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ABSTRACT
While mobile applications have greatly benefited from 2D computer
vision algorithms such as object detection and classification, there
is limited research on exploring 3D vision that is enabled by the
increasing availability of depth cameras and LiDAR scanners on
mobile devices. In this paper, we propose a hybrid mobile vision
system that intelligently combines 2D and 3D vision for improv-
ing the performance of emerging applications such as augmented
and mixed reality and volumetric content analytics. Our research
is motivated by and explores the key observation of the crucial
latency-accuracy tradeoff between 2D and 3D vision. We present a
research agenda with two principles for enhancing mobile vision
stack, complementing 3D vision with its 2D counterpart by lever-
aging their diverse resource/accuracy profiles and processing 3D
data (e.g., point clouds) with 2D vision cues for mitigating the high
computation and storage costs.
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1 INTRODUCTION
Breakthroughs in computer vision (CV), particularly deep neu-
ral networks (DNN) that significantly boost the accuracy of tasks
such as object detection & classification, scene recognition, and
semantic segmentation [2, 16, 32], have enabled various emerg-
ing applications including augmented and mixed reality (AR/MR),
video analytics, and autonomous driving [6, 20, 22]. As a pivotal
building block of the aforementioned applications, the run-time
performance of those CV algorithms and DNN models, in terms
of accuracy and latency (i.e., execution/inference time), is of the
utmost importance. Due to the high computation complexity of CV
algorithms/models, most existing work splits the pipeline of their
applications between resource-constrained end devices (e.g., smart-
phones, AR/MR headsets, and surveillance cameras) and powerful
cloud/edge servers [20, 22, 49, 50].

Recent advances in 3D data capturing techniques (e.g., com-
modity depth cameras and LiDAR scanners) make the creation of
volumetric content that consists of 3D models of the real-world sur-
roundings feasible on commercial off-the-shelf (COTS) devices such
as smartphones and tablets. The CV community has also developed
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efficient deep learning models for 3D object detection & classifi-
cation (i.e., generating 3D bounding boxes for objects of interest)
using point cloud data as the input [29, 34]. The depth information
in volumetric data offers unique opportunities for emerging mobile
applications [42]. For example, we can determine the spatial rela-
tionship between virtual and physical objects to correctly handle
occlusions and create realistic AR/MR systems with more semantic
meanings [7], especially when users freely move in 3D space and
cause dynamic changes of the occlusion relationship. Intelligent
video analytics systems of volumetric content such as point clouds
can leverage depth information for fall detection [39], the separa-
tion of occluded objects [48], accurate people counting [8], human
behavior recognition [18], etc.

In this paper, we start with a pilot study that explores the strengths
and weaknesses of 2D and 3D vision algorithms (§3). Our prelimi-
nary experimental results on a public dataset reveal a fundamental
accuracy-latency tradeoff between 2D and 3D object detection &
classification. While benefiting from the depth information in volu-
metric data, 3D vision offers higher accuracy than its 2D counterpart
by detecting occluded and farther away objects in a scene, it con-
sumes more computation resources and incurs a longer execution
time (∼10×). Moreover, volumetric data such as point clouds is
large due to its 3D nature and its compression is compute-intensive
owing to its sparsity and irregularity [12].

Motivated by the above observations, we propose a hybridmobile
vision system that strategically combines the strengths of 2D and
3D vision with two key principles. First, by leveraging the latency-
accuracy tradeoff, we complement 3D vision with 2D visual cues
for enhancing the efficiency of object detection & classification
(§4.1). More specifically, we propose hybrid input data that explores
diverse factors (e.g., the distance of objects and potential occlusion
of objects), hybrid vision tasks that fuse 2D objection detection
and 3D object classification and reduce 3D vision workload with
preprocessing using 2D vision, and hybrid computation locations
that dynamically split the execution of 2D and 3D vision models
between the client and the server. Second, we facilitate 3D vol-
umetric data processing with 2D vision features to optimize the
computation and storage overhead for volumetric content analytics,
retrieval, and compression (§4.2). For example, we index volumet-
ric content based on detected 2D bounding boxes to speed up its
analytics tasks, accelerate on-device point cloud retrieval using
2D visual features, and improve the efficacy of volumetric content
compression with inexpensive 2D vision primitives.

To the best of our knowledge, we are the first to propose a hybrid
mobile vision system that effectively combines 2D and 3D vision
to neutralize their weaknesses. Thus, our primary contribution
is to bring to the attention of mobile application developers our
key insights on the efficiency of dealing with different input data
formats for various mobile vision tasks, especially object detection
& classification and volumetric content analytics, retrieval, and
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Figure 1: The system models for mobile devices equipped with a depth camera (a) or a LiDAR scanner (b). Point clouds will
be generated directly from a LiDAR scanner or by combining RGB and depth streams. 2D/3D vision tasks and point cloud
generation can be performed by either the mobile device (Local) or the server (Remote). The vision tasks can also be split
between the device and the server (Hybrid).

compression. Our second contribution is to highlight the technical
challenges of realizing such a hybrid mobile vision system.

2 SYSTEM MODEL
We show the abstracted system models of hybrid mobile vision
in Figure 1 for devices with a depth camera or LiDAR scanner.
For Android devices (e.g., Samsung Galaxy S20 Ultra) that include
a depth camera, we can generate point clouds as 3D models for
surrounding scenes and objects from the RGB and depth streams.
Given that this operation is usually compute-intensive, it is typically
offloaded to a remote server (e.g., at the network edge) for real-time
mobile applications. Newly released iOS devices such as iPhone 12
Pro include a LiDAR 3D scanner that can directly create point clouds
on-device, although the color information could not be captured
by LiDAR. Thus, we still need to use the RGB stream to color the
points when necessary.

As shown in Figure 1, to take advantage of the latency-accuracy
tradeoff between 2D and 3D vision (§3), our proposed hybrid mobile
vision utilizes the output of 2D vision to reduce the complexity of
3D vision for tasks such as object detection & classification and
volumetric content analytics. 2D and 3D vision can be executed in
different locations by considering different application scenarios
and performance requirements, as explained in §4.1. We show three
execution modes, remote, hybrid, and local, in Figure 1 (a), for
mobile devices with a depth camera. The same partition methods
apply to devices with a LiDAR scanner as well.

3 OBJECT DETECTION & CLASSIFICATION: 2D
IMAGE VS. 3D POINT CLOUD

To motivate our proposed hybrid mobile vision, we compare the in-
ference accuracy of the state-of-the-art deep learning models for 2D
and 3D object detection & classification. We select the YOLOv4 [2]
and PV-RCNN [34] models for 2D and 3D object detection and clas-
sification, respectively. We choose the widely-used KITTI Vision
Benchmark Suite [9] that offers both 2D front-view camera images
and volumetric LiDAR point clouds for the same scenes for an apple-
to-apple comparison of the accuracy of those models. Using the
KITTI dataset, we train the YOLOv4 model released by its authors
and the PV-RCNN model released in the OpenPCDet [26] toolbox.

OpenPCDet reports the accuracy of the 2D bounding boxes gen-
erated by projecting the corresponding 3D bounding boxes to the
front-view images, which makes the comparison between YOLOv4
and PV-RCNN fair. Thus, we measure the detection accuracy of the
projected 2D bounding boxes of PV-RCNN, instead of the original
3D boxes, and compare it with YOLOv4.

Table 1 reports the inference accuracy of YOLOv4 and PV-RCNN
for three object classes, car, pedestrian, and cyclist. The KITTI
dataset classifies objects using three difficulty levels, easy, moderate,
and hard. The difficulty level is defined by considering the following
metrics, minimum bounding box height in pixel (40, 25, and 25
pixels), maximum occlusion level (fully visible, partly occluded,
and difficult to see), and maximum truncation ratio (15%, 30%, and
50%). The accuracy is calculated using the 40-point Interpolated
Average Precision metric [37]. As we can see from this table, PV-
RCNN outperforms YOLOv4, especially for the moderate and hard
difficulty levels. The only exception is the easy difficulty level for
pedestrians (71.35% vs. 74.53%). PV-RCNN performs better than
YOLOv4 mainly due to its capability of detecting occluded and
further away objects, thanks to the depth information provided in
volumetric data. As shown in Figure 2, YOLOv4 fails to detect the
car occluded by the cyclists and the cars that are further away in
the scene. YOLOv4 cannot detect the jeep, probably due to the fact
that there are only a few jeeps in the training set.

We next compare the computation resource utilization of 2D and
3D vision models. In the KITTI dataset, each point cloud contains
∼130K points, on average. To make the comparison fair, we re-scale
the 2D images to have a similar amount of pixels. Compared to
YOLOv4, PV-RCNN consumes both more main memory (12.9% vs.
6.0%) and more GPU memory (2.1 vs. 1.6 GB). Moreover, the infer-
ence time of PV-RCNN is about 10× higher than that of YOLOv4
(525 vs. 44 ms for each inference).
Summary. The above preliminary results demonstrate that 3D
vision on volumetric content offers better object detection and clas-
sification than 2D vision on images, at the cost of higher computa-
tion resource utilization. This observation motivates our proposed
hybrid mobile vision. For example, we can first conduct 2D object
detection on images to identify potential areas of interest, and then
perform 3D object detection on points that belong to those areas to
further improve the accuracy (e.g., detecting occluded objects).
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Model Car Pedestrian Cyclist
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

YOLOv4 [2] 86.43 60.52 55.82 74.53 62.99 55.81 80.93 56.04 54.05
PV-RCNN [34] 97.78 93.38 91.60 71.35 64.63 61.07 93.59 77.12 74.14

Hybrid 97.91 93.40 91.63 69.59 62.77 58.02 93.08 76.98 72.84
Table 1: Accuracy of 2D and 3D object detection & classification models on the KITTI dataset [9]. The accuracy of PV-RCNN
(3D model) is measured using the corresponding 2D bounding boxes projected on the same images for YOLOv4 (2D model).
PV-RCNN performs much better than YOLOv4 for most categories. The last row shows the preliminary experimental results
of our proposed hybrid mobile vision that leads to similar performance compared to PV-RCNN.

Figure 2: Comparison of object detection and classification,
2D (YOLOv4 on the top) vs. 3D (PV-RCNN at the bottom). PV-
RCNN can detect more occluded and further away objects
(with red labels) than YOLOv4.

4 RESEARCH AGENDA
While the 2D/3D vision synergy has been recently explored in
robotics and autonomous driving [21], it still remains largely un-
tapped for mobile applications. To enhance the mobile vision stack,
we propose the following two principles. (1) For object detection
& classification, we complement 3D with 2D vision by exploiting
their diverse resource/accuracy profiles; (2) For volumetric content
processing, we enhance 3D point clouds with 2D vision cues for
mitigating the high computation and storage costs.

4.1 Enhancing 3D Mobile Vision with 2D for
Object Detection & Classification

The measurement findings in §3 reveal the critical latency-accuracy
tradeoff between 2D and 3D vision tasks such as object detection
and classification. Balancing this tradeoff is particularly important
on mobile devices that bear limited compute power and battery life.
To realize this goal, we next describe strategies that combine 2D
and 3D mobile vision in a principled manner.
Hybrid Input Data. This approach feeds separate input data to
2D vs. 3D models. The underlying idea is to use 2D vision to handle
“easy” content and use 3D vision to tackle more challenging content.

Based on our preliminary study, we have identified several factors
that can facilitate such hybrid input data for mobile vision. (1) Dis-
tance: we can apply 2D vision to nearby content and 3D vision to
content with a further distance. Nearby objects have more details
appearing in the camera view, making their detection easier; the
missing details for far-away objects can be compensated by 3D
vision that improves the detection accuracy. Note that the distance
information is provided by depth data. The depth information can
be overlayed onto 2D images with R, G, B channels to reveal the
distance of each pixel. (2) Occlusion: we can apply 3D vision to
possibly occluded objects to improve the system performance, as
motivated by the observations in §3. Specifically, we can first run
lightweight 2D object detection that produces a series of bounding
boxes as exemplified in Figure 2. The detected 2D bounding boxes
indicate potential occlusions. For example, in the top subfigure of
Figure 2, there is an undetected car that is occluded by the two
cyclists detected by YOLOv4. We can thus feed only 3D data belong-
ing to the 2D bounding boxes to 3D object detection models. (3)
Confidence Score: similar to the procedure above, we can first run
2D vision, and then apply 3D vision to detected bounding boxes
with low confidence scores.

Our recent work DeepMix [10] takes a different approach to
effectively combine 2D images and depth data for facilitating real-
time 3D object detection on mobile headsets. After getting the
depth information of objects identified by a 2D detection & classifi-
cation model, instead of applying 3D object detection, we leverage
lightweight measurement to estimate the 3D bounding boxes of
objects of interest. By doing this, we can drastically reduce the
on-device computation overhead and make DeepMix suitable for
mobile headsets.
Hybrid Vision Tasks. Another dimension of fusing 2D and 3D
vision is to apply different vision tasks, whose synergy is expected
to achieve the desired balance between accuracy and computation
latency. Specifically, there are two opportunities that we can ex-
ploit. (1) Detection vs. Classification. In applications that require
fine-grained object detection & classification, we can use 2D con-
tent for detection (e.g., identifying the existence of an object) and
3D data for classification (e.g., inferring the detected object is a car).
Compared to directly applying 3D vision for fine-grained object
detection & classification, this approach substitutes a significant
amount of 3D vision overhead with a lightweight 2D vision work-
load, with (hopefully) little degradation of the overall classification
performance. (2) Preprocessing vs. Detection/Classification. Another
opportunity is to apply preprocessing (e.g., ground removal and
preliminary semantic segmentation) on 2D content. The result will
then be overlaid onto volumetric content to reduce the 3D vision
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workload. For example, for the scene in Figure 2, if the objects of
interest consist of pedestrians, cyclists, and vehicles, we can first per-
form ground detection using 2D semantic segmentation [24, 25, 36]
to identify the ground, and then identify a space (using the depth
channel) with up to a certain height above the ground as the candi-
date region for the objects of interest. Only data belonging to this
region will be processed by 3D vision.
Hybrid Computation Locations. 2D and 3D computer vision
tasks can be executed in different locations to balance the key
latency-accuracy tradeoff. We consider three options as illustrated
by different partition lines in Figure 1(a). (1) Local Execution where
both 2D and 3D models are executed locally on mobile devices.
In this scenario, we can leverage heterogeneous local compute
resources including CPU, GPU, DSP, and NPU that may exhibit
diverse performance for different model structures [19, 45]. (2) Hy-
brid Execution where 2D and 3D inferences take place on either
mobile devices or a nearby edge node respectively. While selec-
tive offloading [17, 43] is not a completely new idea, a challenge
here is to strategically partition the workload at the appropriate
granularity (e.g., model-level, layer-level, or frame-level partition).
Another unique challenge is to observe the dependency of 2D and
3D tasks as described above (e.g., 3D input is pruned/filtered based
on the 2D output). (3) Remote Executionwhere both 2D and 3D tasks
are performed on an edge or a remote cloud for computationally
weak devices. This scenario brings a new challenge of potentially
excessive network bandwidth for uploading both 2D and 3D data.
On most mobile devices, the 2D image stream with (R, G, B) chan-
nels and the depth stream are generated by separate cameras with
different resolutions and frame rates (Figure 1(a)), and the former
can usually produce (2D) images with higher quality and/or frame
rate than the latter. Given the high correlation between the two
streams, it is beneficial to judiciously merge the output streams
of both 2D and 3D cameras by considering the cross-stream com-
pression opportunities. On other devices equipped with a LiDAR
scanner that produces point clouds (Figure 1(b)), merging the 3D
point cloud and 2D image streams is more challenging and requires
more research. An alternative approach is to upload 2D and 3D
streams separately, and use the 2D stream as cues to facilitate 3D
stream compression, as to be elaborated in §4.2.
Additional Challenges. It is worth mentioning that the above
three dimensions (hybrid input data, vision tasks, and computa-
tion locations) can be jointly exploited. Given the large decision
space and a wide spectrum of dynamics (content, network/compute
resources, and vision models), it may be highly challenging to estab-
lish an analytical framework to decide which hybrid approach(es)
and their configurations/parameters to use. Instead, a promising
direction is a learning-based framework that makes informed deci-
sions of when, what, and how to fuse 2D and 3D vision.

4.2 Optimizing Volumetric Content Processing
with 2D Vision Features

The principle of hybrid mobile vision also applies to the processing
of volumetric content such as point clouds, which has important
use cases. (1) Volumetric content analytics. As described in §2, point
clouds are derived from RGB and depth streams and can be con-
sumed by training or fine-tuning of 3D vision models for analytics
tasks. The training recurs from time to time in order to adjust to

scene changes and data distribution shifts and incurs computation
overhead. (2) On-device retrieval for localization. Once constructed,
point clouds can be distributed to mobile devices and stored as
3D maps. At run time, the mobile device matches a point cloud of
its surrounding environment with stored point clouds for precise
6DoF localization [30]. (3) Compression of volumetric content. In
video streaming, volumetric content should be compressed before
delivery [12]. However, 3D data is known to be difficult to compress
due to its large size and irregularity [33].

The challenges are twofold: (1) Point clouds are large, e.g., tens
of MB per frame if uncompressed. This situation is exacerbated by
some recent VR apps storing large 3D scenes on devices, e.g., 20M
points in 200MB compressed [35]. While point cloud compression
is vital, it is computationally expensive. (2) Random access patterns.
For instance, training often requires to access specific object classes
in point clouds; retrieval needs to search in a large repository of
point clouds.
IndexingVolumetricContent byProjected Frustums.To speed
up content analytics, indexing has been common wisdom, where
“indexes” refer to early results that are computed at low cost and
stored alongside the full-fledged data.

The principle can be applied to volumetric content with 2D vision
as a new twist. As the server-side point cloud store ingests RGB
and depth data, it reconstructs unlabeled volumetric content while
avoiding analyzing the volumetric content for efficiency. Instead,
the system periodically samples RGB images and executes object
detection on the sampled 2D images as indexes. The 2D images
may come from the same source as the volumetric content (e.g., one
RGB-D camera) or a separate source (e.g., one LIDAR and one RGB
camera). The detected 2D objects serve as indexes, which help filter
point clouds for human analysts to inspect and label. Specifically,
from the detected 2D bounding boxes, the system extrudes viewing
frustums in the 3D space [28]. Hence, for a point cloud, our system
builds index 𝐼 = {⟨𝑓1, 𝑐1⟩, ..., ⟨𝑓𝑛, 𝑐𝑛⟩}, where 𝑓 ⊂ 𝑅3 is a 3D viewing
frustum and 𝑐 is an object class. We can store 3D points keyed by
viewing frustums and the remaining points as the scene background.
Given an object class (e.g., cyclists) requested in model training, our
system can retrieve the point clouds in viewing frustums without
loading unneeded points.
On-device Point Cloud Retrieval. A mobile device can localize
itself by matching the point cloud of its surrounding environment
with on-device 3D maps. The initial match is often the most ex-
pensive stage, where the device needs to quickly narrow down to
a small set of candidate point clouds. Exhaustive search is slow,
as it would decompress a large number of point cloud frames and
run point cloud registration algorithms such as iterative closest
point (ICP) for a pairwise match. The system may use GPS signal
as geofence, which, however, is not always available, for example,
in urban canyons where GPS signal is weak.

To speed up the initial match, 2D images offer rich visual cues,
which can be extracted with inexpensive vision primitives. The
resultant 2D features can be used for rough yet valuable estimation.
Localization with 2D features (e.g., SIFT) is well understood. When
our system constructs point clouds for 3D maps, it also samples 2D
images with their SIFT features. By aggregating the 2D features
(e.g., using bag-of-words), the system constructs global descriptors
for individual point clouds. To localize, it collects both images and
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point clouds and uses the 2D descriptors to filter candidate point
clouds for the match, therefore reducing the overhead.
Volumetric Content Compression with 2D Cues. Since volu-
metric content usually exhibits high data redundancy, it shall be
compressed where it was captured or constructed. The efficacy of
compression schemes, notably the compression ratio and speed,
hinges on a good estimation of point cloud characteristics, such
as camera motion and scene planes. Often, such information is ex-
tracted from the raw point clouds. To ensure information accuracy,
the compressor periodically samples a point cloud stream as it is
being captured. Doing so incurs substantial overhead because of
the large data volume and irregularity. To this end, we can estimate
compression parameters by processing 2D images captured near
the same time, forgoing deep processing of point clouds for estima-
tion. Fundamentally, 2D images are projections of point cloud to
a lower-dimensional space; many point cloud properties needed
for compression can be estimated by well-established 2D vision
primitives.

The 2D cues can assist multiple compression schemes:
• Cheap Plane Detection. It is common for point cloud compression
schemes such as G-PCC [33] in MPEG to store points as space
partitioning trees such as Octree where leaf nodes represent points
that fit in a 2D plane. The compressor can estimate planes from 2D
images with low-cost segmentation operators and project planes
to the 3D space.
• Adapting Voxel Granularities. Some compression schemes store
a point cloud frame as spatial cells (“voxels”) that are compressed
individually [33]. The granularities can be heterogeneous across
a frame, where “hotspots” regions such as foreground objects are
covered with smaller voxels for higher spatial resolution, catering
to deeper analytics. To this end, 2D vision can classify the scene
and detect objects for hotspot regions.
• Key Frame Selection. A compressed point cloud stream consists
of key frames and inter-coded frames in between; the inter-coded
frames only store the difference between key frames. The intervals
of key frames depend on the estimation of camera motions and
scene changes. Without analyzing the point cloud, such estimations
can be done by low-cost processing of 2D images such as optical
flow, which guides the key frame selection for point cloud streams.

It is worth noting that compressing volumetric content with 2D
cues differs from prior work of projecting volumetric content to
2D for compression. Such techniques project point clouds to 2D
space using spherical projection [41] or orthogonal projection (V-
PCC [33] in MPEG) and compress the 2D images. The information
loss is significant, since they only store the resultant 2D frames in
lieu of 3D point clouds.

5 PRELIMINARY EXPERIMENTAL RESULTS
To validate the effectiveness of our proposed hybrid mobile vision,
we implement part of the hybrid input data scheme in §4.1 and
evaluate its performance.

Our implementation includes the following. Given an input point
cloud, we first use a pre-trained YOLOv4 2D object detection model
to get the bounding boxes of detected objects on its corresponding
2D image. Since we have the camera parameters of the 2D image,
we can project 3D points onto it and check whether a specific point

falls in the detected 2D bounding boxes. By doing this, we can get
not only points that map to detected objects in these 2D bounding
boxes, but also points that belong to objects occluded by these
detected ones. Besides facilitating the detection of occluded objects,
we identify points that are 20 meters away from the origin of the
input point cloud, where the 2D image is taken. The goal is to detect
further away objects that appear to be small in the 2D image. We
then construct a new point cloud by combining the points that are
mapped to the detected 2D bounding boxes and those of remote
objects. Finally, We perform 3D object detection using a pre-trained
PV-RCNN model on this newly constructed point cloud, instead
of the original one, which could potentially decrease the inference
time due to the reduced number of points.

We report the preliminary experimental result of inference accu-
racy in the last row of Table 1, using the same KITTI dataset. Overall,
the accuracy of our proposed hybrid input data scheme is similar
or slightly worse than that of PV-RCNN, but outperforms YOLOv4
for most categories. More specifically, the inference accuracy of
the hybrid scheme for cars is almost the same as PV-RCNN, and
11.48%, 32.88%, and 35.81% higher than that of YOLOv4. The hybrid
inference accuracy for pedestrians is worse than YOLOv4 for the
easy difficulty level (69.59% vs. 74.53%), but better than YOLOv4 for
the hard difficulty level (58.02% vs. 55.81%). Finally, for the cyclist
category, the inference accuracy of our hybrid input data schemes
outperforms YOLOv4 for all three difficulty levels.

While the above implementation achieves comparable perfor-
mance with PV-RCNN in terms of inference accuracy and performs
better than YOLOv4 in general, its inference time is significantly
reduced. As mentioned in §3, PV-RCNN takes about 525ms for each
inference. It takes only around 419ms for the hybrid input data
scheme, reducing the inference time by about 20%. The reason is
that PV-RCNN’s inference time can be drastically reduced when
there are fewer points to process.

6 RELATEDWORK
RGB-Dbased 3DObject Detection.Whilemost existing schemes
of 3D object detection leverage either point clouds [29, 34] or 2D
images [4, 5] as input, there do exist schemes that combine RGB
images and depth data for 3D object detection [28, 38, 40]. For ex-
ample, DSS [38] proposes the first 3D region proposal network that
takes a 3D scene from RGB-D data to generate a 3D object proposal
and the first 2D+3D object recognition network that predicts the
object label and regresses the 3D bounding box. F-PointNet [28]
leverages 2D object detection to narrow down the 3D space and
utilizes PointNet [29] to conduct segmentation on selected 3D frus-
tums for estimating the 3D bounding box. To improve F-PointNet,
Trans3D [40] proposes a 3D object detection network to help la-
bel 3D bounding boxes with 2D box labels, by transferring the
information learned from classes that have both 2D and 3D bound-
ing boxes. Although these approaches can reduce the amount of
to-be-processed 3D data, their accuracy is usually not as good as
point-cloud-based schemes.

Augmented and Mixed Reality. Mobile AR/MR depends on
CV algorithms such as object detection, classification, recognition,
and tracking [22, 50, 52]. For example, Jaguar [50] utilized GPU-
accelerated edge to achieve accurate, low-latency object recognition
and robust, context-aware object tracking. Liu et al. [22] improved
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the accuracy and latency of object detection for mobile AR by de-
coupling the rendering pipeline from edge offloading. Existing work
also leveraged collaborations among multiple users for improving
socialization [52], recognition accuracy [23], user experience [30],
and scalability [51]. Existing work also leveraged collaborations
among multiple users for improving socialization, recognition accu-
racy, and user experience [52]. More recent work on mobile AR/MR
started to investigate the 3D effects of virtual content and the im-
plications of 3D models on our daily life [30, 53]. For example,
Xihe [53] is an edge-assisted framework that provided accurate
omnidirectional lighting estimation using mobile 3D vision for AR
applications. Our proposed hybrid mobile vision facilitates the un-
derstanding of 3D surroundings for mobile AR/MR applications by
intelligently combining 2D and 3D object detection & classification.
Video Analytics. A typical video analytics pipeline [6, 20, 46, 49]
consists of a data transmission scheduler and a vision process-
ing engine. The scheduler determines what data will be sent to
the server and how frequently to send these data. The decision is
made by applying binary classification models, motion and object
detection [49], or low-level vision features [20], all of which are
typically lightweight. The back-end of those systems benefits from
various deep-learning-based 2D object detection and classification
models. For example, DSS [6] used Faster R-CNN [32], whereas AW-
Stream [46] employed YOLOv2 [16]. Existing systems usually focus
on one (or more) of the following optimization objectives, query
latency (e.g., Focus [13]), scalability (e.g., Jain et al. [14]), server
resource utilization (e.g., VideoStorm [47] and Chameleon [15]),
inference accuracy (e.g.,DDS [6]), and bandwidth consumption (e.g.,
AWStream [46]). To the best of our knowledge, there is no existing
work on video analytics of volumetric content. In this paper, we
propose hybrid mobile vision that explores the accuracy-latency
tradeoff between 2D and 3D vision to facilitate video analytics of
volumetric content.
Video Storage. Existing systems focus on 2D visual data, such
as Facebook’s Haystack [1] and Intel’s VDMS [11, 31] that store
images rather than videos. NVIDIA’s Video Loader [3] optimizes
random loads of encoded video frames. Scanner [27] organizes
video collections and raster data as tables and executes pixel-level
computations in parallel. Our own work VStore [44] controls 2D
video formats for queries. All these 2D video systems are inadequate,
as they are oblivious to volumetric data structures and therefore
incapable of coping with high data volume and computation cost.
We are unaware of any prior analytics systems designed specifically
for volumetric content.

7 CONCLUSION
In this paper, we proposed a research agenda for hybrid mobile
vision that complements 3D vision tasks such as object detection
and classification with its 2D counterpart and optimizes 3D data
processing with 2D vision cues for reducing the computation and
storage overhead. Our research is motivated by the observation
that although 3D vision bears better accuracy than 2D vision, it
leads to higher resource utilization and computation latency due to
the 3D nature of volumetric data. Given the increasing popularity
of depth cameras and LiDAR scanners on mobile devices, we hope
our proposed research can inspire more work for advancing the
mobile vision stack.
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