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Abstract

We describe a monadification process for attribute grammars
for more concisely written attribute equations, closer to the
style of inference rules used in traditional typing and evalua-
tion specifications. Inference rules specifying, for example, a
typing relation typically consider only typable expressions,
whereas well-defined attribute grammars explicitly deter-
mine attribute values for any term, including untypable ones.
The monadification approach lets one represent, for exam-
ple, types as monadic optional/maybe values, but write non-
monadic equations over the value inside the monad that
only specify the rules for a correct typing, leading to more
concise specifications. The missing failure cases are handled
by a rewriting that inserts monadic return, bind, and failure
operations to produce a well-defined attribute grammar that
handles untypable trees. Thus, one can think in terms of a
type T and not the actual monadic typeM(T ). To formalize
this notion, typing and evaluation relations are given for
the original and rewritten equations. The rewriting is total,
preserves types, and a correctness property relating values
of original and rewritten equations is given. A prototype
implementation illustrates the benefits with examples such
as typing of the simply-typed lambda calculus with Booleans,
evaluation of the same, and type inference in Caml Light.
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Expr: t ::= x (variable)
\x:T. t (abstraction)
t t (application)

Type: T ::= T → T (arrow type)

Γ;x : T1 ⊢ body : T2

Γ ⊢ λx : T1. body : T1 → T2
(T-Abs)

Γ ⊢ f : T11 → T12 Γ ⊢ a : T11

Γ ⊢ f a : T12
(T-App)

Figure 1. Syntax of the simply-typed lambda calculus and
inference rules for typing abstractions and applications.

1 Introduction and Motivation

Inference rules used in specifying type systems [20] and in
structural operational semantics (SOS) [21] provide a clear
and concise method for describing analyses over program-
ming languages in part because only the cases where the
analysis is successful are explicitly considered. For example,
in typing a program, only rules for identifying well-typed
programs are considered; the drawback to this approach is
that this does not give any feedback when the program is
ill-typed and thus there exists no typing derivation for the
program. Contrast this with attribute grammars (AGs), which
evaluate attributes for all syntax trees, even for ill-formed
trees such as when there is a type error. This is necessary
for providing feedback on erroneous programs, but handling
error cases explicitly clutters the specification, obscuring the
cases where the analysis succeeds and making reasoning
about the specification more difficult. Monads in functional
languages provide a mechanism for handling error cases im-
plicitly, but are still more verbose and less straightforward
than inference rules. The work presented here allows for
the writing of specifications with the concision and clar-
ity of inference rules; these are rewritten to insert monadic
operations to handle errors (monadification). This provides
specifications that enjoy the benefits of both approaches.

Motivating Example. In Figure 1, we consider typing
and evaluation in the simply-typed lambda calculus with
Boolean operations. In this figure are two inference rules
for typing abstractions (λ-expressions) and function appli-
cations. The T-Abs rule cleanly and concisely describes the
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1 arrow: ty:Type ::= in:Type out:Type { }

2 abs: t:Expr ::= x:String Ty:Type body:Expr

3 { body.env = (x,Ty) :: t.env;

4 -- using just and nothing directly

5 t.type = match body.type with

6 | just(T2) -> just(arrow(Ty, T2))

7 | nothing() -> nothing()

8 -- using explicit monads

9 t.type = body.type >>=

10 (\T2:Type. return(arrow(Ty, T2)))

11 -- using do-notation

12 t.type = do { T2 <- body.type;

13 return (arrow(Ty, T2)) }

14 -- using implicit monads

15 t.type = arrow(Ty, body.type) }

Figure 2. Attribute grammar productions for types and vari-
ous equations for typing abstractions in the λ-calculus. Here
the attribute type has type Maybe(Type).

case when an abstraction is typable, making it easy to read
and reason about. It states that if the typing environment Γ
extended with the binding giving x the type T1 can be used
to show that the body of the λ-abstraction has type T2, then
the abstraction will have type T1 → T2. Unfortunately, if the
abstraction is not typable, this rule gives us no information.

In Figure 2 we show four attribute grammar equations for
defining the type of an abstraction to illustrate the monad-
ification process proposed in this paper. On line 1 is an
(abstract) production for representing function types, cor-
responding to that in Figure 1. Next is the production for
abstractions. Here production names precede the produc-
tion signature, where nonterminal symbols are labeled for
accessing attributes on the corresponding tree nodes in the
production’s equations. The first equation, for body.env on
line 3, specifies the typing environment, represented as a list
of pairs of names and types, for the body of the abstraction;
it has the abstraction’s bound name (x) and the type of this
name (Ty) added to the environment given to the abstraction
itself (t.env). Because AGs must handle trees that may not
be typable, the type of the type attribute on expressions
is Maybe(Type) which encodes success as a just(_) value
and failure as nothing(). The equation on lines 5ś7 defines
the type attribute for abstractions by pattern matching on
body.type. If the body was successfully typed, this value is
just(T2) for some type T2, and we can successfully type
the full abstraction as the function type arrow(Ty, T2),
wrapped in just(). If the body was not typed, body.type
is nothing(), then the abstraction cannot be typed, so the
result is nothing(). While this is complete, the failure case
and the necessity of considering whether something was a

just() or a nothing() interferes with understanding the
success case and makes any reasoning about it more difficult.

The equation on lines 9ś10 makes explicit use of Maybe()
as a monad. A monad datatype M(T) includes operations
≫= : M(T) → (T → M(S)) → M(S), called bind, which
unwraps a value and provides it to a function or propagates
failure, and return : T → M(T). For the Maybe()monad, if
the monadic value to bind is just(v) it applies the function
argument tov , otherwise it returns nothing(). This matches
the behavior in the previous case. While it hides the failure
case, the bind and function are a bit clumsy and obscure the
intention slightly.
Lines 12ś13 are based on Haskell’s do-notation for eas-

ier specification of monadic computations. This is better
than the explicit case above, but we need to give a name to
body.type instead of just accessing the type directly.

The final equation on line 15 uses monads implicitly. The
monadification process described in this paper will rewrite
this t.type equation to something similar to what is on
lines 9ś10, providing both success and failure cases, but
without the need to write anything but the success case, as
in traditional inference rules.

Example: Typing andErrorReporting. In attribute gram-
mars, equations for reporting type errors often end up du-
plicating the structure of equations for typing, since both
are looking to identify situations where the production is ty-
pable and where it is not. We can reduce the redundancy by
using an Either type. Similar to the Maybe type, a value of
type Either(S, T) is often thought of as having a result of
type T in right(_) or an error message of type S in left(_).
This allows us to use the typing equation to generate a type
when it is typable, or an error message when it is not.

Since Either can also be formulated as a monad, our
rewriting allows us to use values of an Either type implicitly
while still generating error messages. This is shown in Fig-
ure 3. The type attribute has type Either(String, Type),
but we are able to use it as if it had type Type. We write a
match expression which gives a type when it is typable but
also generates error messages for the cases where both t1

and t2 are typable but the overall application is not. The
errs attribute can then identify a new error by checking
whether the application has a type and whether its children
have types. These two equations give us good error messages
without duplicating the typing structure or requiring us to
consider error cases from further down in the tree.

Attribute Monadification. Our scheme is built on hav-
ing differentmodes of attributes, wheremodes dictatewhether
one is allowed to use monads implicitly or explicitly. Two of
these modes can be seen in Figure 3. The type attribute is in
the implicit mode because it treats the Eithermonad implic-
itly. The errs attribute treats the Either monad explicitly
by matching on left and right. This is the unrestricted
mode. The third mode, restricted mode, also treats monads
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1 app: t:Expr ::= f:Expr a:Expr

2 { t.type = match f.type with

3 | arrow(T1, T2) when T1 == a.type -> T2

4 | arrow(_, _) -> left("App type mismatch")

5 | _ -> left("Non-function applied")

6 t.errs = match t.typ, f.typ, a.typ of

7 | left(s), right(_), right(_) ->

8 [s] ++ f.errs ++ a.errs

9 | _, _, _ -> f.errs ++ a.errs }

Figure 3. Typing and error-reporting equations for applica-
tion where the type attribute has type Either(String, T)

so that typing failures can include an error message.

explicitly, but may not access implicit attributes. The three
modes are necessary for us to be able to relate the properties
of the attribute grammar before and after the rewriting. The
relationship between the two is important for ensuring our
rewriting does not change the intended semantics.
Our goal with this rewriting is to allow a programmer

to think about expressions and values of a monadic type as
if they were not monadic, ignoring, to a large degree, the
presence of the monad. In Figure 2, the equation on line 15
uses an attribute of type Maybe(Type) as if it had type Type.
The resulting equation is similar to the inference rule T-Abs
in Figure 1. Similarly, in Figure 3, we use the type attribute
as if it simply had type Type. We do not completely ignore
the presence of the monad here, since we use it to output
error messages, but we are able to ignore it in determining
typability and in giving the resulting type.

To be able to handle error cases and other effects in evalu-
ating equations in the attribute grammar, we rewrite equa-
tions for implicit attributes, translating them into the base
attribute grammar language that the other modes use. This
rewriting completes the clauses of match expressions when
they do not match all possible values. It also inserts monadic
operations to create an expression typable in the base lan-
guage. Our rewriting process translates each equation for
an implicit attribute while leaving equations for restricted
and unrestricted attributes as they are, since they are already
valid in the base language.

We want to ensure that the semantics written while ignor-
ing monads in the implicit mode are valid after the rewriting,
and that the rewriting process itself is not problematic. To
be able to formalize these properties, we define typing and
evaluation rules for the extended language including the
three modes of attributes, which we relate to the same for
the basic language after the rewriting.

The properties state that rewriting preserves the types of
the expressions and equations it processes, rewriting is total
on equations that are typable in the extended language, and
rewriting preserves evaluation results, so an equation which

evaluates to a value will have its rewritten version evaluate to
a related value, and vice versa, e.g. relating v with just(v).
Because of these properties, it is valid to think about the
semantics of a language defined by an attribute grammar by
ignoring the presence of a monad. This allows us to prove
properties of language semantics using the simple equations
before rewriting, and have them apply to the semantics of
the equations the rewriting gives us.

Contributions. We present, in Section 3 a method for
writing attribute equations that allows one to largely ignore
the presence of a monad, thinking in terms of the type it con-
tains. This includes a notion of attribute modes and rules for
interpreting expressions using monads in an implicit fashion.
In Section 4 we present a rewriting process to monadify such
expressions and equations. In Section 5 we present prop-
erties to show our rewriting is correct with respect to the
semantics of the extended language. Section 6 describes our
prototype implementation in Silver, of which an artifact is
available, and discusses the effectiveness of our scheme in
practice. We describe related work in Section 7 and close in
Section 8, discussing points of our work and possible future
extensions.

2 Background

We first provide some background on attribute grammars,
the typing and evaluation rules for them, and monads.

2.1 Attribute Grammar Paradigm

Attribute grammars [19] have a long history, beginning
with Knuth [14]. An attribute grammar associates attributes
with nodes in an abstract syntax tree to compute analy-
ses on the program it represents. An attribute grammar
AG = ⟨G,A,@, Γ,EQ⟩ consists of several parts. The gram-
mar G contains a set of nonterminal types (NT ), primitive
types (such as integers, and strings), and productions. A pro-
duction has the form pn : x0 : T0 ::= xi : Ti where pn is the
production name, x0 is the label on the node (of nonterminal
type T0) the production builds, and each xi refers to a child
argument to the production of type Ti (either a nonterminal
type or a primitive type).
The set A contains all attributes, each of which has a de-

clared type. An attribute is either inherited or synthesized;
inherited attributes are given to a node from above to pro-
vide information about the node’s context, such as a typing
context, while synthesized attributes are defined by the node
itself to pass information up, such as the type of the node.
The @ occurs-on relation (@ ⊆ A × NT ) indicates which
attributes decorate which nonterminals. The typing envi-
ronment Γ maps production names and attributes to their
types; it is used and extended in the typing rules below. Note
that in the sample AG specifications in the paper we leave
out nonterminal and occurrence declarations since they can
be inferred. Finally, EQ is the set of equations of the form
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x j .a = e , where each equation belongs to a specific pro-
duction. Equations in a production may define synthesized
attributes on the current node (x0) or inherited attributes on
children (xi , i > 0). They may also define local attributes,
values local to the current production used to help define
other attributes, or inherited attributes on these.
Since Knuth, many extensions [2, 7] to AGs have been

made. These include higher-order attributes (such as type
of nonterminal type Type) which allow (undecorated) syn-
tax trees to be passed around as attribute values and then
decorated and used [25].

2.2 Attribute Grammar Typing and Evaluation

Our expression language for writing equations can be viewed
as a functional programming language, with the addition of
the construct for accessing attributes. Due to this, most con-
structs and their rules for typing and evaluation are familiar.

Typing. Our expression typing relation, written Γ ⊢ e : τ ,
indicates that, under typing environment Γ, expression e has
type τ . In typing equations and expressions, Γ is as above but
extended to include node labels and their types based on the
production signature of the equation. The typing rules are
as expected for common constructs such as conjunction and
pattern matching, but a collection is shown in Appendix A.1.
The main rule of interest, as the one not found in normal
functional languages, is T-AttrAccess, found in Figure 4.
This requires the expression on which the attribute is ac-
cessed be typable, the attribute have a declared type, and the
attribute be declared to occur on the type of the tree. The
access then has the type of the attribute.
We also have a typing relation over equations with one

rule, T-Eq, also found in Figure 4. This rule checks that the
tree is known, the attribute has a type, the attribute occurs
on trees of the tree type, and the expression defining the
attribute has the attribute’s type.

Evaluation. Evaluation of expressions in attribute equa-
tions is specified in the style of big-step semantics, with a
judgment of the form γ ⊢ e ⇓ v indicating that, under the
value store γ , expression e evaluates to value v . The store
γ is extended or changed, as expected, when evaluating let-
expression bodies or closures to map the introduced names
to values. As above, for most constructs these are exactly
as expected, but a few are shown in Appendix A.2. For at-
tribute grammar-specific concerns, the store also maps the
labels of nonterminals in a production to tree nodes so at-
tribute values can be accessed and is initiated as such when
the equation is evaluated. A tree node, tn, is simply another
store mapping attribute names to values. The only interest-
ing evaluation rules, from an attribute grammar perspective
are E-AttrAccess, E-Eq, and E-Eq-Store, all in Figure 4.
In E-AttrAccess, when e evaluates to a tree node tn, the
attribute value can be looked up in tn. Since we later discuss
properties of the rewriting process in terms of equations, the

Γ ⊢ e : τ1 Γ ⊢ a : τ2 Γ ⊢ a@τ1

Γ ⊢ e.a : τ2
(T-AttrAccess)

t:NT ∈ Γ Γ ⊢ a : τ Γ ⊢ a@NT Γ ⊢ e : τ

Γ ⊢ t.a = e OK
(T-Eq)

γ ⊢ e ⇓ tn (a,v) ∈ tn

γ ⊢ e.a ⇓ v
(E-AttrAccess)

γ ⊢ e.a ⇓ v

γ ⊢EQ t.a = e; ⇓ v
(E-Eq)

γ ⊢EQ t.a = e; ⇓ v γ ⊢ t ⇓ tn

tn ← (a,v)
(E-Eq-Store)

Figure 4. Basic typing and evaluation rules for attribute ac-
cesses and equations. Other rules in the expression relations
are as expected in any functional language.

rule E-Eq evaluates an equation to the value of its expression.
The process of determining an order for evaluating equa-
tions and storing attributes in tree nodes is orthogonal to the
work in this paper. It could be driven by a schedule as used
in ordered attribute grammars [13] or the demand-driven
approach [9] used in systems such as JastAdd, Kiama, and
Silver. Nevertheless, the rule E-Eq-Store can be used to
update a tree node tn so the computed attribute value can
be looked up in an evaluation of another equation.

We will abuse notation slightly and write γ ⊢ e ⇓ ⊥ when
there is no evaluation derivation for e .

2.3 Monads

A monad [16] is a type constructor with two special oper-
ations, bind (written infix as≫=) and return. Monads are
useful for handling effects in functional languages, and can
be generally thought of as the result of a computation [26] or
as a box holding zero or more values. Throughout this work,
we will write a generic monad over the type T as M(T). An
example of a monad is Maybe. The type Maybe(T) has two
constructors, just of type T → Maybe(T) and nothing of
type Maybe(T). Maybe can be used to represent a computa-
tion which may not succeed, such as assigning a type to an
expression. Another example is Either(S, T) for a particu-
lar S. The Either(S, T) type has constructors left of type
S → Either(S, T) and right of type T → Either(S,

T), often viewed as representing a failure with some kind of
error message of type S or a result of type T.

Bind has type M(T1) → (T1 → M(T2)) → M(T2). Bind-
ing a value into a function can be viewed as taking the result
of a computation and using it in another computation, the
given function, or as taking a value out of a box and applying
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the function to it. The second operation, return, has type
T → M(T). This wraps a value to create an instance of the
monad. For Maybe, binding a just takes the value out of the
just and applies the function to it (just(x) ≫= f = f x ).
Binding a nothing results in a nothing. The return opera-
tion wraps its argument in just. The operations for Either
are similar to those for Maybe, with bind either unwrapping
and applying the function for right or giving the same left
value back, and return wrapping its argument in right.

Another monad operation is fail, representing a failing
computation or an empty box. For some monads, like Maybe,
it can be viewed as a single value (nothing). For others, it
is a function which takes an argument, as with Either’s
left. We will write fail as a value throughout, with the
understanding that it may sometimes require an argument.

For a monad to be valid, there are some laws which it must
follow. The left identity law requires that (return a ≫= f)

= f a, and right identity requires (m ≫= return) = m.
Bind must also be associative. The fail operation must be a
zero of bind, meaning fail ≫= f = fail.

MonadicContainment. Our rewriting is concernedwith
monads which fit the view of a box containing at most a sin-
gle value. We define a relationv ∈M v ′ wherev ′ is a monadic
value and v is a value in the box v ′. We use this definition
to define how to think about evaluation using implicit mon-
ads prior to rewriting. For the monads we have discussed,
we have v ∈M just(v) and v ∈M right(v). Any monadic
value which does not contain a value is a monadic failure,
possibly distinct from fail, since it is a value of type M(T)
but has no values of type T associated with it.
Our final property, named evaluation correctness, will

require this monadic containment relation to satisfy some
properties in relation to the monadic operations because we
will use monadic containment to define evaluation before the
rewriting. Any monad for which a definition can be given
satisfying these requirements will also satisfy our properties.
The first is that failmust not contain any values (¬∃v .v ∈M
fail). Secondly, if there is a value contained in the result of a
bind (v ∈M (m ≫= f )), there must be a value contained in
the original monadic value (∃v . v ∈M m). Next, if a value is
contained in a monadic value (v ∈M m), the result of a bind
is the function applied to this value (m ≫= f = f v). This
requirement implies that there is at most one value contained
in a monadic value. Finally, a value must be contained in
the return of it (v ∈M return v). These requirements fit
the view of a monad as a box, with bind operating on the
value inside the box and fail as an empty box. An intuitive
definition of containment should satisfy these requirements,
as long as it only defines a single value as being contained.
Lists are also monads, but their normal implementation

would not satisfy the requirements above, due to the third
requirement. We further discuss lists, their uses, and their
challenges in Section 8.

1 restricted inh attr env : [ (String, Type)];

2 implicit syn attr type : Maybe(Type);

3 unrestricted syn attr errs : [String];

4 app : t:Expr ::= f:Expr a:Expr

5 { f.env = t.env; a.env = t.env;

6 t.type = match f.type with

7 | arrow(T11, T12)

8 when T11 == a.type -> T12;

9 t.errs = f.errs ++ a.errs ++

10 match f.type, a.type with

11 | just(arrow(T11, T12)), just(T2) ->

12 if T11 == T2 then []

13 else ["Type mismatch"]

14 | just(_), _ -> ["Non function applied"]

15 | _, _ -> []; }

16 var : t:Expr ::= x:String

17 { t.type = lookup (t.env, x);

t.errs = ... ; }

Figure 5. Using 3 attribute modes for typing and error re-
porting of function application and variable reference.

3 Implicit Monads in Attribute Grammars

Here we discuss the three different attribute modes in our
scheme to develop an intuition for how they are related. We
also introduce formal evaluation and typing rules for the
three modes of attributes and describe how they relate to
the intuition for their use.

3.1 Attribute and Equation Modes

Our scheme includes three different modes of attributes: im-

plicit, restricted, and unrestricted attributes, each with an
associated equation mode. Having different modes allows us
to treat monad-typed values implicitly in some equations and
explicitly in others. Figure 5 shows all three attribute modes
in another version of typing an application and name refer-
ence: a restricted attribute env for the typing environment;
an implicit attribute type as before; and an unrestricted at-
tribute errs for error messages.

Both restricted and unrestricted attribute equations treat
monadic values explicitly and are written in the basic lan-
guage. To satisfy the correctness properties of the monadi-
fication (see Section 5), we restrict how information flows
between attributes of different modes. One aspect of this is
that a fail in an implicit attribute should not be explicitly ex-
amined and converted into a non-failure value as this breaks
the abstraction of implicit monads. The mode of an equation
determines which attributes it can access, as specified below:
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eqn. mode can access attributes of mode:
restricted restricted
implicit restricted, implicit with same monadic type
unrestricted restricted, implicit, unrestricted
Implicit attributes can only access implicit attributes of the
same monadic type since effects or failures in the accessed
attribute must flow through. This hierarchy of information
flow ensures that nothing in an implicit attribute can affect
the evaluation of a restricted attribute, and nothing in an
unrestricted attribute can affect the evaluation of an implicit
attribute or a restricted attribute. Our type system, discussed
below, ensures this, even with closures in our language.

Implicit Attributes. Implicit attributes are the onlymode
where monads may be used implicitly. This is done in the
type equation for app on line 6 in Figure 5; it matches di-
rectly on f.type for an arrow type, leaving the other cases
unstated. In the equation for abstraction on line 15 in Fig-
ure 2, a type term is constructed directly. In fact, equations
for implicit attributes, called implicit equations, may not use
monads explicitly, meaning they cannot use operations ex-
pecting a monad such as the monadic bind construct or
matching against monadic patterns. Implicit failure cases
will be filled in by the rewriting with monadic fails.

Implicit attributes are required to have a monadic type.
They are intended to represent semantic attributes of the
language with more information than just a simple value,
such as potential failure with the Maybe monad. Implicit
attributes of type M(T) should generally be thought of as
having type T, since the monad is used to represent failure
or an effect on a computation of type T. In Figure 5, we see
the type attribute, of type Maybe(Type), being treated as
having type Type.

RestrictedAttributes. Restricted attributesmay have any
type and manipulate monadic values directly. If a restricted
equation includes expressions of a monadic type, it treats
these explicitly. Because of this, restricted equations may
only access other restricted attributes; this restriction is the
source of the name łrestrictedž. The env attribute is restricted
and is a list. This maps names to their types and is accessed,
via the lookup function, in the equation for type for variable
references, line 17 in Figure 5.

Unrestricted Attributes. Unrestricted attributes are not
intended for standard semantic attributes of the language,
such as typing, but for the extras above the language seman-
tics, such as error messages. On lines 10ś15 the equation for
errs, the unrestricted attribute, matches on both f.type and
a.type, checking not only whether the types correspond
when f.type is an arrow type, but also checking whether
f.type is an arrow type and whether they are typable at all.
Unrestricted attribute equations may access any attribute,
regardless of mode, and treat monads explicitly. Indeed, they
must be able to do so, if they are to be able to generate error

messages based on an implicit attribute which has a monadic
type possibly representing failure. Because these have no re-
strictions on mode access and their evaluation is unaffected
by monadification, they are written in the basic language.

3.2 Evaluation and Typing Relations

We specify evaluation and typing rules for our language with
attribute modes to formalize what it means to think in terms
of type T instead of M(T) in implicit equations. The rules
for equations in the restricted and unrestricted modes are
very similar to the basic rules, while the rules for implicit
equations are more complex. In what follows we will refer-
ence monadic types and monadic values. In rules for typing
and evaluating implicit equations and expressions, these will
always refer to the monad in the type of the attribute being
defined. For example, if an attribute has type Maybe(Bool),
the monadic type constructorM in the typing rules always
refers to Maybe, andmonadic containmentv ∈M mwill mean
m being just(v). The full set of all versions of evaluation
and typing rules is given in Appendix A.

3.2.1 Evaluation. Before we look at evaluation rules, we
note that we do not require a particular evaluation strategy
for attributes. Techniques such as ordered [13] or demand-
driven [9] attributes grammars both suffice and are orthogo-
nal to the concerns here. Also note that these evaluation rules
are for thinking about implicit evaluation, and are not used
for evaluation. The rewriting will provide a more complete
version of evaluation for implicit equations, maintaining the
monadic values and effects associated with them, which our
rules here intentionally drop.

The relation for evaluating restricted attributes is the same
as the basic relation with the exception of evaluating abstrac-
tions, a difference which is necessary due to interactions
with implicit attributes; we discuss this in Appendix A.5. Be-
cause we think of implicit attributes as having non-monadic
types, they will evaluate to non-monadic values. Because of
this, we cannot define evaluation for unrestricted attributes,
which expect implicit attributes to be monadic.

The evaluation rules for implicit attributes mirror those
for the base language with some exceptions. We do not in-
clude rules for bind or return for the equation’s monad, as
these constructs are not allowed. Thinking about expressions
of type M(T) as having type T, we will want to be able to eval-
uate constructs with a monadic type where a non-monadic
type is expected. This requires that we have a way to get the
value from a monad. We might think of doing this with the
following rule, allowing us to extract the value at any point:

γ ⊢I e ⇓ v v ′ ∈M v

γ ⊢I e ⇓ v
′

(IE-DropMonad)
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While sufficient, a more precise formulation is possible. The
only constructs which may introduce monadic values in im-
plicit expressions are restricted attribute accesses and func-
tion applications. We extract the value where it arises by
adding the monadic unwrapping into the attribute access
rule. This gives us two separate rules. The first is

γ ⊢I e ⇓ tn (a,v ′) ∈ tn v ∈M v ′

v is not monadic inM

γ ⊢I e.a ⇓ v
(IE-AttrAccess_E)

This evaluates as in the E-AttrAccess rule in Figure 4, but
then extracts the non-monadic value v from the attribute’s
original valuev ′. The second rule directly uses the attribute’s
value if it is not monadic in the current monad:

γ ⊢I e ⇓ tn (a,v) ∈ tn v is not monadic inM

γ ⊢I e.a ⇓ v
(IE-AttrAccess)

We have a similar duplication of rules for application, dis-
cussed in Appendix A.5.

We also exclude evaluation rules for fail constructs, such
as left on lines 4ś5 in Figure 3, in the implicit evaluation.
A monadic failure value cannot be used in the implicit eval-
uation, so being unable to evaluate a monadic fail is essen-
tially the same as evaluating it to a monadic failure value.

Using the attribute-access and application rules formonadic
values instead of IE-DropMonad institutes a boundary that
monadic values may not cross. Because of these rules and
the lack of a rule for evaluating monadic failures, equations
for attributes of type M(T) always evaluate to values of type
T. This means one may think in terms of the underlying
type, ignoring the effects held by the monad. The full set of
implicit evaluation rules are in Appendix A.4.

3.2.2 Typing. The extended typing system is intended to
check that the attribute mode hierarchy is obeyed, that type-
driven rewriting can proceed, and that the rewritten equa-
tions respect implicit uses of monads in evaluation. Unlike
the evaluation rules, which are only for reasoning about the
implicit semantics, these rules are used to check the validity
of equations and expressions before rewriting occurs.
Since unrestricted equations have no additional restric-

tions, they use the basic typing relation. Restricted attributes
also use the basic typing relation, but with a different at-
tribute access rule that checks the attribute mode hierarchy
requirements. This rule adds a mode restriction:

Γ ⊢R e : NT Γ ⊢ a : τ Γ ⊢ a@NT a restricted

Γ ⊢R e.a : τ
(RT-AttrAccess)

Otherwise the typing rules for restricted equations are the
same as for the basic language.
Our implicit typing relation, written Γ ⊢I e : τ , types

an expression e to type τ . As in evaluation, there are no
typing rules for bind and return for the current equation’s
monad. We have restrictions on attribute accesses, as in RT-

AttrAccess, ensuring that only restricted attributes and
implicit attributes with types built by the same monad are
accessed. This avoids explicit uses of an implicit monadic
value as discussed below, and because all implicit uses in the
same equation must represent the same effect.

To ensure implicit monad uses are respected in evaluation
after rewriting, we must ensure no implicit monad is ever
matched in a match with explicit monadic patterns:

Γ ⊢I e : τ1 Γ ⊩I cs : τ1 : τ2
τ1 , M(τ ′1) Γ ⊢ cs complete

Γ ⊢I match e with | cs : τ2
(IT-Match)

The requirement that τ1 (the type of the patterns in clauses
cs) is not a monadic type ensures that we are not matching
against the monad. To see why we must do this, consider
the following expression with monadic patterns:
match t.a with | just(x) -> x | nothing() -> 5

If t.a evaluates to nothing() after rewriting, as our proper-
ties will show, it did not evaluate before rewriting. The match
above turns that failure into a non-failure value which has
no relation to the original evaluation. This would invalidate
thinking in terms of the original equation, because we could
get unrelated answers after rewriting.

We also need to ensure implicit monads do not get passed
as arguments to functions which would explicitly match on
them, since the function may not be type checked with these
implicit typing rules. While the above restriction prevents
such computations from being built in an implicit equation,
they can be built in restricted attributes and passed into
implicit attributes. To prevent this, we require the argument
in an application not be a monad and not ultimately result in
a monad type, encoded in the non-monadic-result predicate:

Γ ⊢I e1 : τ1 → τ2 Γ ⊢I e2 : τ1
non-monadic-result(τ1)

Γ ⊢I e1 e2 : τ2
(IT-App)

This bans the application of a function expecting any func-
tion which may ultimately produce a monadic value, no
matter how many arguments it takes. To see why this is
necessary, consider the following function: λx:Bool. t.a

If a is an implicit attribute, this function allows us to pass an
implicit monadic value to another function, even if indirectly,
which might match on it, breaking our evaluation proper-
ties. Banning direct matching on monadic types and passing
monadic arguments ensures implicit monads are respected.
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For thinking of expressions of type M(T) as type T to be
valid, we must be able to use a monadic type where the type
inside was expected, such as M(Bool) where Bool was ex-
pected. One approach is to use a rule to drop the monad
from the type, so an expression of type M(T) can also have
type T. If higher-order functions are not used, this rule is
sufficient for reasoning about implicit expressions and ensur-
ing rewriting a typable expression will produce a well-typed
expression in the basic language, where the monads in types
will propagate upwards to maintain their effects.

Our actual typing rules for implicit equations thus propa-
gate monadic types. They also banmatching against monadic
patterns and takingmonadic types or functionswithmonadic
results as function arguments, as well as the ban on monadic
bind and return while adding rules to propagate monadic
types from subexpressions. To see how this propagation oc-
curs, consider two of the four rules for typing conjunctions:

Γ ⊢I e1 : Bool Γ ⊢I e2 : Bool

Γ ⊢I e1&&e2 : Bool
(IT-And)

Γ ⊢I e1 : M(Bool) Γ ⊢I e2 : Bool

Γ ⊢I e1&&e2 : M(Bool)
(IT-And_M1)

The first rule corresponds directly to the basic typing rule for
conjunctions, since both subexpressions have type Bool and
the conclusion has type Bool. The second rule has one subex-
pression of type M(Bool) and one of type Bool, with the con-
clusion having type M(Bool). This demonstrates what we
mean by propagating the monadic type, adding the monadic
constructor to the expected conclusion type from the basic
typing rule the implicit rule is based on, whenever a monadic
type occurs on a subexpression.

We have implicit typing rules corresponding to each basic
typing rule other than the explicit monadic constructs, with
each basic rule expanding into a set of implicit rules for each
possible combination of implicit monad uses. The rewriting
rules are based on the implicit typing rules, and seeing the
typing rules in conjunction with how an expression is rewrit-
ten is more informative than seeing the typing alone, so we
shall combine our discussion of the finer points of propagat-
ing monads in typing with our discussion of rewriting. Our
discussion of rewriting is picked up in the next section. The
full set of implicit typing rules can be found in Appendix A.3.

4 Rewriting

While the implicit monad equations are a convenient way to
specify and reason about some attribute computations, we
ultimately want a complete computation, with failures and
other effects included. Instead of evaluating implicit equa-
tions directly, we rewrite them into the same basic language
as the unmodified restricted and unrestricted equations.

This rewriting has two purposes: to complete incomplete
match expressions by adding default monadic failure cases

and to insert monadic bind and return operations as nec-
essary to make a basic-typable expression. The equation
rewriting uses the expression rewriting to rewrite the full
equation into a version which is acceptable under the basic
typing rules. The monadification rewriting is only carried
out if all equations in the attribute grammar are well-typed,
which includes hierarchy mode checking.

The expression rewriting relation, written Γ ⊢ e ⇝ e ′ : τ ,
rewrites e into e ′ under the typing context Γ in which τ is
the type of e under the implicit typing rules, and also the
type of e ′ under the basic typing rules. We have a rewriting
rule corresponding to each implicit typing rule. Because we
assume the equation was well-typed before rewriting, we can
leave out some requirements that the typing rules include.
On many forms of expressions, such as conjunction, a

common pattern in monadification plays out. If the types
involved are not monadic in the type of the implicit attribute,
the rewriting reconstructs the expression with the rewritten
components. This can be seen in RW-And in Figure 6. If a
subexpression has a monadic type, the rewritten version of
that child is bound into an abstraction with the original op-
eration as its body. If the return type of this expression is not
a monad (as is the case for conjunction with a return type of
Bool), the original operation is wrapped in return. This pat-
tern can be seen in Figure 6 in the rule RW-And_M1. Because
we are using a bind, our return type must be the same monad,
so we need a return. In addition to having the correct type
for the rewritten expression, the evaluation order from the
original term must be preserved. In RW-And_M2, our rewrit-
ing turns conjunctions into if-then-elses to evaluate e ′1
before e ′2. Because conjunction is short-circuiting, this gives
them related termination behavior. If e ′2 were bound into a
function containing e ′1, e

′
2 would be evaluated even if e ′1 were

false, changing the behavior of the evaluation.
Our rules for applications, such as RW-App_MArg1 in Fig-

ure 6, do not include the requirement of not-monadic-result,
as that was checked during typing. In RW-App_MArg1main-
taining the evaluation order, as in RW-And_M2, requires
using a let to evaluate the function first, followed by the
argument as we bind it in. To propagate the monad, we wrap
the result in return. If the result type of the function were
monadic, say M(T), we would not need to insert this return
to get the type M(T). We also do this in the typing rules,
not wrapping a type in the same monadic type constructor
twice. Our typing and rewriting rules will only unwrap one
instance of a monadic type constructor from a type when
used implicitly, so a doubly-wrapped type is not useful here.
If Maybe(T) represents possible failure, Maybe(Maybe(T))
represents a possible failure of a possible failure, which is
likely better represented by combining the failures.
We can see the use of RW-App_MArg1 in rewriting the

implicit equation for type in Figure 2, which read:
t.type = arrow(Ty, body.type);

For brevity, we consider the arrow constructor to be curried
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Γ ⊢ e1 ⇝ e ′1 : Bool Γ ⊢ e2 ⇝ e ′2 : Bool

Γ ⊢ e1 && e2 ⇝ e ′1 && e ′2 : Bool
(RW-And)

Γ ⊢ e1 ⇝ e ′1 : M(Bool) Γ ⊢ e2 ⇝ e ′2 : Bool
x fresh in e ′2

Γ ⊢ e1 && e2 ⇝

e ′1 ≫= λx : Bool . return (x && e ′2) : M(Bool)
(RW-And_M1)

Γ ⊢ e1 ⇝ e ′1 : Bool Γ ⊢ e2 ⇝ e ′2 : M(Bool)

Γ ⊢ e1 && e2 ⇝

if e ′1 then e
′
2 else return false : M(Bool)

(RW-And_M2)

Γ ⊢ e1 ⇝ e ′1 : M(Bool) Γ ⊢ e2 ⇝ e ′2 : M(Bool)
x fresh in e ′2

Γ ⊢ e1 && e2 ⇝ e ′1 ≫= λx : Bool . if x then e ′2
else return false : M(Bool)

(RW-And_MBoth)

Γ ⊢ e1 ⇝ e ′1 : τ1 → τ2 Γ ⊢ e2 ⇝ e ′2 : M(τ1)
τ2 , M(τ ′2) f fresh in e ′2 x , f

Γ ⊢ e1 e2 ⇝ let f = e ′1 in

(e ′2 ≫= λx : τ1. return (f x)) : M(τ2)
(RW-App_MArg1)

Γ ⊢ e ⇝ e ′ : M(τ1) ¬(Γ ⊢ cs complete)

Γ ⊩ cs | _ ⇒ fail⇝ cs ′ : τ1 : M(τ2) x fresh in cs ′

Γ ⊢ match e with | cs ⇝

e ′ ≫= λx : τ1. match x with | cs ′ : M(τ1)
(RW-Match_MD_Incomplete)

Γ ⊢ p match τ1; Γ′ Γ
′ ⊢ e ⇝ e ′ : M(τ2)

Γ ⊩ cs ⇝ cs ′ : τ1 : τ2 returnify cs ′ cs ′′

Γ ⊩ p ⇒ e | cs ⇝ p ⇒ e ′ | cs ′′ : τ1 : M(τ2)
(RW-CS-Add_MHere)

Γ ⊢ p match τ1; Γ′ Γ
′ ⊢ e ⇝ e ′ : τ2

Γ ⊩ cs ⇝ cs ′ : τ1 : M(τ2)

Γ ⊩ p ⇒ e | cs ⇝ p ⇒ return e ′ | cs ′ : τ1 : M(τ2)
(RW-CS-Add_MLater)

Figure 6. Select rules for rewriting expressions.

here to treat this as two applications of single-argument
functions. The first applies arrow to the non-monadic value
Ty, yielding a function of type Type→Type and is unchanged
by the rewriting. The second application matches rule RW-

App_MArg1 since the argument body.type is monadic with
type Maybe(Type). Using this rule, we rewrite into

let f = λb:Type. arrow(Ty, b) in

body.type ≫= λty:Type. return (f ty)

We can see that this is semantically equivalent to the explicit
monad version on lines 9 and 10 in Figure 2.
In our rewriting rules for match, we keep the restric-

tion from the typing rules that the pattern type cannot be
monadic. Unlike argument types in applications, we cannot
drop this requirement, since the pattern type is not neces-
sarily unique due to variable patterns, and we ban any type
of matching on monadic values.
In Figure 6, we show RW-Match_MD_Incomplete for

match. The expression being matched has a monadic type,
and, because the patterns are not allowed to have a monadic
type, we bind this into a new function containing a new
match. This rule, and others like it, are predicated onwhether
the clauses cs are complete, meaning they match all possible
patterns. In RW-Match_MD_Incomplete, there are some
values not matched by the existing clauses. These are com-
pleted with a wildcard pattern yielding a monadic failure
result before rewriting them. This ensures the clauses result
in a monadic type. Because we add a monadic failure clause
to any match with incomplete clauses, the typing rules re-
quire such a match have a monadic type, and thus the typing
rules discriminate between complete and incomplete clauses
in match expressions the same as the rewriting rules.
In typing and rewriting clauses, we must consider that

some clauses in a set may result in type T and some in type
M(T), as seen in lines 3ś5 in Figure 3, since we allow implicit
use of monads and may think of an expression of type M(T)
as if it had type T. The type of such sets of clauses will be
M(T), with the rules always choosing the monadic type when
both the monadic and non-monadic types are present. In RW-

CS-Add_MHerewe see the use of returnify to wrap returns
around clause expressions as needed.

We use the expression rewriting described above to rewrite
implicit equations. As above, the equation rewriting rules
correspond to the implicit typing rules for equations. The
rules for this rewriting are found in Figure 7. The first rule,
RW-EQ_Basic, requires the expression in the equation to
have the same type as the implicit attribute being defined.
This corresponds exactly to the basic rule for typing equa-
tions. The second rule, RW-EQ_M, allows the expression in
the equation to have type Twhen the attribute has type M(T).
This fits with thinking of the attribute’s type M(T) as if it
were type T. We might take advantage of this rule by writing
the equation t.type = bool(); for typing a production for
the constant true. To make the rewritten equation typable,
this rule wraps the rewritten expression in return. Finally,
we have a rule for typing an implicit equation with no ex-
pression, t.a = ;, which is rewritten as an equation with
fail as its expression. This allows us to write an equation
acknowledging there is no value of type T for the semantic
attribute, while getting a monadic failure when actually run-
ning the code. An empty equation might be used to define an
attribute for an evaluation step in small-step evaluation for
a production representing a value, as discussed in Section 6.
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Γ ⊢ e ⇝ e ′ : M(τ ) Γ ⊢ a : M(τ )
t : NT ∈ Γ Γ ⊢ a@NT a implicit

Γ ⊢ t .a = e;⇝ t .a = e ′;
(RW-EQ_Basic)

Γ ⊢ e ⇝ e ′ : τ Γ ⊢ a : M(τ )
t : NT ∈ Γ Γ ⊢ a@NT a implicit

Γ ⊢ t .a = e;⇝ t .a = return e ′;
(RW-EQ_M)

Γ ⊢ a : M(τ ) t : NT ∈ Γ Γ ⊢ a@NT a implicit

Γ ⊢ t .a = ;⇝ t .a = fail;

(RW-EQ_Empty)

Figure 7. Rewriting rules for equations and the definition
of the full expression-rewriting relation used in rewriting
equations.

The full attribute grammar is rewritten by rewriting every
implicit equation in it, leaving restricted and unrestricted
equations as they are. Above we have discussed the more
interesting and illustrative rewriting and typing rules. The
complete set of rewriting rules can be found in Appendix B.

5 Properties

To show that it is correct to reason about implicit equations
and expressions using their typing and evaluations rules
shown above, we have three properties about the monad-
ification rewriting: types are preserved from the original
to the rewritten form, it is total when the original was ty-
pable in the extended language, and its results are correct
with respect to the extended language’s semantics. We walk
through each property and sketch its proof in turn.

5.1 Types Preserved

Any attribute grammar which was typable using the ex-
tended language before the rewriting is typable after the
rewriting using the basic language. It is clear that restricted
and unrestricted equations are typable after the rewriting,
since these only add to the basic requirements.

For implicit equations, we prove that any equation which
was typable under the implicit equation typing relation be-
fore the rewriting is typable under the basic equation typing
relation after the rewriting:

Γ ⊢I eq OK ⇒ Γ ⊢ eq ⇝ eq′⇒ Γ ⊢ eq′ OK

This is, in turn, supported by a lemma for typing being pre-
served by rewriting for expressions:

Γ ⊢I e : τ ⇒ Γ ⊢ e ⇝ e ′ : τ ⇒ Γ ⊢ e ′ : τ

It is clear, from the definition of the rewriting rules, that the
rewritten expressions will have the type in the rewriting
relation under the basic rules. This property is the direct
result of that.

5.2 Totality of Rewriting

For any attribute grammar typable using the extended lan-
guage, there is an attribute grammar to which it rewrites. Be-
cause restricted and unrestricted equations are not changed
in rewriting, they do not affect the totality of rewriting.
Rewriting is also total for implicit equations if they are

typable under the implicit equation typing relation:

Γ ⊢I eq OK ⇒ ∃eq′. Γ ⊢ eq ⇝ eq′

This holds based on a similar lemma for expressions:

Γ ⊢I e : τ ⇒ ∃e ′. Γ ⊢ e ⇝ e ′ : τ

The proof of this relies on the expression rewriting rules
being based on the implicit typing rules. Since there is a
rewriting rule for each typing rule, we have a rule to fit
every case in an inductive proof on the typing derivation.

5.3 Evaluation Correctness

More important than maintaining typing and rewriting to-
tality is that the evaluation results, meaning the values of
attributes, before and after the rewriting are related to each
other. For restricted attributes, the results are exactly the
same before and after the grammar is rewritten. This is be-
cause the explicit evaluation relation used in the extended
language for restricted attributes is essentially the same as
the basic evaluation relation.
The relationship for implicit equations is more complex,

as we need to relate non-monadic values in the implicit
evaluation with (values wrapped up in) monadic ones in
the rewritten base evaluation. This is due to our thinking of
attributes of a monadic type M(T) as having type T in the
implicit language. Below, v ∼v v ′ is equality for non-closure
values, but compares closures slightly differently. The full
details of this relation are in Appendix C.

We have two related properties for implicit equations:

• If Γ ⊢ eq ⇝ eq′ and γ ⊢EQ
I

eq ⇓ v , then
∃v ′ v ′0. γ ⊢

EQ eq′ ⇓ v ′ ∧ v ′0 ∈M v ′ ∧ v ∼v v ′0
• If Γ ⊢ eq ⇝ eq′ and γ ⊢EQ eq′ ⇓ v ′, then

ś ∃v0. v0 ∈M v ′ ∧ ∃v . γ ⊢
EQ

I
eq ⇓ v ∧ v ∼v v0 or

ś (¬∃v0. v0 ∈M v ′) ∧ γ ⊢
EQ

I
eq ⇓ ⊥

In text:

• If the original equation evaluates to a value v , the
rewritten equation evaluates to a monadic value con-
taining a value related to v .
• If the rewritten equation evaluates, it either contains
a value v0 and the original equation can evaluate to a
value related to v0 or it is a monadic failure and the
original equation cannot evaluate.

Both of these rely on related properties about expression
evaluation. The proofs of the properties proceed by induc-
tion on the derivation given, either the original, implicit
derivation or the basic derivation from after rewriting. These
proofs rely on the monad laws as well as the requirements
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for monadic containment in Section 2.3. The monad laws
aren’t enough to prove these because they don’t allow us to
relate the results of bind with our monadic containment back
to containment in the original monadic value in the general
case, and thus relate the original results and rewritten results.
A more detailed proof sketch can be found in Appendix D.

As a corollary to these properties, we can also state that
the rewritten equation being unevaluable implies the origi-
nal equation is unevaluable, because having a derivation of
evaluation for the original equation implies a derivation for
the rewritten equation.

6 Prototype Implementation and Its Use

We have a prototype implementation of implicit monads as
an extension to the Silver1 [24] Attribute Grammar system.
We used implicit monads in specifying typing and small-
step evaluation for the simply-typed lambda calculus (STLC)
with Boolean operations2 and for type inference for Caml
Light3 [15]. A software artifact including the prototype in Sil-
ver and these examples can be found in the Silver archive.1

In this, we found it quite convenient to write equations for
typing without needing to pattern match on the monadic
value.

Using an attribute of type Either(String, Type) for
typing in STLC, wewere able to create a list of errormessages
for typing without duplicating the type checking logic in
equations for types and error messages, as seen in comparing
Figure 3 to Figure 5. Using an implicit Either to create the
error message in the type attribute avoids this duplication;
the error (an unrestricted attribute) is then extracted from
the type (an implicit one) and propagated up the tree. The use
of Either as an implicit monad allows us to only write the
error messages for the error cases where the subexpressions
have types, letting the rewriting fill in the cases where the
subexpressions are not typable.
We used the Maybe monad for small-step evaluation in

STLC. Because typing and evaluation do not interact, we are
able to use different monads for the two attributes. We used
empty equations, e.g. e.next = ;, to define the evaluation
step attribute for productions representing values, such as
abstractions, because they cannot step.
In using implicit monads, the attributes which must be

implicit, and therefore must have a monadic type, tend to
spread, as happens when using monads in Haskell. Because
our Caml Light type attribute is an implicit Maybe and the
type substitution and typing context attributes both use the
type attribute and are used in the type attribute equations,
both of these had to have implicit Maybe types as well. As
can be seen in Figure 8, which shows the production for

1Available at http://melt.cs.umn.edu/silver and https://github.com/melt-

umn/silver, archived, with artifact, at https://doi.org/10.13020/D6QX07.
2Found in the tutorials that come with Silver.
3Our implementation is available at https://github.com/melt-umn/caml-

light, archived at https://doi.org/10.13020/866e-0d92.

1 production ifthenelse

2 top::Expr ::= c::Expr th::Expr el::Expr

3 {

4 implicit c.gamma = top.gamma;

5 implicit th.gamma = top.gamma;

6 implicit el.gamma = top.gamma;

7
8 implicit c.subst = top.subst;

9 implicit th.subst = c.subst_out;

10 implicit el.subst= th.subst_out;

11 implicit top.subst_out =

12 typeUnify(th.type, el.type,

13 typeUnify(c.type, boolType(),

14 el.subst_out));

15
16 implicit top.type =

17 case typeSubst(c.type, top.subst_out) of

18 | boolType() when

19 typeEqual(th.type, el.type,

20 top.subst_out) -> th.type

21 end;

22 }

Figure 8. The production for if-then-else in our Caml
Light implementation using implicit monads using the syn-
tax of the Silver prototype. The gamma, subst, subst_out,
and type attributes all have Maybe types.

if-then-else in our Caml Light implementation, this ac-
tually made the equations for both of these easier to write,
since we avoidedmatching on the type attribute to determine
if a type existed before trying to unify it with the expected
type. In typing an if-then-else, we simply write to unify
the types (using a function typeUnify) of the two branches
and the condition’s type with the Boolean type to get a new
type substitution in the equation for subst_out, then check
in the type equation that the unification was successful by
checking that the types are as expected under the substitu-
tion. All the unwrapping is taken care of automatically.

The prototype is built as an extension to the core language
of Silver. It type checks restricted equations for mode hi-
erarchy access errors and type checks implicit equations
before translating them down to the core language, which
is then compiled normally. As an extension, the core Silver
language is not changed and the extension satisfies certain
composabililty criteria [10, 22]. Because this implementation
is an extension, it should work well with existing Silver

specifications that do not use it. Therefore only implicit and
restricted attributes need to be marked with their intended
mode. Because unrestricted attributes only use the basic
typing rules, not requiring marking them is safe.
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While Silver is designed to be extended, it has some short-
comings that affect the usability of implicit monads. Since
equation syntax is not overloadable, new syntax must distin-
guish implicit and restricted equations from existing (unre-
stricted) ones to trigger their type checking and translation.
This is done by marking them with their mode, much like
the attribute declarations in Figure 3. Silver also does not
support extension-introduced error-checking analyses on ex-
isting language constructs, and thus we cannot check these
mode markers on equations are present, as without them
they are treated as unrestricted attributes. At this time, Sil-
ver does not include type classes, so there are no general
monad operations to insert. Instead, we use only the monads
built-in to Silver, with monad operations implemented as
functions. These include Maybe, Either, and List. For these
reasons the examples in the paper use an abbreviated form
of the actual Silver extension syntax. Only Figure 8 uses
the current syntax with marked equations. Both of these
features are present in other extensible languages [11] im-
plemented in Silver and, since Silver is written in itself,
we are currently adding these capabilities to Silver. Once
we no longer need to mark equations with their modes, we
intend to make this extension part of the standard Silver

distribution.

7 Related Work

Prior work has examined monadifying functional languages.
Erwig and Ren [5] monadified functional programs by taking
functions returning type T and rewriting them to return M(T).
The rest of the program was then changed to work with the
monadic type being returned. Our work is more general in
that we monadify general code, not just that associated with
function calls. Our monadification can also be viewed as
fulfilling the types written, rather than changing them. This
permits us to have unrestricted attributes act on the monadic
types. Other work [23] monadified ML programs to allow a
normal let-expression to be used to bind a value of a monadic
type M(T)which was then used as if it had type T in the body
of the let. The let would then be turned into a monadic
bind operation in rewriting. Different monads are allowed
in the same expression, with the result being a combined
monad of all those used and morphisms placed to convert
everything to the final monadic type. This monadification is
at once simpler and more complex than ours. It is simpler
because all monadic expressions are bound by a let, which
may be turned into a monadic bind, where we have attribute
accesses which may introduce monads without a let. It is
more complex because of the mixing of different monads, re-
quiring morphisms between monads. Neither of these works
have the same difficulties with nondeterminism that we dis-
cuss in Section 8 because they are working in functional
languages. No external names can occur in their expressions

not originating in their expressions which require them to
find a consistent location to insert a bind.
There are also efforts to improve the readability of lan-

guage specifications. The work of Mosses [17] is most related
to our work. It also examined the idea of making language
specifications easier to write by hiding details, but in SOS,
by introducing Modular SOS (MSOS). This bundles parts of
relations for defining language semantics in SOS rules, al-
lowing the rules to be reused when more features are added
to the language. It also allows for errors to be propagated
back through rules automatically. This is similar to how our
implicit attributes allow failures to automatically propagate
through the tree. More work [18] introduced Implicit MSOS
(I-MSOS), formalizing an implicit threading-through of parts
of semantic relations, further simplifying SOS rules. This
work, allowing the automatic propagation of non-failure val-
ues, is similar to previous work on modularity in AGs [12]
that alleviates so-called copy-rules for copying information
down the tree, equations that collect and combine informa-
tion flowing up the tree, like lists of error messages, and
chaining-rules that automatically propagate information in a
left-to-right pattern in the tree. Eli [6] was one of the first
AG systems to incorporate these conveniences, but they are
relatively common in AG systems now. Pretty big-step se-
mantics [4] reduces duplication of premises in big-step rules
by breaking them down into smaller rules, each of which
does part of the work done in the original big-step rules. This
approach also simplifies handling errors, since exceptions in
the language for which the rules are being written and errors
of an unevaluable term can be propagated by the same rules,
rather than needing special cases to be written for each one.

Many systems have offered solutions for handling poten-
tial failures without much added effort, as our monadifica-
tion allows us to do. The Haskell language, among others,
provides do-notation for working with monads, similar to
what is seen on lines 12ś13 in Figure 2. This is easier to use
than the monad operations. Some work has used do-notation
outside of Haskell, where the authors had to implement it
themselves, because do-notation is much easier to write than
the basic monad operations [1]. As noted above, however, it
still requires overhead over our monadification. The Alloy
language for models takes a different approach to potential
failures. Scalar values are represented as sets, with failures
being represented by empty sets [8]. Since failures are valid
values of the set type, they can be easily handled. The Object
Constraint Language (OCL), part of UML, has a similar ap-
proach. OCL has a null value for failures which is a member
of any type due to its subtyping system [3]. This value passes
through operations in most cases, percolating the failure up
through evaluation. In both Alloy and OCL, because their
failure values are normal members of the types in which they
represent failure, some operations may not result in failures
when they have failures as operands, unlike our monadifica-
tion, which always passes monadic failures through. Because
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these languages are concerned with properties of systems
holding, not with propagating the nonexistence of values,
this approach suffices. In defining language semantics, we
generally want to know if a failure occurred, making monad-
ification a better choice.

8 Discussion and Future Work

Challenges in Modeling Nondeterminism. The List

monad may be used to model nondeterminism, with each
element as a possible result. Its bind operation maps the
function over the list and appends the results. We have a
match_any construct to use lists implicitly, defined to evalu-
ate to the result of any matching clause. This translates to an
expression appending the results of all the matching clauses.
We can’t always think of List(T) as T, however. If we

think of t.a as having type Int, we expect the result of
t.a + t.a to be even. If, however, it has type List(Int),
this rewrites to

t.a ≫= λx:Int. t.a ≫= λy:Int. return (x + y)

If t.a has the value [3, 4], we would like the result to be
[6, 8], but it actually adds all combinations of values, yield-
ing [6, 7, 7, 8]. This means evaluation correctness does
not hold in this case, and thus not for implicit lists in gen-
eral.If an attribute access only occurs once in an expression,
this issue does not arise. The requirement of a single oc-
currence also means it cannot occur by an alias, meaning
t.b is assigned the value of t.a and they are used together.
Without aliasing, this problem can be solved by using a let
to rename an attribute, which will turn into a bind in the
rewriting. For the addition above, we could instead write
let x = t.a in x + x. This changes the let into a bind,
and both addends will have the same value.
Our implementation permits implicit uses of the List

monad, and it includes the match_any construct. We used
this to implement small-step parallel evaluation of conjunc-
tion and disjunction in the simply-typed lambda calculus
with Booleans. Implementing this with implicit monads was
much simpler than writing the parallelism by hand. This
closely corresponds to the nondeterministic inference rules
for evaluation.

Implicit Monads and Do-Notation. A natural compar-
ison is our implicit monads and do-notation as found in
Haskell, which lets users sequence monadic operations with-
out writing the monadic binds. One benefit to using implicit
monads is that it allows us to leave off the return operation
for the final result. This will be inserted in the rewriting.
Another benefit is that do-notation requires the results of
monadic computations to be bound to a variable before use,
where we allow using them directly. For example, in Figure 2,
do-notation requires us to bind body.type to a variable to
use it. With implicit monads, we simply write the arrow type.

Sometimes this binding is helpful, however. As discussed
above, our rewriting will bind an attribute access wherever

it occurs, which may lead to unexpected results with some
monads. The use of do-notation avoids this specifically be-
cause it requires binding to a variable.

Implicit Equations, Bind, andReturn. In implicit equa-
tions, we have banned the use of monadic bind and return
operations. These operations are safe to use, with regard
to our properties, as long as we appropriately augment the
typing, evaluation, and rewriting relations. We ban them be-
cause they are unnecessary and do not follow the philosophy
of implicit use. They are unnecessary because they will be
inserted as needed. Then we can just write the expression
or function application we want to get the result of return
or bind. Using such operations explicitly means values are
being thought of as type M(T) rather than as type T, as they
ought to be thought of in implicit equations

Explicitly using the fail operation of a monad also breaks
this view, and fails can be achieved by using an empty
equation or an incomplete match. However, we sometimes
want particular uses of fail. For example, in Figure 3, we
use the type attribute to also generate error messages. Since
there is only one use of bind or return in any given situation,
but there are possibly different uses of fail, we disallow the
former and allow the latter.

Future Work. One area of future work is finding a solu-
tion to allow monads with multiple values in them, such as
List, while maintaining the ability to view monadic expres-
sions of type M(T) as if they had type T.
A second area of future work is examining whether it is

possible to create a finer-grained set of modes. If we did not
require equations to have a mode, but instead inferred which
expressions were implicitly monadic and which were not,
we would be able to mix implicit and explicit uses in the
same expression, all while ensuring implicit monads were
not used explicitly. This would maintain our properties, but
could make it easier to write equations.
Finally, it should be possible to leave both restricted and

unrestricted attributes unmarked. The restricted attributes
could be inferred by using flow information to check whether
they were accessed in implicit equations, and then to check
if they accessed unrestricted attributes. Only the implicit
attributes would need to be declared with a mode. As noted,
it is possible to modify Silver so that equations can be over-
loaded to check that the mode restrictions are obeyed with-
out requiring the mode marker on equations.
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A Elaboration of Language Specifications

In this appendix we provide a more detailed listing of the
evaluation and typing relations of the equation and expres-
sion languages used in the paper.

A.1 Basic Typing Rules

The typing rules for expressions in the basic language are
as expected for a functional language, other than the T-
AttrAccess rule.

Γ ⊢ e : NT Γ ⊢ a : τ Γ ⊢ a@NT

Γ ⊢ e.a : τ
(T-AttrAccess)

Γ ⊢ true : Bool
(T-True)

Γ ⊢ false : Bool
(T-False)

Γ ⊢ e1 : Bool Γ ⊢ e2 : Bool

Γ ⊢ e1 && e2 : Bool
(T-And)

x:τ ∈ Γ

Γ ⊢ x : τ
(T-Var)

Γ;x:τ1 ⊢ e : τ2

Γ ⊢ λx:τ1. e : τ1 → τ2
(T-Lam)

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2
(T-App)

Γ ⊢ e : τ

Γ ⊢ return e : M(τ )
(T-Return)

Γ ⊢ fail : M(τ )
(T-Fail)

Γ ⊢ e1 : M(τ1) Γ ⊢ e2 : τ1 → M(τ2)

Γ ⊢ e1 ≫= e2 : M(τ2)
(T-Bind)

Γ ⊢ e1 : τ1 Γ;x:τ1 ⊢ e2 : τ2

Γ ⊢ let x = e1 in e2 : τ2
(T-Let)

Γ ⊢ e : τ1 Γ ⊩ cs : τ1 : τ2

Γ ⊢ match e with | cs : τ2
(T-Match)

A set of clauses must all match the same type, and all the
clauses must have the same result type:

Γ ⊢ p match τ1; Γ′ Γ
′ ⊢ e : τ2

Γ ⊩ p ⇒ e : τ1 : τ2
(T-CS-Single)

Γ ⊢ p match τ1; Γ′ Γ
′ ⊢ e : τ2 Γ ⊩ cs : τ1 : τ2

Γ ⊩ p ⇒ e | cs : τ1 : τ2
(T-CS-Add)

A.2 Basic Evaluation Rules

The evaluation rules for expressions are as expected in a
functional language, other than E-AttrAccess. We do not
include rules here for the monadic constructs bind, return,
and fail, since their results are dependent on the monad
being used.

γ ⊢ e ⇓ tn (a,v) ∈ tn

γ ⊢ e.a ⇓ v
(E-AttrAccess)

γ ⊢ true ⇓ true
(E-True)

γ ⊢ false ⇓ false
(E-False)

γ ⊢ e1 ⇓ true γ ⊢ e2 ⇓ true

γ ⊢ e1 && e2 ⇓ true
(E-And_True)

γ ⊢ e1 ⇓ false

γ ⊢ e1 && e2 ⇓ false
(E-And_False1)

γ ⊢ e1 ⇓ true γ ⊢ e2 ⇓ false

γ ⊢ e1 && e2 ⇓ false
(E-And_False2)

x:v ∈ γ

γ ⊢ x ⇓ v
(E-Var)

γ ⊢ λx:ty. e ⇓ closure γ x e
(E-Lam)

γ ⊢ e1 ⇓ closure γ
′ x e ′ γ ⊢ e2 ⇓ v2

γ ′;x:v2 ⊢ e
′ ⇓ v

γ ⊢ e1 e2 ⇓ v
(E-App)

γ ⊢ e1 ⇓ v1 γ;x:v1 ⊢ e2 ⇓ v2

γ ⊢ let x = e1 in e2 ⇓ v2
(E-Let)

γ ⊢ e ⇓ v1 γ ⊩ cs,v1 ⇓ v

γ ⊢ match e with | cs ⇓ v
(E-Match)

As expected, evaluation of clauses walks through a set of
clauses, evaluating the expression associated with the first
clause that matches:

γ ⊢P p matches vm ⇓ γ ′ γ ′ ⊢ e ⇓ v

γ ⊩ p ⇒ e,vm ⇓ v
(E-CS-Single)

γ ⊢P p matches vm ⇓ γ ′ γ ′ ⊢ e ⇓ v

γ ⊩ p ⇒ e | cs,vm ⇓ v
(E-CS-Add_Match)
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¬(γ ⊢P p matches vm ⇓ γ ′) γ ⊩ cs,vm ⇓ v

γ ⊩ p ⇒ e | cs,vm ⇓ v
(E-CS-Add_NoMatch)

A.3 Extended Typing Rules

Our extended language includes attribute equations written
in all three modes. While unrestricted equations use the
basic typing relation, both restricted equations and implicit
equations have their own extended typing relations.

Restricted Typing Relation. The typing relation for re-
stricted attributes is essentially the same as the basic typing
relation. The only change is to the attribute rule, which adds
a restriction that the attribute must be a restricted attribute:

Γ ⊢R e : NT Γ ⊢ a : τ Γ ⊢ a@NT a restricted

Γ ⊢R e.a : τ
(RT-AttrAccess)

This extra restriction enforces the attribute hierarchy, dis-
cussed in Section 3.1.

Implicit Typing Relation. The implicit typing relation
contains a set of rules corresponding to the basic typing
rules, with a rule for each combination of the monad from
the equation being used implicitly in subexpressions, while
avoiding nesting the same monad inside itself. For example,
we have four rules for typing e1 && e2: one for when both
e1 and e2 have type Bool, one for when e1 has type M(Bool),
one for when e2 has type M(Bool), and one for when both
have type M(Bool).
We have no rules for typing the explicit monadic con-

structs bind and return. We do, however, retain a typing
rule for fail. In the same vein of banning explicit monad
uses, we ban matching on the equation’s monadic type and
applying functions expecting arguments of this monadic
type. We also ban applying functions whose arguments are
functions ultimately resulting in this monadic type.
We require that attribute accesses obey the mode restric-

tions. This requires that all attributes be either restricted or
implicit attributes. It also requires that implicit attributes
being accessed must have the same monad as the equation
currently being typed.
Finally, while the basic rules require nothing about com-

pleteness of pattern matching, if a set of clauses in a match
expression is incomplete, the implicit typing relation requires
the match to have a monadic type.
In these rules,M is the monadic type constructor for the

type of the implicit attribute under consideration. Also, we
use τ , M(_) to mean τ is not a type built with the monadic
type constructorM . Our full set of implicit typing rules for
expressions:

Γ ⊢I e : NT Γ ⊢ a : τ Γ ⊢ a@NT a restricted

Γ ⊢I e.a : τ
(IT-AttrAccess_R)

Γ ⊢I e : NT Γ ⊢ a : M(τ ) Γ ⊢ a@NT a implicit

Γ ⊢I e.a : M(τ )
(IT-AttrAccess_I)

Γ ⊢I e : M(NT ) Γ ⊢ a : τ τ , M(_)
Γ ⊢ a@NT a restricted

Γ ⊢I e.a : M(τ )
(IT-AttrAccess_R_M)

Γ ⊢I e : M(NT ) Γ ⊢ a : M(τ )
Γ ⊢ a@NT a restricted

Γ ⊢I e.a : M(τ )
(IT-AttrAccess_R_MAttr)

Γ ⊢I e : M(NT ) Γ ⊢ a : M(τ )
Γ ⊢ a@NT a implicit

Γ ⊢I e.a : M(τ )
(IT-AttrAccess_I_MAttr)

Γ ⊢I true : Bool
(IT-True)

Γ ⊢I false : Bool
(IT-False)

Γ ⊢I e1 : Bool Γ ⊢I e2 : Bool

Γ ⊢I e1 && e2 : Bool
(IT-And)

Γ ⊢I e1 : M(Bool) Γ ⊢I e2 : Bool

Γ ⊢I e1 && e2 : M(Bool)
(IT-And_M1)

Γ ⊢I e1 : Bool Γ ⊢I e2 : M(Bool)

Γ ⊢I e1 && e2 : M(Bool)
(IT-And_M2)

Γ ⊢I e1 : M(Bool) Γ ⊢I e2 : M(Bool)

Γ ⊢I e1 && e2 : M(Bool)
(IT-And_MBoth)

x:τ ∈ Γ

Γ ⊢I x : τ
(IT-Var)

Γ;x:τ1 ⊢I e : τ2

Γ ⊢I λx:τ1. e : τ1 → τ2
(IT-Lam)

Γ ⊢I e1 : τ1 → τ2 Γ ⊢I e2 : τ1
non-monadic-result(τ1)

Γ ⊢I e1 e2 : τ2
(IT-App)

Γ ⊢I e1 : τ1 → τ2 Γ ⊢I e2 : M(τ1)
non-monadic-result(τ1) τ2 , M(_)

Γ ⊢I e1 e2 : M(τ2)
(IT-App_MArg1)
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Γ ⊢I e1 : τ1 → M(τ2) Γ ⊢I e2 : M(τ1)
non-monadic-result(τ1)

Γ ⊢I e1 e2 : M(τ2)
(IT-App_MArg2)

Γ ⊢I e1 : M(τ1 → τ2) Γ ⊢I e2 : τ1
non-monadic-result(τ1) τ2 , M(_)

Γ ⊢I e1 e2 : M(τ2)
(IT-App_MFun1)

Γ ⊢I e1 : M(τ1 → M(τ2)) Γ ⊢I e2 : τ1
non-monadic-result(τ1)

Γ ⊢I e1 e2 : M(τ2)
(IT-App_MFun2)

Γ ⊢I e1 : M(τ1 → τ2) Γ ⊢I e2 : M(τ1)
non-monadic-result(τ1) τ2 , M(_)

Γ ⊢I e1 e2 : M(τ2)
(IT-App_MFunArg1)

Γ ⊢I e1 : M(τ1 → M(τ2)) Γ ⊢I e2 : M(τ1)
non-monadic-result(τ1)

Γ ⊢I e1 e2 : M(τ2)
(IT-App_MFunArg2)

Γ ⊢I fail : M(τ )
(IT-Fail)

Γ ⊢I e1 : τ1 Γ;x:τ1 ⊢I e2 : τ2 τ1 , M(_)

Γ ⊢I let x = e1 in e2 : τ2
(IT-Let)

Γ ⊢I e1 : M(τ1) Γ;x:τ1 ⊢I e2 : τ2
τ1 , M(_) τ2 , M(_)

Γ ⊢I let x = e1 in e2 : M(τ2)
(IT-Let_M)

Γ ⊢I e1 : M(τ1) Γ;x:τ1 ⊢I e2 : M(τ2) τ1 , M(_)

Γ ⊢I let x = e1 in e2 : M(τ2)
(IT-Let_MBoth)

Γ ⊢I e : τ1 Γ ⊩I cs : τ1 : τ2
τ1 , M(_) Γ ⊢ cs complete

Γ ⊢I match e with | cs : τ2
(IT-Match)

Γ ⊢I e : M(τ1) Γ ⊩I cs : τ1 : τ2
τ1 , M(_) τ2 , M(_)

Γ ⊢I match e with | cs : M(τ2)
(IT-Match_MD)

Γ ⊢I e : M(τ1) τ1 , M(_) Γ ⊩I cs : τ1 : M(τ2)

Γ ⊢I match e with | cs : M(τ2)
(IT-Match_MBoth)

Γ ⊢I e : τ1 Γ ⊩I cs : τ1 : τ2 ¬Γ ⊢ cs complete

τ1 , M(_) τ2 , M(_)

Γ ⊢I match e with | cs : M(τ2)
(IT-Match_Incomplete)

Γ ⊢I e : τ1 Γ ⊩I cs : τ1 : M(τ2) ¬Γ ⊢ cs complete

τ1 , M(_)

Γ ⊢I match e with | cs : M(τ2)
(IT-Match_MIncomplete)

We require clauses to all have the same pattern type, but
we allow some clauses to have a monadic result type and
some to have a non-monadic result type. If we encounter a
mix, we choose the monadic result type:

Γ ⊢ p match τ1; Γ′ Γ
′ ⊢I e : τ2

Γ ⊩I p ⇒ e : τ1 : τ2
(IT-CS-Single)

Γ ⊢ p match τ1; Γ′ Γ
′ ⊢I e : τ2 Γ ⊩I cs : τ1 : τ2

Γ ⊩I p ⇒ e | cs : τ1 : τ2
(IT-CS-Add)

Γ ⊢ p match τ1; Γ′ Γ
′ ⊢I e : M(τ2) Γ ⊩I cs : τ1 : τ2

Γ ⊩I p ⇒ e | cs : τ1 : M(τ2)
(IT-CS-Add_MHere)

Γ ⊢ p match τ1; Γ′ Γ
′ ⊢I e : τ2 Γ ⊩I cs : τ1 : M(τ2)

Γ ⊩I p ⇒ e | cs : τ1 : M(τ2)
(IT-CS-Add_MLater)

We allow equations to have expressions with the same
type as the implicit attribute being defined or the type inside
the monadic type constructor in the implicit attribute. This
allows assigning expressions of type T to an attribute of type
M(T), fittingwith our thinking of the typewithout themonad.
We also allow equations with no expression, which represent
an attribute having no value of type T as a meaningful value.
These might be used for defining the next step in small-step
evaluation on productions representing values.

Γ ⊢I e : M(τ ) Γ ⊢ a : M(τ ) t:NT ∈ Γ

Γ ⊢ a@NT a implicit

Γ ⊢I t.a=e; OK
(IT-EQ_Basic)

Γ ⊢I e : τ Γ ⊢ a : M(τ ) t:NT ∈ Γ

Γ ⊢ a@NT a implicit

Γ ⊢I t.a=e; OK
(IT-EQ_M)

Γ ⊢ a : M(τ2) t:NT ∈ Γ Γ ⊢ a@NT a implicit

Γ ⊢I t.a=; OK
(IT-EQ_Empty)
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A.4 Implicit Evaluation

The rules for evaluating implicit expressions are mostly the
same as the basic rules. We have two rules for attribute
accesses to only evaluate them to non-monadic values, as
discussed in Section 3.2. We have three rules for evaluating
closures, with the evaluation depending on the closure’s tag
and ensuring we do not evaluate to a monadic value.

γ ⊢I e ⇓ tn (a,v ′) ∈ tn v ∈M v ′

v is not monadic inM

γ ⊢I e.a ⇓ v
(IE-AttrAccess_E)

γ ⊢I e ⇓ tn (a,v) ∈ tn v is not monadic inM

γ ⊢I e.a ⇓ v
(IE-AttrAccess)

γ ⊢I true ⇓ true
(IE-True)

γ ⊢I false ⇓ false
(IE-False)

γ ⊢I e1 ⇓ true γ ⊢I e2 ⇓ true

γ ⊢I e1 && e2 ⇓ true
(IE-And_True)

γ ⊢I e1 ⇓ false

γ ⊢I e1 && e2 ⇓ false
(IE-And_False1)

γ ⊢I e1 ⇓ true γ ⊢I e2 ⇓ false

γ ⊢I e1 && e2 ⇓ false
(IE-And_False2)

x:v ∈ γ

γ ⊢I x ⇓ v
(IE-Var)

γ ⊢I λx : τ . e ⇓ closure γ x e implicit
(IE-Lam)

γ ⊢I e1 ⇓ closure γ
′ x e ′ implicit γ ⊢I e2 ⇓ v2

γ ′;x:v2 ⊢I e
′ ⇓ v

γ ⊢I e1 e2 ⇓ v
(IE-App_Im)

γ ⊢I e1 ⇓ closure γ
′ x e ′ explicit γ ⊢I e2 ⇓ v2

γ ′;x:v2 ⊢E e ′ ⇓ v ′ v ∈M v ′ v is not monadic inM

γ ⊢I e1 e2 ⇓ v
(IE-App_Ex_E)

γ ⊢I e1 ⇓ closure γ
′ x e ′ explicit γ ⊢I e2 ⇓ v2

γ ′;x:v2 ⊢E e ′ ⇓ v v is not monadic inM

γ ⊢I e1 e2 ⇓ v
(IE-App_Ex)

γ ⊢I e1 ⇓ v1 γ;x:v1 ⊢I e2 ⇓ v2

γ ⊢I let x = e1 in e2 ⇓ v2
(IE-Let)

γ ⊢I e ⇓ v1 γ ⊩I cs,v1 ⇓ v

γ ⊢I match e with | cs ⇓ v
(IE-Match)

As expected, evaluation of clauses walks through a set of
clauses, evaluating the expression associated with the first
clause that matches:

γ ⊢P p matches vm ⇓ γ ′ γ ′ ⊢I e ⇓ v

γ ⊩I p ⇒ e,v ⇓
(IE-CS-Single)

γ ⊢P p matches vm ⇓ γ ′ γ ′ ⊢I e ⇓ v

γ ⊩I p ⇒ e | cs,vm ⇓ v
(IE-CS-Add_Match)

¬(γ ⊢P p matches vm ⇓ γ ′) γ ⊩I cs,vm ⇓ v

γ ⊩I p ⇒ e | cs,vm ⇓ v
(IE-CS-Add_NoMatch)

A.5 Closure Evaluation in the Extended Language

The values in the extended language are the same as the
values in the basic language other than closures. In the basic
language, we have closures (closure γ x e), where γ is
an evaluation context, x is the variable bound by the closure,
and e is the body of the closure. In the extended language, we
have tagged closures (closure γ x e tag), where tag is
either implicit or explicit, referring to whether monads
which appear in it are treated implicitly or explicitly.

An abstraction in the implicit evaluation evaluates to a
closure tagged with implicit:

γ ⊢I λx : τ . e ⇓ closure γ x e implicit
(IE-Lam)

Similarly, the explicit evaluation relation evaluates to a clo-
sure tagged with explicit:

γ ⊢E λx:ty. e ⇓ closure γ x e explicit
(EE-Lam)

In the implicit evaluation relation, an application evaluates
the body of the closure using the appropriate relation for the
tag of the closure. If it is tagged as implicit, we use the implicit
evaluation relation to evaluate the body of the closure:

γ ⊢I e1 ⇓ closure γ
′ x e ′ implicit γ ⊢I e2 ⇓ v2

γ ′;x:v2 ⊢I e
′ ⇓ v

γ ⊢I e1 e2 ⇓ v
(IE-App_Im)

If it is tagged as explicit, we evaluate the body of the closure
using the explicit evaluation relation. However, we need two
rules, just as we explained we need two rules for attribute ac-
cesses in Section 3.2 due to the possibility of monadic values
as results. If the result is a monadic value, the application
evaluates to the value inside it:
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γ ⊢I e1 ⇓ closure γ
′ x e ′ explicit γ ⊢I e2 ⇓ v2

γ ′;x:v2 ⊢E e ′ ⇓ v ′ v ∈M v ′ v is not monadic inM

γ ⊢I e1 e2 ⇓ v
(IE-App_Ex_E)

If the result is not a monadic value, the application evaluates
to the value to which the closure’s body evaluated:

γ ⊢I e1 ⇓ closure γ
′ x e ′ explicit γ ⊢I e2 ⇓ v2

γ ′;x:v2 ⊢E e ′ ⇓ v v is not monadic inM

γ ⊢I e1 e2 ⇓ v
(IE-App_Ex)

We do not need two separate rules for evaluating implicit
attributes because the implicit evaluation relation, used for
evaluating the closure body, cannot result in a monadic value.

We have a similar split in the explicit evaluation relation.
We have two rules, one for explicit closures and one for
implicit closures:

γ ⊢E e1 ⇓ closure γ
′ x e ′ implicit γ ⊢E e2 ⇓ v2

γ ′;x:v2 ⊢I e
′ ⇓ v ′

γ ⊢I e1 e2 ⇓ v
(IE-App_Im)

γ ⊢E e1 ⇓ closure γ
′ x e ′ explicit γ ⊢E e2 ⇓ v2

γ ′;x:v2 ⊢E e ′ ⇓ v

γ ⊢E e1 e2 ⇓ v
(IE-App_Ex)

As in implicit evaluation, this ensures the body of the closure
is evaluated with the relation which can handle it.

B Rewriting Rules

Our rewriting rules correspond very closely with the implicit
typing rules, since we are rewriting an implicitly-typable
expression into a basic-typable expression. We rewrite to
a particular type, which is both the type of the original ex-
pression under the implicit typing rules and the type of the
rewritten expression under the basic typing rules.
There is one rewriting rule for each typing rule other

than for match expressions. Because our rewriting completes
incomplete sets of clauses, we need to duplicate some typing
rules to get our set of rewriting rules.
As in the typing rules, the monadic type constructor M

is the monadic type constructor for the type of the equa-
tion of which the expression is part. Also as in the typing
rules, we use τ , M(_) to mean that τ is not built with the
monadic type constructorM . Our full set of rewriting rules
for expressions:

Γ ⊢ e ⇝ e ′ : NT Γ ⊢ a : τ Γ ⊢ a@NT

Γ ⊢ e .a ⇝ e ′.a : τ
(RW-AttrAccess)

Γ ⊢ e ⇝ e ′ : M(NT ) Γ ⊢ a : τ
τ , M(_) Γ ⊢ a@NT

Γ ⊢ e .a ⇝ e ′ ≫= λx : NT . return (x .a) : M(τ )
(RW-AttrAccess_M)

Γ ⊢ e ⇝ e ′ : M(NT ) Γ ⊢ a : M(τ ) Γ ⊢ a@NT

Γ ⊢ e .a ⇝ e ′ ≫= λx : NT . x .a : M(τ )
(RW-AttrAccess_MBoth)

Γ ⊢ true⇝ true : Bool
(RW-True)

Γ ⊢ false⇝ false : Bool
(RW-False)

Γ ⊢ e1 ⇝ e ′1 : Bool Γ ⊢ e2 ⇝ e ′2 : Bool

Γ ⊢ e1 && e2 ⇝ e ′1 && e ′2 : Bool
(RW-And)

Γ ⊢ e1 ⇝ e ′1 : M(Bool) Γ ⊢ e2 ⇝ e ′2 : Bool
x fresh in e ′2

Γ ⊢ e1 && e2 ⇝

e ′1 ≫= λx : Bool . return (x && e ′2) : M(Bool)
(RW-And_M1)

Γ ⊢ e1 ⇝ e ′1 : Bool Γ ⊢ e2 ⇝ e ′2 : M(Bool)

Γ ⊢ e1 && e2 ⇝

if e ′1 then e
′
2 else return false : M(Bool)

(RW-And_M2)

Γ ⊢ e1 ⇝ e ′1 : M(Bool) Γ ⊢ e2 ⇝ e ′2 : M(Bool)
x fresh in e ′2

Γ ⊢ e1 && e2 ⇝ e ′1 ≫= λx : Bool . if x then e ′2
else return false : M(Bool)

(RW-And_MBoth)

x:τ ∈ Γ

Γ ⊢ x ⇝ x : τ
(RW-Var)

Γ;x:τ1 ⊢ e ⇝ e ′ : τ2

Γ ⊢ λx : τ1. e ⇝ λx : τ1. e ′ : τ1 → τ2
(RW-Lam)

Γ ⊢ e1 ⇝ e ′1 : τ1 → τ2 Γ ⊢ e2 ⇝ e ′2 : τ1

Γ ⊢ e1 e2 ⇝ e ′1 e
′
2 : τ2

(RW-App)

Γ ⊢ e1 ⇝ e ′1 : τ1 → τ2 Γ ⊢ e2 ⇝ e ′2 : M(τ1)
τ2 , M(_) f fresh in e ′2 x , f

Γ ⊢ e1 e2 ⇝ let f = e ′1 in

(e ′2 ≫= λx : τ1. return (f x)) : M(τ2)
(RW-App_MArg1)

Γ ⊢ e1 ⇝ e ′1 : τ1 → M(τ2) Γ ⊢ e2 ⇝ e ′2 : M(τ1)
f fresh in e ′2 x , f

Γ ⊢ e1 e2 ⇝ let f = e ′1 in (e
′
2 ≫= λx : τ1. f x) : M(τ2)

(RW-App_MArg2)
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Γ ⊢ e1 ⇝ e ′1 : M(τ1 → τ2) Γ ⊢ e2 ⇝ e ′2 : τ1
τ2 , M(_) f fresh in e ′2

Γ ⊢ e1 e2 ⇝

e ′1 ≫= λf : τ1 → τ2. return (f e ′2) : M(τ2)
(RW-App_MFun1)

Γ ⊢ e1 ⇝ e ′1 : M(τ1 → M(τ2)) Γ ⊢ e2 ⇝ e ′2 : τ1
f fresh in e ′2

Γ ⊢ e1 e2 ⇝

e ′1 ≫= λf : τ1 → M(τ2). f e ′2 : M(τ2)
(RW-App_MFun2)

Γ ⊢ e1 ⇝ e ′1 : M(τ1 → τ2) Γ ⊢ e2 ⇝ e ′2 : M(τ1)
τ2 , M(_) f fresh in e ′2 f , x

Γ ⊢ e1 e2 ⇝ e ′1 ≫=

λf : τ1 → τ2. e
′
2 ≫= λx : τ1. return (f x) : M(τ2)

(RW-App_MFunArg1)

Γ ⊢ e1 ⇝ e ′1 : M(τ1 → M(τ2)) Γ ⊢ e2 ⇝ e ′2 : M(τ1)
f fresh in e ′2 f , x

Γ ⊢ e1 e2 ⇝

e ′1 ≫= λf : τ1 → M(τ2). e
′
2 ≫= λx : τ1. f x : M(τ2)

(RW-App_MFunArg2)

Γ ⊢ fail⇝ fail : M(τ )
(RW-Fail)

Γ ⊢ e1 ⇝ e ′1 : τ1 Γ;x:τ1 ⊢ e2 ⇝ e ′2 : τ2 τ1 , M(_)

Γ ⊢ let x = e1 in e2 ⇝ let x = e ′1 in e
′
2 : τ2

(RW-Let)

Γ ⊢ e1 ⇝ e ′1 : M(τ1) Γ;x:τ1 ⊢ e2 ⇝ e ′2 : τ2
τ2 , M(_)

Γ ⊢ let x = e1 in e2 ⇝ e ′1 ≫= λx : τ1. return e ′2 : M(τ2)
(RW-Let_M)

Γ ⊢ e1 ⇝ e ′1 : M(τ1) Γ;x:τ1 ⊢ e2 ⇝ e ′2 : M(τ2)

Γ ⊢ let x = e1 in e2 ⇝ e ′1 ≫= λx : τ1. e ′2 : M(τ2)
(RW-Let_MBoth)

Γ ⊢ e ⇝ e ′ : τ1 Γ ⊩ cs ⇝ cs ′ : τ1 : τ2
Γ ⊢ cs complete τ1 , M(_)

Γ ⊢ match e with | cs ⇝ match e ′ with | cs ′ : τ2
(RW-Match)

Γ ⊢ e ⇝ e ′ : τ1 Γ ⊩ cs | _ ⇒ fail⇝ cs ′ : τ1 : M(τ2)
¬Γ ⊢ cs complete τ1 , M(_)

Γ ⊢ match e with | cs ⇝ match e ′ with | cs ′ : M(τ2)
(RW-Match_Incomplete)

Γ ⊢ e ⇝ e ′ : M(τ1) Γ ⊩ cs ⇝ cs ′ : τ1 : τ2
τ2 , M(_) Γ ⊢ cs complete x fresh in cs ′

Γ ⊢ match e with | cs ⇝

e ′ ≫= λx : τ1. return (match x with | cs ′ ) : M(τ1)
(RW-Match_MD)

Γ ⊢ e ⇝ e ′ : M(τ1) ¬(Γ ⊢ cs complete)

Γ ⊩ cs | _ ⇒ fail⇝ cs ′ : τ1 : M(τ2) x fresh in cs ′

Γ ⊢ match e with | cs ⇝

e ′ ≫= λx : τ1. match x with | cs ′ : M(τ1)
(RW-Match_MD_Incomplete)

Γ ⊢ e ⇝ e ′ : M(τ1) Γ ⊩ cs ⇝ cs ′ : τ1 : M(τ2)
x fresh in cs ′ Γ ⊢ cs complete

Γ ⊢ match e with | cs ⇝

e ′ ≫= λx : τ1. match x with | cs : M(τ2)
(RW-Match_MBoth)

Some clauses in a set may initially have different result
types, some resulting in type T and some resulting in type
M(T). When we encounter such mismatched types, we add
monadic return operations, either directly or with returnify ,
to make all clauses result in the same type:

Γ ⊢ p match τ1; Γ′ Γ
′ ⊢ e ⇝ e ′ : τ2

Γ ⊩ p ⇒ e ⇝ p ⇒ e ′ : τ1 : τ2
(RW-CS-Single)

Γ ⊢ p match τ1; Γ′ Γ
′ ⊢ e ⇝ e ′ : τ2

Γ ⊩ cs ⇝ cs ′ : τ1 : τ2

Γ ⊩ p ⇒ e | cs ⇝ p ⇒ e ′ | cs ′ : τ1 : τ2
(RW-CS-Add)

Γ ⊢ p match τ1; Γ′ Γ
′ ⊢ e ⇝ e ′ : τ2

Γ ⊩ cs ⇝ cs ′ : τ1 : M(τ2)

Γ ⊩ p ⇒ e | cs ⇝ p ⇒ return e ′ | cs ′ : τ1 : M(τ2)
(RW-CS-Add_MLater)

Γ ⊢ p match τ1; Γ′ Γ
′ ⊢ e ⇝ e ′ : M(τ2)

Γ ⊩ cs ⇝ cs ′ : τ1 : τ2 returnify cs ′ cs ′′

Γ ⊩ p ⇒ e | cs ⇝ p ⇒ e ′ | cs ′′ : M(τ2) :
(RW-CS-Add_MHere)

C Value Relations

The relation describing when values are appropriately re-
lated as evaluation results before and after rewriting can
be thought of as a translation relation for values. As ex-
pected, constant values, such as true and false are related
to themselves, but more complex values require a more care-
ful treatment.

Formally, v ∼v v ′ holds if and only if one of the following
rules holds:

• Anything other than a closure or a tree node requires
both values equal:
ś ¬(∃γ x e t . v = closure γ x e t)

ś ¬(∃tn. v = tn)

ś v = v ′

• A tree node is related to another tree node if they are
references to the same node in the tree.
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• An original explicit closure becomes a closure with
the same body but a different, related context:
ś v = closure γ x e explicit

ś v ′ = closure γ ′ x e

ś γ ∼c ⟨x , e⟩ γ
′

• An original implicit closure becomes a closure with a
rewritten body and related context:
ś v = closure γ x e implicit

ś v ′ = closure γ ′ x e ′

ś ∃Γ τ . Γ ⊢ e ⇝ e ′ : τ and for each name in both Γ

and γ ′, the value in γ ′ has the type found in Γ

ś γ ∼c ⟨x , e⟩ γ
′

The relation γ ∼c ⟨x , e⟩ γ
′ holds if, for all the free vari-

ables in e other than x , if γ ′ has a value for the free variable,
then γ has a related value and vice versa:

• ∀y v ′. f reevar y e ⇒ y , x ⇒ x : v ′ ∈ γ ′ ⇒
∃v . y : v ∈ γ ∧ v ∼v v ′

• ∀y v . f reevar y e ⇒ y , x ⇒ x : v ∈ γ ⇒
∃v ′. y : v ′ ∈ γ ′ ∧ v ∼v v ′

The way to think about this is that we want the two contexts
to have related values for all the variables which might be
referenced in evaluating the closures they are part of, which
is the free variables minus the variable for the closures.

D Proof Sketch for Evaluation Correctness

Our evaluation correctness property for rewriting is com-
posed of two properties:

• If the original equation evaluated to a value v , the
rewritten equation evaluates to a monadic value con-
taining a value related to v .
• If the rewritten equation evaluates, either there is a
value v ′ in the result and the original equation evalu-
ated to a value related to v ′ or the result is a monadic
failure and the original equation could not evaluate.

Each property follows directly from a related, but more com-
plex, property for expressions. The added complexity comes
from the context possibly containing related values rather
than exactly the same values. They also become more com-
plex in the expression version because the rewritten expres-
sion may not have a monadic type, so we need to consider
cases based on the type of the expression.
Because our properties are only concerned with contain-

ment and non-containment of values, it doesn’t matter how
many empty (failure) or non-empty (contain a value) con-
structors the monad being used has. We can prove the prop-
erties as if the monad has one of each, which means we can
prove the properties for Maybe and have the proofs apply to
any other monad with an acceptable definition of monadic
containment.
We will look at a sketch of the proof of each property.

Original Evaluation Implies RewrittenEvaluation. We
proceed by induction on the derivation of evaluation for the
original expression, also considering cases on rewriting.

If no bind is inserted, the values of the subderivations
are essentially equal between the original and the rewritten
version because there are no monads in the types, and the
basic rule corresponding to the original implicit rule can be
used for the evaluation.
If the original evaluation used a rule which removed a

valuev from a monadic value, such as IT-AttrAccess_E, the
subderivation in the basic language will result in a monadic
value containing a value v ′ such that we have v ∼v v ′. Then
themonadic value after the rewriting contains a value related
to the value before the rewriting.

If a bind was inserted, the expression being bound in orig-
inally evaluated to a value v , and its rewritten version eval-
uates to a monadic value containing a value v ′ such that
we have v ∼v v ′. By our monadic containment require-
ment thatm ≫= f be equal to f v0 when v0 ∈M m, the
result of the inserted bind is the result of doing the compu-
tation originally done with v with v ′ instead, a value which
is essentially equal. If we inserted a return, the result is
a monadic value containing a value related to the original
value, since we require that monadic containment be defined
so v ∈M return v .

RewrittenEvaluation Implies Original Evaluation. As
with the other direction, we proceed by induction on the
derivation of evaluation, this time for the rewritten expres-
sion, also considering cases on rewriting the expression.
If it evaluates to a non-monadic value, we can use the

related implicit evaluation rule to evaluate the original ex-
pression, since the values involved are essentially equal.
If it evaluates to a non-failure monadic value and a bind

was inserted, our monadic containment requirements tell us
there was a valuev ′ in the monadic value bound in, and thus
that the result of the bind was the function applied to this
value. The inductive hypothesis tells us that the expression
bound in originally evaluated to a value v such that v ∼v v ′.
This valuev was used in the computation represented by the
function for the bind, and, because v and v ′ are essentially
equal, the result of this computation must be related as well.

Our proof also relies on our ban on using monadic values
explicitly. If, for example, we allowed matching on monadic
values, a match in the rewritten expression could gener-
ate spurious values. Consider the following match on an
attribute of type Maybe(Int):

match t.a with | just(x) ⇒ x | nothing() ⇒ 5

If t.a were originally unevaluable and is now nothing(),
we would have produced a non-failure value which had
no counterpart in the original evaluation rules. Because the
above match could not be written in the original typing rules,
we avoid this problem.

A monadic failure result in the rewritten evaluation must
ultimately come from either a fail construct in the expres-
sion, an attribute access, or a function evaluation. The im-
plicit rules do not evaluate fail, and attribute accesses and
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function evaluations only allow non-monadic results into
the implicit evaluation. Furthermore, only corresponding
subexpressions are evaluated in the rewritten and original
expressions, so it cannot be that the monadic failure came
from a subexpression which may be łskippedž in the original
evaluation to produce a value. Therefore a monadic failure re-
sult in a rewritten expression implies the original expression
cannot evaluate.
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