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5.3. Derivation of Block Acquisition Rate o,

For large N, S can be well-approximated as a fluid
composed of robot particles, and obeys many of the
same laws. Using this intuition, we can compute o
by computing the mean time it takes a robot starting at
the center of the nest to diffuse within A an RMS dis-
placement of HXEM ’ —XnH to the expected acquisition
location. Using the relationship between RMS displace-
ment and diffusion, we have:

L

a  2F(N) ©)
where F(N) is the diffusion constant for a swarm of
N CRW robots. An exact calculation of F(N) is out
of the scope of this paper, but we can approximate it
as shown in Eq. (10) for uniform, symmetric scenar-
ios (RN), and as F(N)/+/2 otherwise; less interaction
near the nest leads to slower diffusion. Using the results
of the RMS drift for CRW [21], and our intuition that
smaller 6 will result in quickly swarm diffusion (more
straight line motion), we have:

F(v) =N Y2Po (10)

Do
The drift is characterized by f(6) and the robot search-
ing velocity vy (a scenario parameter) as:

ve2 [T

oy = e (1£co0s20)f(6)d6 (11)

Dy

from which we can obtain D), as the D2 norm
of Eq. (11).

5.4. Derivation of Robot Encounter Rate ¢,

To derive o, we note that under our assumption
of low to moderate pg, the robot encounter rate will
be a function of o and F(N). We view Fig. 1 as a
queueing network, where robots are either performing
collision avoidance maneuvers or not. The summed in-
put/output transition rates for a state form the arrival
and service rates for the collision avoidance queue Q.
(Aea = 0} and e, = 1/7,,, respectively). Modeling Q..
as a M/M/1 queue, (at most one robot exits collision
avoidance per Az, which is reasonable if Ar is small),
we can write the following using Little’s Law [22] as:

o, = NL@—ar‘Nm(t) (12)

Tav

The second term in Eq. (12) is a corrective factor ac-
counting for robots experiencing interference due to en-
countering arena walls, not other robots, which is sim-
ply the scaled rate at which a single robot experiences
interference. We cannot use N, (¢) directly, as o, needs
to be computed a priori, but we can estimate it as a
function of o! and N (¢), using our intuition regarding
swarm diffusion:

A F(N)

Nav(t) = Now(t) ;= Lea(m) (13)

a) and N (1) are calculable from ¥ (using the results
of [21]), and are omitted here for brevity. We increase
the influence of 6 in Eq. (13) by introducing another di-
visive Dg; smaller 6 will result in more inter-robot in-
terference due to straight line motion. L., (m) character-
izes the sub- or super-linearity of Eq. (13) for a scenario
m in relation to the random (RN) scenario (see Table 2).

6. Experimental Framework

We employ a dynamical physics model of the
marXbot robot in a 3D space for maximum fidelity
(robots are still restricted to motion in the XY plane)
using the ARGoS simulator [23] I

For all experiments we average the results of 32
runs of 7 = 200,000 seconds. We run our experi-
ments with a constant pg = 0.01=1 robot/100m:?, so that
as we increase N, the size of the arena increases pro-
portionally and the level of inter-robot interactions re-
mains the same. We run our experiments in environ-
ments with single and dual source block distributions
for N=1...6,000, and N = 1...12,000 for random
and power law block distributions. We use 6 = 3¢

'0ur code is at https:/github.com/swarm-robotics/fordyca,
https://github.com/swarm-robotics/sierra-plugin-fordyca
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Figure 3: Predictions of swarm behavior: N, (¢) and N,,(¢) in single
source (SS) and dual source (DS) scenarios across N = 1...6,000.

and the scenario collision avoidance characterizations
shown in Table 2. For all scenarios but RN, we char-
acterize them to follow our intuitions: DS scenarios
exhibit comparatively superlinear interference, due to
robots moving towards the central nest from opposing
sides of the arena, contrary to SS scenarios, PL sce-
narios exhibit sublinear interference in comparison with
RN scenarios due to the spacing of the clusters from the
nest.

Scenario (m) L.q(m) Scenario (m)
RN (random) 1

SS (single source) %\%N) DS (dual source) 2L.,(RN)

Leg(m)

PL (power law) %\%N)

Table 2: Relative linearity factors used for the robot interference rate
(Lca(m)) of all scenarios in relation to RN, which is the “base case”.

7. Results and Discussion

For all scenarios, we omit predictions for Ny(r),
since Ny(t) = N — N, (t) — Nj,(t). We see strong agree-
ment between our ODE model and experimental data
for dual source (Fig. 3 red/orange) and single source
scenarios (Fig. 3 blue/green) for N,(¢), showing that it
can cope with both symmetric (dual source) and asym-
metric (single source) environments. Our model’s pre-
diction of behavior for N = 1 is off, but that it is close
enough to capture the modeled collective dynamics ac-
curately. RN scenarios are slightly less favorable than
either SS or DS scenarios, because they do not have
easily exploitable block clusters, though they are sym-
metric. Our model struggles to predict Nj,(7) with the
same accuracy at smaller scales, though it converges to
an accurate estimate at large N (Fig. 4(a) blue/green).
This is likely due to the inaccuracy with N = 1 men-
tioned above, which becomes less consequential as in-
teractive dynamics dominate at large N. Our model is
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Figure 4: Predictions of swarm behavior: Nj,(r) and Ny, () in random
(RN) and power law (PL) scenarios across N = 1...12,000.

likewise inaccurate at small N when predicting Ny, (7)
for random distributions, but this is likely due to out-
liers in our simulation runs skewing the experimental
data; we would expect a more gradual upward curve
than an aberrant spike with N ~ 60.

PL scenarios are the least favorable of all forag-
ing environments (asymmetric and without easily ex-
ploitable large block clusters); our model struggles to
predict N, () (Fig. 4 red/orange) within the 95% con-
fidence interval, and does not track the overall trend
closely. However, it captures the dynamics of inter-
robot interference, Ny, (¢), accurately, showing that our
underlying diffusion model and assumptions about lin-
earity of o, are generally accurate. This suggests that
our heuristic block acquisition probability function pro-
duces inaccurate predictions of Ny (7).

The accuracy of our model across scales and block
distributions demonstrates that we are modeling the un-
derlying behaviors in S. Given these results, accurate
prediction of swarm performance scalability and emer-
gent self-organization using [4] is possible.

8. Conclusions and Future Work

We have presented a robust ODE model for the for-
ward collective behavior problem in foraging swarms,
and shown it is accurate in a variety of scenarios in
swarms of up to 12,000 robots, demonstrating its util-
ity as an effective modeling tool which does not require
extensive parameter tuning. Future work will derive the
block acquisition density function using random walks
theory and explore a solution to the inverse collective
behavior problem: how to derive a swarm control algo-
rithm to suit a desired collective behavior.
Acknowledgments: We gratefully acknowledge the
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