
September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 375

Chapter 11

Scalability and Distribution of
Collaborative Recommenders

Evangelia Christakopoulou

Computer Science & Engineering
University of Minnesota, Minneapolis, MN

evangel@cs.umn.edu

Shaden Smith

Computer Science & Engineering
University of Minnesota, Minneapolis, MN

shaden@cs.umn.edu

Mohit Sharma

Computer Science & Engineering
University of Minnesota, Minneapolis, MN

mohit@cs.umn.edu

Alex Richards

Department of Computer Engineering
San José State University
alexander.richards@sjsu.edu

David Anastasiu

Department of Computer Engineering
San José State University
david.anastasiu@sjsu.edu

George Karypis

Computer Science & Engineering
University of Minnesota, Minneapolis, MN

karypis@cs.umn.edu

375

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 376

376 E. Christakopoulou et al.

Recommender systems are ubiquitous; they are foundational to a wide
variety of industries ranging from media companies such as Netflix to e-
commerce companies such as Amazon. As recommender systems continue
to permeate the marketplace, we observe two major shifts which must be
addressed. First, the amount of data used to provide quality recommen-
dations grows at an unprecedented rate. Secondly, modern computer ar-
chitectures display great processing capabilities that significantly outpace
memory speeds. These two trend shifts must be taken into account in order
to design recommendation systems that can e�ciently handle the amount
of available data by distributing computations in order to take advantage
of modern parallel architectures. In this chapter, we present ways to scale
popular collaborative recommendation methods via parallel computing.

11.1. Introduction

Recommender systems are ubiquitous; they are foundational to a wide
variety of industries ranging from media companies such as Netflix to e-
commerce companies such as Amazon. Their popularity is attributed to
their ability to e↵ectively navigate users through a plethora of product
options which would otherwise go unexplored. As recommender systems
continue to permeate the marketplace, we observe two major shifts which
must be addressed.

First, the amount of data used to provide quality recommendations
grows at an unprecedented rate. For example, companies such as Netflix
stream millions of movies each day. Secondly, modern computer archi-
tectures forego great changes. The last two decades have seen available
processing capabilities significantly outpace memory speeds. This disparity
has shifted the cost of many computations from mathematical operations
to data movements. In consequence, algorithm designers must now expose
large amounts of parallelism while reducing data movement costs. These
two trend shifts must be taken into account in order to design recommen-
dation systems that can e�ciently handle the amount of available data by
distributing computations in order to take advantage of modern parallel
architectures.

Unfortunately, designing successful recommendation systems that can
e↵ectively utilize modern parallel architectures is not always straightfor-
ward. Most popular recommendation algorithms are inherently unstruc-
tured, meaning that data accesses are not known apriori because they are
determined by the structure of the input data. The unstructured nature of

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 377

Scalability and Distribution of Collaborative Recommenders 377

the underlying computations is further complicated by non-uniform distri-
butions exhibited by real-world ratings datasets. A small number of popular
items and prolific users cause the data to follow a power-law distribution,
which presents challenges when partitioning work to processing cores in a
balanced manner.

In this chapter, we present ways to scale popular collaborative recom-
mendation methods via parallel computing. The methods we present span
both of the primary recommendation tasks: the top-N recommendation
task, where we are interested in whether a user will likely purchase an item,
and the rating prediction task, which focuses on determining how much a
user would enjoy a product. The nearest neighbor methods presented in
Section 11.2 are used for both tasks. The sparse linear methods presented
in Section 11.3 are oriented towards the top-N recommendation task. Fi-
nally, the matrix and tensor factorization methods presented in Section 11.4
can be used for both tasks, but for the purposes of this chapter, they are
primarily viewed in the context of rating prediction.

The presented methods are very di↵erent from each other and exhibit
di↵erent parallelization opportunities. For each method, an overview is
presented, along with a discussion of how it can be scaled and experimental
results showing the runtimes and speedup achieved on the MovieLens 10M
(ML10M) dataset.

The rest of the chapter has the following structure: Subsections 11.1.1
and 11.1.2 present the notation and evaluation methodology used in the
rest of the chapter. Section 11.2 presents methods to e�ciently identify
neighbors in the nearest-neighbor approaches. Section 11.3 describes sparse
linear methods, where both the neighbors to a target item and their similar-
ities are estimated through solving an optimization problem and discusses
their scalability. Finally, Section 11.4 gives an overview and discusses the
e�ciency of matrix and tensor factorization approaches.

11.1.1. Notation

In the rest of the chapter, we will use bold capital letters to refer to matrices
(e.g., A) and bold lower case letters to refer to vectors (e.g., p). The vectors
are assumed to be column vectors. Thus, ai refers to the ith column of
matrix A and we will use the transpose (aT

i) to describe row vectors.
We note the rating matrix, which contains the feedback given by n users

to m items as R. The dimensions of R are n ⇥m. We will use the term
u to note a user, and i to note an item. The rating given by a user u to

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 378

378 E. Christakopoulou et al.

an item i will be noted by rui and with a slight abuse of notation will be
used to show both the explicit rating that user u gave to item i and/or the
implicit feedback (purchase/like) from u to i. We will use the notation r̂ui

to refer to the predicted rating. Finally, we use the notation | · | to refer to
the number of non-zeros in the corresponding matrix or vector.

11.1.2. Evaluation

Dataset Throughout this chapter, we will demonstrate the e�ciency and
e↵ectiveness of di↵erent recommender methods using the MovieLens 10
Million (ML10M) [Harper and Konstan (2015)] ratings dataset. ML10M
consists of 10 million ratings provided to 10677 movies by 69878 users. Each
rating is accompanied by a timestamp. The timestamps span 158 months
and are used in tensor factorization approaches in Section 11.4.

Evaluation In order to evaluate the performance of the methods, we
employ a leave-one-out validation scheme. For every user, we leave out
one rating and we train the model on the rest of the user’ ratings. All
the left-out ratings comprise the test set. We repeat this procedure three
times, thus resulting in three folds (three train sets and three associated
test sets). In the end, for every method, we report the average time taken
and the average performance of the folds.

As the exact rating is not used in top-N methods, the implicit feedback
of the ML10M dataset is used instead in Section 11.3. In this scenario,
non-zero rating values in R are replaced with 1s, signifying the existence
of a rating given by a user to an item in the original data. To evaluate
top-N recommendation methods, we need to investigate whether the item
of the user that belongs to the test set is included in the list of top-N
recommendations to the user, and in which position. Therefore, we use two
performance metrics: HR and ARHR, where:

HR =
#hits

#users
, (11.1)

and

ARHR =
#hitsX

i=1

1

pi
. (11.2)

The #hits denotes the number of times that the test items were included
in the top-N recommendation list and pi is the position of the test item in
the recommended list, with pi = 1 being the top position. In this chapter,

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 379

Scalability and Distribution of Collaborative Recommenders 379

we have evaluated the top-N recommendation methods by computing HR
and ARHR for N = 10.

In the rating prediction methods, the explicit ratings are used. Also,
when presenting the tensor factorization methods in Section 11.4, the as-
sociated timestamps are used beyond the ratings. To evaluate the rating
prediction methods, we need to see how similar or di↵erent the predicted
values of the ratings are with the actual ratings. We employ the Root Mean
Squared Error (RMSE) to do that:

RMSE =

sP
u

P
i (rui � r̂ui)2

|R|
. (11.3)

More details on RMSE, HR, ARHR and other evaluation measures can
be found in Chapter 9. A thorough explanation of the di↵erence between
explicit and implicit feedback can be found in Chapter 7.

System characteristics For consistency and comparison purposes, all
experiments are executed on the same system1 consisting of identical nodes
equipped with 64 GB RAM and two twelve-core 2.5 GHz Intel Xeon E5-
2680v3 (Haswell) processors. Each core is equipped with 32 KB L1 cache
and 256 KB of L2 cache, and the 12 cores on each socket share 30 MB of
L3 cache.

11.2. Scaling up nearest-neighbor approaches

A number of recommender systems rely on finding nearest neighbors among
users or items as an integral part of deriving recommendations or training
a predictive recommendation model. More details on nearest-neighbor ap-
proaches can be found in Chapter 1. A neighbor is defined as a user/item
who is similar to the target user/item, based on a similarity notion (e.g.
the target user and the neighbor user have co-rated a lot of items). The
symbol Ni(u) represents the set of neighbors of the item i rated by the
user u. Similarly, the symbol Nu(i) represents the set of neighbors of user
u, who have rated item i. In this section, we discuss approaches to speed
up neighborhood identification, which directly a↵ects recommendation ef-
ficiency.

1https://www.msi.umn.edu/content/mesabi

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 380

380 E. Christakopoulou et al.

11.2.1. Use of neighborhoods in Recommender Systems

Collaborative filtering based recommenders, such as the user-based neigh-
borhood method [Konstan et al. (1997)] or item-based neighborhood meth-
ods [Sarwar et al. (2001); Deshpande and Karypis (2004)], first identify a
set of neighbors and then use the ratings associated with those neighbors
to derive the predicted rating for the user in question. User-based methods
identify a set of users similar to target user u and predict the rating of user
u on item i as

r̂ui = µu +

P
v2Nu(i)

sim(u, v)(rvi � µv)P
v2Nu(i)

sim(u, v)
,

where sim(u, v) denotes the similarity between the users u and v, and µu

and µv are the means of the ratings provided by users u and v, respectively.
Item-based neighborhood methods, however, derive the rating of user u

on target item i by considering other items that have been rated (generally
high) by the user u. The predicted rating of u on i is given by

r̂ui = µi +

P
j2Ni(u)

sim(i, j)(ruj � µj)P
j2Ni(u)

sim(i, j)
.

where sim(i, j) denotes the similarity between the items i and j, and µi

and µj are the means of the ratings received by items i and j, respectively.
A number of di↵erent recommenders can be designed given di↵erent

choices in applying the formulas above with respect to user and item repre-
sentations, similarity function, or neighborhood construction. The standard
approach is to represent user u as the sparse vector of ratings for items rated
by the user (row u in the ratings matrix R) and item i as the vector of all
ratings given to item i by users (column i in R). Given a vector represen-
tation of users and items, the similarity between users or between items is
most often computed as the cosine similarity or Pearson correlation coef-
ficient between their respective vectors. Finally, the neighborhoods Nu(i)
and Ni(u) can be constructed by finding all neighbors with a similarity
above some minimum threshold ✏, or one may consider only the k closest
neighbors to the target user or item.

Beyond deriving recommendations by relying on similar users or items,
some optimization-based recommenders learn a recommendation model by
focusing only on the ratings of similar users or items during the learning
process (e.g., the fs-SLIM model [Ning and Karypis (2011)]).

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 381

Scalability and Distribution of Collaborative Recommenders 381

Näıve approaches will compare each user to every other user, thus lead-
ing to quadratic complexity in the number of computed similarities. In the
remainder of this section, we will discuss e�cient methods that identify
nearest neighbors given user-item ratings. The methods rely on aggressive
pruning of the search space by identifying pairs of users or items that can-
not be similar enough based on theoretic upper bounds on their computed
similarity. Additional performance gains are achieved via e�cient use of
the memory hierarchy of modern computing systems and shared-memory
parallelism.

We focus our discussion on two nearest neighbor problems useful in
the recommender systems context. The ✏-nearest neighbor graph (✏NNG)
construction problem, also known as all-pairs similarity search (APSS) or
similarity join, identifies, for each user/item in a set, all other users/items
with a similarity of at least ✏. On the other hand, the k-nearest neighbor
graph (kNNG) construction constrains each identified neighborhood to the
k users/items closest to the target user/item. To simplify the discussion,
we will describe the methods in the context of constructing item neighbor-
hoods. The same methods can be applied to find user-based neighbors.

11.2.2. ✏-nearest neighbor graph construction

Recently, several methods have been proposed that e�ciently construct
the ✏NNG by filtering (or ignoring) pairs of items that cannot be neighbors
[Bayardo et al. (2007); Anastasiu and Karypis (2014, 2015b); Anastasiu
(2017)]. Item rating profile vectors are inherently sparse, as few users may
consume and rate each item. The proposed methods take advantage of
this sparsity and use data structures and processing strategies designed to
eliminate unnecessary memory accesses and multiplication operations. The
L2-norm All Pairs (L2AP) [Anastasiu and Karypis (2014)] and Parallel L2-
norm All Pairs (pL2AP) [Anastasiu and Karypis (2015b)] methods con-
struct an exact neighborhood graph, finding the same neighbors as those
found by a brute-force method that compares each user/item against all
other users/items. Cosine Approximate Nearest Neighbors (CANN) [Anas-
tasiu (2017)], on the other hand, finds most but not necessarily all of the
neighbors with a similarity of at least ✏.

These methods use an inverted index data structure to eliminate unnec-
essary comparisons. The inverted index is represented by the sparse user
rating profiles. It consists of a set of lists, one for each user, such that
the uth list contains pairs (i, rui) for all items i that have a non-zero rui

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 382

382 E. Christakopoulou et al.

rating. Many unnecessary memory accesses and similarity computations
can be avoided by only comparing an item against the set of items found
in the inverted index lists for the users that rated it. In this way, two
items that have not been rated by any common user will never have their
similarity computed.

Additional savings can be achieved by taking advantage of the input
similarity threshold ✏. Note that cosine similarity measures the cosine of
the angle between the two vectors and is thus independent of the vector
lengths. A standard preprocessing step in computing cosine similarity is to
normalize the vectors with respect to their L2-norm, which reduces com-
puting the cosine similarity of two vectors to finding their dot-product. The
methods compute only part of the dot-product of profile vectors for most
pairs of items, e.g., using only the tail-end features in the profile vector.
Several theoretic upper bounds of vector dot-products are used to estimate
the portion of the dot-product for the leading features. If the sum of the
estimate and computed portions of the dot-product is below ✏, the items
cannot be similar enough and are pruned.

Many item comparisons are completely avoided through a partial index-
ing strategy. Only a few of the leading features of the profile of an item i

are indexed, enough to ensure that any item j with a similarity of at least
✏ will be found by traversing the partial index. This strategy leads to a two
phase process for constructing the exact ✏NNG. First, partial similarities
(dot-products) are computed using values stored in the inverted index lists
for users that rated item i, which are called candidates. In the second phase,
the un-indexed portion of each of the candidate profile vectors is used to
finish computing similarities only for those items with non-zero similarity
after the first phase. In both phases, additional similarity upper-bounds
are used to eliminate candidates that cannot be similar enough.

Parallelization of pL2AP focuses on a cache-tiling strategy that aims to
fit critical data structures used during similarity search in the high-speed
yet limited cache memory of the system. The method splits the set of items
such that each subset has a partial inverted index that can fit in cache
memory. Each core is then assigned small sets of neighborhood searches for
20 consecutive items, which could be independently executed. Additionally,
a small-memory footprint hash table data structure is proposed which is
uniquely suited to the memory access patterns in pL2AP and provides
fast access to profile vector values and meta-data necessary for computing
similarity upper bounds. Algorithm 1 provides a sketch of the pL2AP
processing pipeline. Additional details for the algorithm and the di↵erent

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 383

Scalability and Distribution of Collaborative Recommenders 383

Algorithm 1 pL2AP

1: Normalize profiles for every item i.
2: for all items i in parallel do
3: Identify prefix to be indexed.
4: end for
5: Split items to index into tiles based on cumulative prefix size.
6: for all index tiles in parallel do
7: Create partial inverted index for assigned tile items.
8: end for
9: for all index tiles do

10: for all items not in already processed index tiles in parallel do
11: Use partial inverted index to identify candidate neighbors.
12: Filter some candidates based on similarity upper-bound estimates.

13: Use un-indexed portion of candidate vectors to finish computing
their similarity, while continuing to filter those with estimates be-
low ✏.

14: Output un-filtered candidates with similarity � ✏.
15: end for
16: end for

similarity upper-bounds used in the filtering process in pL2AP can be found
in [Anastasiu and Karypis (2014, 2015b); Anastasiu (2017)].

Table 11.1 and Figure 11.1 show the runtime and parallel speedups of
pL2AP, when building the ✏NNG for items in the ML10M training datasets,
given ✏ ranging between 0.1 and 0.9. The method pL2AP is compared
against pij, a baseline that uses similar cache-tiling strategies as pL2AP
but does not prune the search space. Instead, it computes similarities for
all items co-rated by at at least one user. The left graph of Figure 11.1 shows
execution times in seconds, averaged over all three training folds, while the
right one shows strong scaling results for the two methods, measuring the
speedup of each method against their own serial execution. Strong scaling
is when the problem size remains the same but the amount of parallelism
increases. By e↵ectively eliminating unnecessary similarity computations,
pL2AP is able to achieve 4.24x–29.27x speedup over pij for di↵erent simi-
larity thresholds ✏.

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 384

384 E. Christakopoulou et al.

Table 11.1. Runtime and speedup of pL2AP over pij on the ML10M dataset, when

executed using 24 cores.

Method ✏ = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

time (s)

pij 3.22 3.22 3.22 3.22 3.22 3.22 3.22 3.23 3.22

pL2AP 0.76 0.55 0.42 0.34 0.26 0.21 0.15 0.13 0.11

speedup

pL2AP 4.24 5.85 7.67 9.38 12.38 15.60 21.47 24.82 29.27

Fig. 11.1. Runtime (left) and strong scaling (right) of pL2AP and the näıve baseline

pij when executed on the ML10M dataset.

11.2.3. k-nearest neighbor graph construction

One potential problem with using the ✏NNG to derive recommendations
is that, given a high enough value for ✏, some neighborhoods may not
contain any neighbors. The kNNG provides a guaranteed estimate of lo-
cal preferences by retrieving the k nearest neighbors for each item in the
set. L2Knng [Anastasiu and Karypis (2015a)] and pL2Knng [Anastasiu
and Karypis (2016)] have been proposed for the purpose of e�ciently con-
structing the exact kNNG. The main idea in L2Knng is to bootstrap the
similarity search with a quickly constructed approximate graph. The min-
imum similarities in the approximate neighborhoods can then be used as
filtering criteria in a search framework similar to the one in L2AP.

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 385

Scalability and Distribution of Collaborative Recommenders 385

In the first phase of constructing the kNNG, L2Knng e�ciently finds
most, but not necessarily all of the k items closest to each target item,
heuristically choosing a finite set of comparison items that are likely to be in
the exact neighborhood. First, L2Knng identifies items that have high-value
ratings in common with the target item, building an initial approximate
kNNG. This graph is then iteratively improved by looking for neighbors
among the neighbors of current neighbors. Finally, a filtering framework
similar to the one described in Section 11.2.2 is employed to construct the
exact kNNG. Unlike L2AP, L2Knng does not have an input threshold ✏ that
could be used for pruning. Instead, it relies on the idea that any item that
has the potential to be in the exact neighborhood of the target must have a
similarity greater than the minimum similarity of the target with any item
in its current approximate neighborhood. These minimum neighborhood
similarities are used to forgo most of the item pair comparisons.

Similar to pL2AP, parallelization in pL2Knng focuses on cache-tiling
and strategies for maximizing load balance among the cores. Unlike pL2AP,
neighborhood searches are not independent. Given that cosine similarity
is commutative, a neighbor j that the method finds for an item i could
also benefit from the search if item i is not yet in j’s neighborhood and
the similarity between i and j is greater than the minimum neighborhood
similarity in j’s neighborhood. A lock-free update strategy is used for the
in-memory shared neighborhood graph to address the potential resource
contention encountered when items i and j are being processed by di↵erent
cores. Algorithm 2 provides a high-level sketch of the pL2Knng method.
Additional details regarding the initial approximate graph construction and
filtering used to build the exact kNNG solution can be found in [Anastasiu
and Karypis (2015a, 2016); Anastasiu (2017)].

Table 11.2 and Figure 11.2 show the e�ciency of the parallel method,
pL2Knng, when building the kNNG for items in the ML10M training
datasets, given k ranging between 5 and 50. Our method, pL2Knng, is
compared against pkij, a similar baseline to pij that uses similar cache-
tiling strategies but does not prune the search space. The left graph
of Figure 11.2 shows execution times in seconds, averaged over all three
training folds, while the right one shows strong scaling results for the
two methods, measuring the speedup of each method against their own
serial execution. By e↵ectively eliminating unnecessary similarity compu-
tations, pL2Knng is able to achieve 2.2x–2.97x speedup over pkij for di↵er-
ent k values. Given larger datasets, such as one containing 1M pages from
the English Wikipedia Web site, containing almost half a billion non-zero

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 386

386 E. Christakopoulou et al.

Algorithm 2 pL2Knng

1: Normalize profiles for every item i.
2: for all items i in parallel do
3: Choose µ � k candidates highly co-rated with i by some user.
4: Compute candidate similarities and keep top-k candidates.
5: end for
6: for all items i in parallel do
7: Choose µ candidates from the neighborhoods of the current k neigh-

bors.
8: Compute candidate similarities and update ith neighborhood as nec-

essary.
9: end for

10: Use minimum neighborhood similarities to define partial inverted index
tiles.

11: for all index tiles do
12: for all items i not in already processed index tiles in parallel do
13: Use partial inverted index to identify candidate neighbors.
14: Filter some candidates based on similarity upper-bound estimates.

15: Use un-indexed portion of candidate vectors to finish computing
their similarity, while continuing to filter those with estimates be-
low minimum similarities in the candidate or i’s neighborhoods.

16: Update neighborhoods of i and un-filtered candidates as necessary.
17: end for
18: end for

values, pL2Knng has been shown to outperform pkij by 7.3x–11.5x for
k 50 [Anastasiu and Karypis (2015b)]. The results show the value of
pruning the search space as a means to improve the e�ciency of nearest
neighbor identification.

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 387

Scalability and Distribution of Collaborative Recommenders 387

Table 11.2. Execution times and speedup of pL2Knng over pkij

on the ML10M dataset, when executed using 24 cores.

Method k=5 10 20 30 40 50

time (s)

pKij 3.23 3.235 3.237 3.198 3.24 3.247

pL2Knng 1.089 1.136 1.228 1.324 1.408 1.479

speedup

pL2Knng 2.97 2.85 2.64 2.42 2.3 2.2

Fig. 11.2. Runtime (left) and strong scaling (right) of pL2Knng and the näıve baseline

pkij when executed on the ML10M dataset.

11.3. E�ciently Estimating Item-Item Similarities by
solving an Optimization Problem

11.3.1. Sparse LInear Methods for Top-N Recommendation

(SLIM)

In contrast to the standard item-based methods which use a predefined
similarity measure like cosine or Pearson correlation, Sparse LInear Meth-
ods (SLIM) [Ning and Karypis (2011)] learn the item-item relationships
from the user-item feedback matrix R instead. SLIM is a popular method
for top-N recommendation, as it has been shown to provide high-quality
recommendations [Ning and Karypis (2011)]. In SLIM, the rating for an
item is predicted as a sparse aggregation of the existing ratings provided

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 388

388 E. Christakopoulou et al.

by the user:

r̂ui = rT
u si,

where rT
u is the uth row of the rating matrix R and si is a sparse vec-

tor containing non-zero aggregation coe�cients over all items. The sparse
aggregation coe�cient matrix S of size m ⇥ m, capturing the item-item
relationships is estimated by solving the following optimization problem:

minimize
S

1

2
||R�RS||2F +

�

2
||S||2F + �||S||1

subject to S � 0

diag(S) = 0.

(11.4)

The optimization problem of Equation 11.4 tries to minimize the train-
ing error, denoted by ||R � RS||2F , while also regularizing the matrix S.
The problem uses two regularizers. The first one is the Frobenius norm of
the matrix S (noted by ||S||2F), which is controlled by the parameter �, in
order to prevent overfitting. The other regularizer is the l1 norm of the
matrix S (noted by ||S||1), which is controlled by the parameter �, in order
to promote sparsity [Tibshirani (1996)]. Larger values of � and � leads to
more severe regularization. The use of both lF and l1 regularization makes
the optimization problem of Equation 11.4 an elastic net problem [Zou and
Hastie (2005)].

The non-negativity constraint on S imposes the item-item relations to
be positive. The constraint diag(S) = 0 is added to avoid trivial solutions
(e.g., S corresponding to the identity matrix) and ensure that rui is not
used to compute r̂ui.

11.3.1.1. Parallelizing SLIM

Equation 11.4 can be accelerated by learning similarities in parallel for every
target item i, as every column of S can be learned independently from the
other columns. Then the optimization problem of Equation 11.4 changes
to a set of optimization problems of the form:

minimize
si

1

2
||ri �Rsi||

2
2 +

�

2
||si||

2
2 + �||si||1

subject to si � 0

sii = 0,

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 389

Scalability and Distribution of Collaborative Recommenders 389

which allows us to estimate the ith column of S, noted by si. The term ri

refers to the ith column of the training matrix R. The problem is solved
with the use of coordinate descent and soft thresholding [Friedman et al.
(2010)].

The software implementation of SLIM provided by the author Xia Ning2

utilizes the property that di↵erent columns of the sparse aggregation coef-
ficient matrix can be solved independently and allows the users to specify
which columns of the sparse aggregation coe�cient matrix they would like
to estimate. The software is implemented with the use of the Bound Con-
strained Least Squares (BCLS) library3.

In order to fully utilize the benefits from the parallel estimation of dif-
ferent columns of S, we use a multithreaded implementation of SLIM which
relies on OpenMP. This allows us to have parallelism within a multi-core
node. Each thread is assigned a set of columns i and estimates the as-
sociated sparse aggregation coe�cient vectors si. After all the threads
have estimated the set of si vectors, the vectors are combined into the
overall sparse aggregation coe�cient matrix S. We will refer to the mul-
tithreaded implementation of SLIM, as mt-SLIM. Figure 11.3 shows the
speedup achieved by mt-SLIM on the ML10M dataset, with respect to the
serial runtime (cores = 1). The results shown correspond to the time taken
for model estimation and they correspond to the average of three folds.

Fig. 11.3. The speedup achieved by mt-SLIM on the ML10M dataset, while increasing

the number of cores (strong scaling).

2http://www-users.cs.umn.edu/⇠xning/slim/html/
3http://www.cs.ubc.ca/⇠mpf/bcls/index.html

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 390

390 E. Christakopoulou et al.

As both the rating matrix and the estimated sparse aggregation coe�-
cient matrix are sparse, they are stored in CSR (Compressed Sparse Row)
format, in which three one-dimensional arrays are stored, that contain the
non-zero values, with their associated row and column indices.

11.3.1.2. Accelerating the training time of SLIM during parameter
search

In order to find the pair of regularization parameters � and � that give the
best results, a parameter search needs to be conducted. However, the num-
ber of models to estimate increases quadratically with the number of values
of the regularization parameters � and � explored. In order to be able to
estimate the models more e�ciently, mt-SLIM utilizes ‘warm-start’. This
means that with the exception of the model estimated with the very first
choice of parameters, every subsequent model is initialized with the previ-
ous model estimated with a di↵erent choice of regularization parameters,
instead of being initialized with zero values.

Figure 11.4 compares the time spent by mt-SLIM without initialization
and mt-SLIM with warm start, for the same number of cores and and for
the same choice of regularization parameters (� = 10, � = 1). We can see
that mt-SLIM with warm start is on average 15 times faster than mt-SLIM
with no initialization.

Fig. 11.4. The time in minutes achieved by mt-SLIM with and without warm start on

the ML10M dataset for � = 10 and � = 1, while increasing the number of cores (strong

scaling).

By evaluating the performance of mt-SLIM with no initialization and
with warm start, we get the same performance results, which shows that
with warm start, we gain in estimation times, without compromising the
quality of the performance.

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 391

Scalability and Distribution of Collaborative Recommenders 391

11.3.2. Global and Local Sparse LInear Methods for Top-N
Recommendation (GLSLIM)

A limitation of SLIM is that it estimates only a single model for all the
users. In many cases, there are di↵erences in users’ behavior, who can
have diverse preferences. These cannot be captured by a single model.
Recently, GLSLIM [Christakopoulou and Karypis (2016)] was proposed,
which utilizes both user-subset specific models and a global model, and
was shown to improve the top-N recommendation quality. The models,
(which are estimated with SLIM) are jointly optimized and combined in a
personalized way. Also, GLSLIM automatically identifies the appropriate
user subsets. If we note the global model as S and the local user-subset
specific models as Spu , where pu 2 {1..k} denotes the user subset, then
the predicted rating of user u, who belongs to subset pu for item i, will be
estimated as:

r̂ui =
X

l2Ru

gusli + (1� gu)s
pu

li , (11.5)

where sli shows the global item-item similarity between the lth item rated
by the user u and the target item i and s

pu

li shows the pu user-subset specific
similarity between the lth rated item by u and the target item i. The term
gu is the personalized weight which controls the interplay between the global
and the local model and ranges between 0 and 1.

GLSLIM is an iterative algorithm which jointly optimizes the global
and local models, the user assignment and the personalized weights. The
global and local models are estimated by solving an elastic net optimization
problem. Following SLIM, GLSLIM can estimate the columns of its global
and local models independent of the other columns. Separate regulariza-
tion is enforced on the global and on the local models, in order to allow
more flexibility in model estimation: we thus have the global l2 regulariza-
tion parameter �g, the global l1 regularization parameter �g, the local l2
regularization parameter �l and the local l1 regularization parameter �l.
Initially, the users are assigned to clusters. In each iteration, every user
is assigned to the subset that resulted in the smallest training error, and
his personalized weight is updated accordingly. The models and the user
assignment with the personalized weights are updated iteratively, until con-
vergence (the algorithm converges when the users switching subsets are less
than one percent). An overview of the algorithm is shown in Algorithm 3.

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 392

392 E. Christakopoulou et al.

Algorithm 3 GLSLIM
1: Assign gu = 0.5, to every user u.
2: Compute the initial clustering of users with CLUTO4.
3: while number of users who switched clusters > 1% of the total number

of users do
4: Estimate S and Spu , 8pu 2 {1, . . . , k}. The estimation is initialized

in all iterations but the first one with the corresponding matrices S
and Spu , 8pu 2 {1, . . . , k} computed in the previous iteration.

5: for all user u do
6: for all cluster pu do
7: Compute gu for cluster pu by minimizing the squared error.
8: Compute the training error.
9: end for

10: Assign user u to the cluster pu that has the smallest training error
and update gu to the corresponding one for cluster pu.

11: end for
12: end while

After having completed the training, the top-N recommendation is per-
formed in the following way: for user u, the ratings of all the unrated items i
are estimated with Equation 11.5, and the items with the N highest ratings
are recommended to the user.

11.3.2.1. Parallelizing GLSLIM

We can see from Algorithm 3 that every iteration has two parts: estimating
the global and local models (line 4) and user refinement (lines 5�11). Both
parts allow for parallelization, each in its own way. The model estimation
part can be parallelized with respect to the items, since every column of the
models can be estimated independently of the others. The user refinement
part can be parallelized with respect to the users, as provided the models
are fixed, the assignment and personalized weight of each user does not
depend on the other users.

Taking advantage of these parallelization opportunities, there is an MPI-
based GLSLIM software5, which we use for our subsequent experiments.
GLSLIM relies on MPI, instead of OpenMP which was used for mt-SLIM,
as it requires more computations than SLIM. SLIM solves one elastic net
4http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview
5http://www-users.cs.umn.edu/⇠evangel/code.html

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 393

Scalability and Distribution of Collaborative Recommenders 393

problem for the whole training matrix R, while GLSLIM is iterative and
in each iteration, a new elastic net problem is solved for the global matrix
and for all user subsets. Thus, the distributed framework MPI is employed,
which allows model estimation and user refinement to be done in a dis-
tributed way, thus taking advantage of multiple nodes (where each node
consists of cores).

Figure 11.5 shows the speedup achieved by GLSLIM on di↵erent nodes,
with respect to the time taken by GLSLIM on one node (which consists of
24 cores in our shown results), for the ML10M dataset.

Fig. 11.5. The speedup achieved by GLSLIM on the ML10M dataset, while increasing

the number of nodes. The speedup is computed with respect to the time of running

GLSLIM on one node.

11.3.2.2. Accelerating the training time of GLSLIM during
parameter search

GLSLIM has many parameters, for which a parameter search needs to be
conducted in order to find the set of them that gives the best performance:
the regularization parameters �g, �g, �l, �l, and the number of user subsets
k. We can see that the cost of finding the best possible set of parameters
increases exponentially. It is thus crucial to be able to run GLSLIM as
e�ciently as possible.

In order to do so, we again employ warm start. This is done in the
following way: When estimating a model with a new choice of parameters,
we use another model learned with a di↵erent choice of parameters as its
initialization. Thus, the only time it is needed to estimate a model with

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 394

394 E. Christakopoulou et al.

no initialization is when estimating the very first model for this dataset
(model of the first iteration with the first choice of parameters). After it is
estimated, the models of the subsequent iterations get initialized with the
models of the previous iterations. Then, when moving on to a new choice
of parameters, the model of the first iteration is initialized with the model
estimated with the previous choice of parameters and so on.

Figure 11.6 shows the time taken in minutes to run GLSLIM on ML10M
with ‘warm start’ and with ‘no initialization’. Figure 11.6 shows the to-
tal time for all iterations when run with k = 5 user subsets and with l2

regularizations parameters �g = �l = 10 and l1 regularization parameters
�g = �l = 1. Note that four iterations were needed until convergence. Also
note that the greatest part of the time shown corresponds to the model
estimations, as the user refinement does not take more than a couple of
seconds (in this example, the user refinement part took fourteen seconds
when run on one node). A speedup of 4⇥ is achieved by employing warm
start.

Fig. 11.6. The total time in minutes achieved by GLSLIM with and without warm start

on the ML10M dataset, while increasing the number of nodes.

Table 11.3 shows the top-N recommendation performance and training
times of SLIM and GLSLIM with warm start, when run with the same
parameters � = �g = �l = 10 and � = �g = �l = 1. Five user sub-
sets were used for GLSLIM. The top-N performance is measured in terms
of HR (Equation 11.1) and ARHR (Equation 11.2). The reported time
corresponds to running SLIM and GLSLIM on one node (24 cores). This
is done for fairness of comparison between the two methods. The shown
times correspond to the warm-start right-most column of Figure 11.4 and
the warm-start left-most column of Figure 11.6. We can see that GLSLIM
has an average performance gain of 9.5% over SLIM, while requiring more

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 395

Scalability and Distribution of Collaborative Recommenders 395

Table 11.3. Comparison of SLIM with GLSLIM in

terms of top-N performance and training time.

Method HR ARHR Time (min)

SLIM 0.310 0.152 2.56

GLSLIM 0.336 0.167 51.72

Time corresponds to ‘warm start’ time in minutes, and
corresponds to the time taken on one node (24 cores).
GLSLIM time corresponds to total time of all iterations
until convergence.

time-consuming training; although higher number of nodes used allows for
great decrease in running time.

11.4. Scaling up latent factor approaches

Latent factor approaches are a class of methods that map users and items to
vectors in a common low-rank space known as the latent space. A detailed
overview of latent space approaches can be found in Chapter 2. Latent
factor approaches are perhaps the most popular techniques used for rating
prediction. The success of these approaches has led to a wealth of research
on developing algorithms to facilitate high-quality recommendations from
massive training datasets. These algorithms exhibit complex tradeo↵s in
terms of computational characteristics, convergence rate, and available par-
allelism.

11.4.1. Overview of matrix and tensor factorization

Matrix factorization approaches [Koren (2008)] are state-of-the-art collab-
orative filtering methods and have gained high popularity since the Netflix
Prize [Koren (2009); Takács et al. (2009)]. They assume that the user-item
rating matrix R is low rank and can be computed as a product of two
matrices known as the user and the item latent factors (denoted P and Q,
respectively). Rows of P and Q are F -dimensional vectors which represent
the corresponding user or item. The value F is referred to as the rank of
the factorization.

An item’s latent factor, denoted qi, represents a few characteristics of
the item, and a user’s latent factor, denoted pu, signifies how much a user
weights these characteristics. The predicted rating for the user u on the
item i is given by

r̂ui = pT
u qi.

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 396

396 E. Christakopoulou et al.

The completed matrix R̂ = PQT is used to serve the recommendation
to the user for the items for which their preferences were unknown in the
original matrix R.

The user and the item latent factors are estimated by minimizing a
regularized squared loss

minimize
P,Q

1

2

X

rui2R

�
rui � pT

u qi

�2
+

�

2

�
||P||

2
F + ||Q||

2
F

�
, (11.6)

where the parameter � controls the Frobenius norm regularization to pre-
vent overfitting.

Additionally, instead of optimizing for rating predictions, one can op-
timize for ranking performance by substituting a ranking loss function in-
stead of the squared error loss function. For example, Bayesian Personalized
Ranking (BPR) [Rendle and Schmidt-Thieme (2010)], Collaborative Less-
is-More Filtering (CLiMF) [Shi et al. (2012)] and CofiRank [Weimer et al.
(2008)] optimize approximation of di↵erent ranking metrics to estimate the
user and the item latent factors for better ranking performance.

Ratings are often accompanied by contextual information associated
with the ratings. For example, the ML10M dataset provides both times-
tamps and tags which can be used to improve recommendation quality.

The traditional ratings matrix can be extended to include contextual
information in the form of a tensor, which is the generalization of a matrix
to higher orders. For example, associating each rating with a timestamp
would result in a third-order tensor whose modes represent users, items,
and time. Latent factor approaches can be extended to include higher-order
data provided by tensors. The canonical polyadic decomposition (CPD) is
a popular model for tensor factorization which has be used successfully for
rating prediction. The CPD seeks to model a ratings tensor R as the com-
bination of user factor P, item factor Q, and context factor C. The resulting
optimization problem closely resembles that of matrix factorization:

minimize
P,Q,C

1

2

X

ruik2R

0

@ruik �

FX

f=1

pufqifckf

1

A
2

+
�

2

�
||P||

2
F + ||Q||

2
F + ||C||

2
F

�
.

The estimation of user and item latent factors by solving Equation 11.6 is
one method of solving a problem referred to as matrix completion. It is a
non-convex and computationally expensive problem. Several optimization
algorithms have been successfully applied for matrix completion on large
scale datasets.

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 397

Scalability and Distribution of Collaborative Recommenders 397

Experimental environment. In the remaining discussion, we evaluate
three latent factor approaches that solves matrix completion problem. Each
algorithm is iterative in nature, though by convention we refer to these
iterations as epochs. We define an epoch as the work required to update
the latent factors one time using all available rating data. Convergence
is detected when the RMSE does not improve for twenty epochs. We fix
F , the rank of the factorization, to 40. All presented results are collected
using SPLATT [Smith and Karypis (2015)], a publicly available6 toolkit for
high-performance sparse tensor factorizations. While optimized for tensors,
SPLATT supports matrix factorizations because a matrix is equivalent to
a two-mode tensor. SPLATT has also been integrated into the Spark+MPI
framework [Anderson et al. (2017)], achieving over 10⇥ speedup over pure
Spark solutions.

11.4.2. Alternating Least Squares (ALS)

ALS was one of the first matrix completion algorithms applied to large scale
data [Zhou et al. (2008)]. ALS is based on the observation that if we solve
Equation 11.6 for one latent factor at a time, the solution has a linear least
squares solution. ALS is an iterative algorithm which first minimizes with
respect to P and then Q. The process is repeated until convergence.

Let ru be the vector of all ratings supplied by user u. Hu is an |ru|⇥F

matrix whose rows are the feature vectors qi, for each item i rated in ru.
Similarly, ri is the vector of all ratings supplied for item i, and Hi is an
|ri|⇥F matrix. ALS proceeds by updating all pu followed by all qi:

pu

⇣
HT

u Hu + �I
⌘�1

HT
u ru, 8u 2 1, . . . ,m

qi

⇣
HT

i Hi + �I
⌘�1

HT
i ri, 8i 2 1, . . . , n.

(11.7)

The full procedure is outlined in Algorithm 4. Extending Equation 11.7
to tensors changes the construction of the Hu matrices [Shao (2012)]. For
example, the row of Hu associated with rating ruik is the elementwise
multiplication of the corresponding feature vectors qi and ck. The Hi and
Hk matrices are constructed similarly.

Each row in Equation 11.7 is independent and thus can be computed in
parallel [Zhou et al. (2008)]. The simplicity of this approach has led ALS
to be optimized for high-performance shared- and distributed-memory sys-
tems[Karlsson et al. (2015); Smith et al. (2017)], GPUs [Gates et al. (2015);
6http://cs.umn.edu/⇠splatt/

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 398

398 E. Christakopoulou et al.

Algorithm 4 Matrix factorization via alternating least squares (ALS)

1: Initialize P and Q randomly.
2: while P and Q have not converged do
3: for all user u in parallel do
4: Hu 0.
5: For each rating rui in ru, append row qi to Hu.

6: pu

⇣
HT

u Hu + �I
⌘�1

HT
u ru.

7: end for
8: for all item i in parallel do
9: Hi 0.

10: For each rating rui in ri, append row pu to Hi.

11: qi

⇣
HT

i Hi + �I
⌘�1

HT
i ri.

12: end for
13: end while

Tan et al. (2016)], Hadoop [Shin and Kang (2014)], and is implemented in
Spark’s MLlib7. Successful approaches distribute the ratings data in a one-
dimensional fashion such that all of the ratings required to construct an
H matrix are located on the same node. By distributing the data in this
fashion, none of the partially-constructed H matrices need to be commu-
nicated or aggregated. However, this distribution requires that each node
stores potentially the entire latent factors. Fortunately, in practice this is
not prohibitive on most modern systems.

The computational complexity of ALS is O
�
F

2
|R|+ F

3(m+ n)
�
per

epoch. In practice, the O(F 2) computation per rating that comes from con-
structing the various H matrices dominates the computation. A common
implementation strategy is to process one rating at a time and accumulate
directly into HT

u Hu and Huru instead of explicitly constructing Hu. How-
ever, this strategy ignores the details of modern hardware architectures in
which memory movement is more expensive than floating-point operations.
Each rating produces an accumulation that is a rank-1 update performing
O(F 2) work on F

2 data. Alternatively, performing a single rank-k update
by explicitly forming Hu instead performs O(|ru|F

2) work on (|ru|F +F
2)

data [Gates et al. (2015); Smith et al. (2017)]. While the final amount of
work is the same, the rank-k update fetches less data from memory and
is thus better suited for modern processors. We explore this phenomenon

7https://spark.apache.org/mllib/

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 399

Scalability and Distribution of Collaborative Recommenders 399

(a) Matrix (b) Tensor

Fig. 11.7. Average time per epoch when using rank-1 and rank-k updates during ALS.

Execution is on 24 cores and an epoch is counted as updating each factor matrix once.

in Figure 11.7, which illustrates runtime per epoch as F is increased. Us-
ing rank-k updates can be over 10⇥ faster than the more common rank-1
updates.

11.4.3. Stochastic Gradient Descent (SGD)

SGD is an optimization algorithm that trades a large number of epochs for
a low computational complexity. An epoch consists of processing all ratings
one-at-a-time in random order and updating the factorization based on the
local gradient. Updates are of the form:

eui rui � pT
u qi,

pu pu + ⌘ (euiqi � �pu) ,

qi qi + ⌘ (euipu � �qi) ,

(11.8)

where ⌘ is a hyperparameter representing the learning rate. The complexity
of Equation 11.8 is linear in F , resulting in a total complexity of O(F |R|)
per epoch. The low complexity and simple implementation of SGD has led
to it being widely adopted by researchers and industry alike. The details
of SGD are outlined in Algorithm 5.

SGD is less straightforward than ALS to parallelize. Since processing
a rating updates rows of both P and Q, special care must be taken to
prevent the same rows from being modified at the same time (called a race
condition). There are two broad approaches for parallelizing SGD.

Stratified methods are based on the observation that if two ratings do
not overlap (i.e., they have neither a row nor a column in common) then
they can be updated with Equation 11.8 in parallel. This strategy was

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 400

400 E. Christakopoulou et al.

Algorithm 5 Matrix factorization via stochastic gradient descent (SGD)

1: Initialize P and Q randomly.
2: while P and Q have not converged do
3: Shu✏e the permutation of ratings.
4: for all rating rui do
5: eui rui � pT

u qi

6: pu pu + ⌘ (euiqi � �pu).
7: qi qi + ⌘ (euipu � �qi).
8: end for
9: end while

P

QT

P

QT

P

QT

(a) (b) (c)

Fig. 11.8. Stratified SGD with three workers. Colored blocks represent independent

sets of ratings and the rows of P and Q which model them. Each colored block of

ratings and their corresponding rows can be processed in parallel.

introduced by DSGD [Gemulla et al. (2011)], which imposes a grid on R
to identify blocks that can be processed in parallel. Stratification is illus-
trated in Figure 11.8. Stratification has proven to be an e↵ective strategy
for parallelizing SGD and has been extended in works on multithreaded
environments, distributed systems, and GPUs [Zhuang et al. (2013); Yun
et al. (2014); Xie et al. (2017)].

Asynchronous methods rely on the stochastic nature of SGD to allow
overlapping updates. This technique was popularized by Hogwild [Recht
et al. (2011)] on shared-memory systems. The key idea is to simply allow
race conditions to occur without attempting to avoid them. Convergence
is still achieved due to the iterative nature of SGD and infrequent overlaps
from the high level of sparsity in R. Teflioudi et al. later introduced asyn-
chronous SGD (ASGD) [Teflioudi et al. (2012)] for distributed computing
environments. During ASGD, nodes maintain locally modified copies of P

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 401

Scalability and Distribution of Collaborative Recommenders 401

and Q and updates are asynchronously communicated several times per
epoch. Overlapping updates are averaged with the master copy and sent
to workers.

Extending the formulation of SGD to tensors is straightforward and
again only requires additional elementwise multiplications [Shao (2012)].
However, parallelization becomes a significant challenge when a contextual
mode is added to the data. The number of blocks in a stratified SGD al-
gorithm increases exponentially with the number of tensor modes despite
the work per rating only increasing linearly, and thus the time of syn-
chronization and communication quickly dominate the factorization time.
Asynchronous methods also su↵er because the number of unique contexts
is typically much smaller than the number of users or items, resulting in
more frequent update conflicts. A hybrid of stratification and asynchronous
SGD addresses these challenges, but the hybrid is still bested by ALS at
large numbers of cores [Smith et al. (2017)].

11.4.4. Coordinate Descent (CCD++)

Coordinate descent is a class of optimization algorithms which update one
parameter of the output at a time. CCD++ is a column-oriented de-
scent algorithms for matrix completion [Yu et al. (2012)]. CCD++ updates
columns of P and Q in sequence, with a single parameter update taking
the form

puf

P
rui2R(rui � pT

u qi + pufqif)qif

� +
P

rui2R q
2
if

. (11.9)

The full procedure is outlined in Algorithm 4. If all (rui � pT
u qi) are

pre-computed, CCD++ has a complexity of O(F |R|) per epoch, match-
ing SGD. The extension of CCD++ to tensors follows that of ALS and
SGD, in which additional elementwise multiplications are introduced to
the formulation [Karlsson et al. (2015)].

Similar to ALS, each column entry is independent and can thus be
computed in parallel. CCD++ has accordingly been parallelized on shared-
and distributed-memory systems [Yu et al. (2012); Karlsson et al. (2015);
Smith et al. (2017)] and GPUs [Nisa et al. (2017)]. However, unlike ALS,
the communication cost from aggregating partial computations is only of
constant size per column as opposed to the larger H matrices of ALS.
The lower communication volume a↵ords more flexible partitionings of the
ratings. Recent work has shown that a Cartesian (i.e., grid) distribution

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 402

402 E. Christakopoulou et al.

Algorithm 6 Matrix factorization via coordinate descent (CCD++)

1: Initialize P and Q randomly.
2: while P and Q have not converged do
3: for all column f do
4: Pre-compute all error terms: (rui � pT

u qi).
5: for all user u in parallel do
6: Update puf following (11.9).
7: end for
8: for all item i in parallel do
9: Update qif following (11.9).

10: end for
11: end for
12: end while

of the data is an e↵ective formulation and has been scaled to over sixteen
thousand cores [Smith et al. (2017)].

11.4.5. Evaluation of optimization algorithms

Parallel scalability. We examine the parallel scalability of ALS, SGD,
and CCD++ for matrix and tensor completion in Figure 11.9. ALS scales
notably better than the competing methods. The scalability of ALS comes
from being rich in dense linear algebra kernels which e↵ectively use the
floating-point hardware found in each core, instead of being bound by mem-
ory bandwidth which is a shared resource. In contrast, SGD and CCD++
perform a factor of F fewer floating-point operations per rating processed,
resulting in heavy reliance on available memory bandwidth. Interestingly,
the scalability of CCD++ and SGD is also more dependent on the size and
characteristics of the ratings dataset. Figure 11.10 shows parallel scalabil-
ity on a tensor of 210 million Yahoo! music ratings with timestamps from
the 2011 KDD cup [Dror et al. (2012)]. CCD++ achieves perfect speedup
on this significantly larger and more sparse dataset.

Time to solution. Finally, we compare solution qualities and conver-
gence times for the latent factor approaches in Table 11.4. In the matrix
case, SGD arrives at the lowest RMSE while being competitive in runtime
to ALS. CCD++ obtains the lowest RMSE in the tensor case, but at 5⇥ the
runtime of the similar-quality ALS. Utilizing the timestamp for tensor com-
pletion notably improves the RMSE for ALS and CCD++, but not SGD.

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 403

Scalability and Distribution of Collaborative Recommenders 403

(a) Matrix (b) Tensor

Fig. 11.9. Speedup on ML10M dataset scaling from 1 to 24 cores. SGD is parallelized

using Hogwild [Recht et al. (2011)].

Fig. 11.10. Parallel speedup on a three-mode tensor made from 210 million Yahoo!

music ratings.

Since timestamps are grouped by month (133 months in total), the number
of independent months is significantly more limited than the number of in-
dependent users or items. Thus, there are frequent overlapping updates to
the C latent factor. Lastly, we note that the time-to-solution for CCD++
is longer in the matrix case than the tensor case, despite performing less
work and arriving at a higher RMSE. While the tensor completion algo-
rithm performs more work than the matrix equivalent, in practice we find
that it converges in fewer epochs.

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 404

404 E. Christakopoulou et al.

Table 11.4. Comparison of solution quality and time.

Matrix Tensor
Algorithm RMSE Time (s) RMSE Time (s)
ALS 0.8805 4.82 0.8662 50.26

SGD 0.8747 11.54 0.9107 17.19

CCD++ 0.8955 435.61 0.8622 256.25

RMSE is evaluated on the test dataset, averaged over three folds.
Time measures the time to convergence.

11.4.6. Singular Value Decomposition (SVD)

The key idea of SVD-based models is to factorize the user-item rating ma-
trix to a product of two lower rank matrices, one containing the user factors
and the other containing the item factors. Since conventional SVD is unde-
fined in the presence of missing values, PureSVD [Cremonesi et al. (2010)]
treats all the missing values as zeros prior to the application of the standard
SVD method. PureSVD is shown to be suitable for the top-N recommen-
dations task. The better top-N recommendation performance of PureSVD
in comparison to the standard matrix completion-based approaches that
are optimized for rating predictions, can be attributed to the fact that it
considers all the items present in the catalog rather than considering only
the items rated by the user. Additionally, for ranking purposes, it does
not need to predict the exact ratings but only requires to achieve a correct
relative ordering of the predictions for a user.

PureSVD estimates the rating matrix R as

R̂ = U⌃QT
,

where U is a n⇥F orthonormal matrix, Q is an m⇥F orthonormal matrix
and ⌃ is an F ⇥ F diagonal matrix, containing the F largest singular
values. It can be noted that the matrix P representing the user factors can
be derived by

P = U⌃.

The matrices U, ⌃ and Q can be estimated by solving the following opti-
mization problem with orthonormal constraints

minimize
U,Q,⌃

1

2
||R�

FX

i=1

�iuiq
T
i ||

2
F

subject to UT U = I

QT Q = I,

(11.10)

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 405

Scalability and Distribution of Collaborative Recommenders 405

where I is the identity matrix, �i denotes the ith largest singular value,
ui represents the ith column vector of U and qi denotes the ith column
vector of Q. The application of PureSVD on large scale sparse matrices
can be optimized with the Golub-Kahan-Lanczos Bidiagonalization [Golub
and Kahan (1965); Lanczos (1950)] approach. It computes the SVD of given
matrix R in two steps. First, it bidiagonalizes R using Lanczos procedure
as,

R = PBQT
, (11.11)

where P and Q are unitary matrices, and B is an upper bidiagonal matrix.
The Lanczos procedure can take advantage of optimized sparse matrix-
vector multiplications and e�cient orthogonalization. Then, it uses an
e�cient method [Demmel and Kahan (1990)] to compute the singular values
of B without computing BT B as,

B = X⌃YT
. (11.12)

Now, using Equations 11.11 and 11.12 we can compute left singular vectors,
i.e., U = PX, and right singular vectors, i.e., V = QY, of matrix R.

Modern randomized matrix approximation techniques [Halko et al.
(2011)] can be used to compute a faster but approximate SVD of the rating
matrix. We will refer to these approximation techniques as Randomized
SVD. Essentially, Randomized SVD technique is carried out in two steps.
First, it tries to find Q with F orthonormal columns such that,

R ⇡ QQT A. (11.13)

Next, it constructs B = QT A, and since B has relatively smaller number
of rows, i.e., F , we can employ standard methods to e�ciently compute
SVD of B as,

B = Ũ⌃VT
. (11.14)

Thus, left singular vector of R can be approximated by, U = QŨ, and
right singular vectors can be approximated by V. Randomized SVD can
take advantage of e�cient sparse matrix-matrix multiplication to find Q
and to compute B.

For our experiments, we used the optimized and parallel implementation
of Golub-Kahan-Lanczos Bidiagonalization approach available in SLEPc8

[Hernandez et al. (2007)] for PureSVD, and utilized the implementation
of Randomized SVD available in RedSVD9. These implementations rely
8
slepc.upv.es

9
https://github.com/ntessore/redsvd-h

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 406

406 E. Christakopoulou et al.

Fig. 11.11. Speedup (left) and total time in seconds (right) achieved by PureSVD and

Randomized SVD on the ML10M dataset (F = 500).

on well-studied sparse and dense linear algebra operations, that are fur-
ther optimized for e�cient usage on high-performance computers [Ander-
son et al. (1990)]. Figure 11.11 shows the speedup and total time achieved
by PureSVD and Randomized SVD on ML10M dataset with increasing
number of cores. As can be seen in the figure, the parallel implementation
of PureSVD achieves better speedup than Randomized SVD with increase
in the number of cores. Also, the time taken by Randomized SVD is lower
in comparison to that of PureSVD on a single core. Table 11.5 presents
the results for the best ranking performance achieved by both the methods
on ML10M dataset. As can be seen in the table, PureSVD and Random-
ized SVD do not outperform SLIM for top-N recommendation but the
time taken by PureSVD and Randomized SVD is lower than that of SLIM.
Furthermore, PureSVD outperforms Randomized SVD for top-N recom-
mendation performance. We should note though that the performance of
Randomized SVD is comparable to that of PureSVD, and therefore Ran-
domized SVD can serve as an alternative to PureSVD under time and
compute resource constraints. Also, Randomized SVD needs higher rank
to achieve its best performance.

11.5. Conclusion

In this chapter, we presented di↵erent methods which speed up popular
collaborative recommenders, by taking advantage of modern parallel multi-
core architectures. We discussed ways to e�ciently identify neighbors in

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 407

Scalability and Distribution of Collaborative Recommenders 407

Table 11.5. Comparison of PureSVD with Randomized SVD in

terms of top-N performance and training time.

Method HR ARHR Rank (F) Time (sec)

PureSVD 0.292 0.139 60 9.24

Randomized SVD 0.247 0.112 400 15.46

Time corresponds to the time taken on one node (24 cores).

k-nearest neighbor approaches in Section 11.2. We investigated how to
parallelize the sparse linear methods well-suited for the top-N recommen-
dation task, presented in Section 11.3 and how to speed up their parameter
search. Finally, in Section 11.4, we showed ways to scale up the latent fac-
tor approaches, which could extend to tensor factorization approaches. In
each section, we also presented experimental results on the popular ML10M
dataset, illustrating the runtimes and speedup achieved in comparison to
serial core implementations. Overall, the goal of this chapter is to illustrate
that modern popular collaborative recommenders, although of very di↵er-
ent nature, are able to be parallelized. We believe that research that focuses
on ways to distribute and scale popular collaborative recommenders is cru-
cial, as it leads to faster training times without sacrificing recommendation
quality.

References

Anastasiu, D. C. (2017). Cosine approximate nearest neighbors, in P. Haber,
T. Lampoltshammer and M. Mayr (eds.), Data Science – Analytics and
Applications, iDSC 2017 (Springer Fachmedien Wiesbaden, Wiesbaden),
ISBN 978-3-658-19287-7, pp. 45–50.

Anastasiu, D. C. and Karypis, G. (2014). L2ap: Fast cosine similarity search with
prefix l-2 norm bounds, in 30th IEEE International Conference on Data
Engineering, ICDE ’14, pp. 784–795, doi:10.1109/ICDE.2014.6816700.

Anastasiu, D. C. and Karypis, G. (2015a). L2knng: Fast exact k-nearest neigh-
bor graph construction with l2-norm pruning, in 24th ACM Interna-
tional Conference on Information and Knowledge Management, CIKM ’15
(ACM, New York, NY, USA), ISBN 978-1-4503-3794-6, pp. 791–800, doi:
10.1145/2806416.2806534, http://doi.acm.org/10.1145/2806416.2806534.

Anastasiu, D. C. and Karypis, G. (2015b). Pl2ap: Fast parallel cosine similarity
search, in Proceedings of the 5th Workshop on Irregular Applications: Archi-
tectures and Algorithms, IA3 ’15 (ACM, New York, NY, USA), pp. 8:1–8:8.

Anastasiu, D. C. and Karypis, G. (2016). Fast parallel cosine k-nearest neigh-
bor graph construction, in 2016 6th Workshop on Irregular Applications:
Architecture and Algorithms (IA3), pp. 50–53, doi:10.1109/IA3.2016.013.

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 408

408 E. Christakopoulou et al.

Anderson, E., Bai, Z., Dongarra, J., Greenbaum, A., McKenney, A., Du Croz, J.,
Hammarling, S., Demmel, J., Bischof, C. and Sorensen, D. (1990). Lapack:
A portable linear algebra library for high-performance computers, in Pro-
ceedings of the 1990 ACM/IEEE Conference on Supercomputing, Supercom-
puting ’90 (IEEE Computer Society Press, Los Alamitos, CA, USA), ISBN
0-89791-412-0, pp. 2–11, http://dl.acm.org/citation.cfm?id=110382.110385.

Anderson, M., Smith, S., Sundaram, N., Capotă, M., Zhao, Z., Dulloor, S., Satish,
N. and Willke, T. L. (2017). Bridging the gap between HPC and Big Data
frameworks, Proceedings of the VLDB Endowment (PVLDB ’17).

Bayardo, R. J., Ma, Y. and Srikant, R. (2007). Scaling up all pairs similarity
search, in Proceedings of the 16th International Conference on World Wide
Web, WWW ’07 (ACM, New York, NY, USA), pp. 131–140.

Christakopoulou, E. and Karypis, G. (2016). Local item-item models for top-n
recommendation, in Proceedings of the 10th ACM Conference on Recom-
mender Systems (ACM), pp. 67–74.

Cremonesi, P., Koren, Y. and Turrin, R. (2010). Performance of recommender al-
gorithms on top-n recommendation tasks, in Proceedings of the Fourth ACM
Conference on Recommender Systems, RecSys ’10 (ACM, New York, NY,
USA), ISBN 978-1-60558-906-0, pp. 39–46, doi:10.1145/1864708.1864721,
http://doi.acm.org/10.1145/1864708.1864721.

Demmel, J. and Kahan, W. (1990). Accurate singular values of bidiagonal matri-
ces, SIAM Journal on Scientific and Statistical Computing 11, 5, pp. 873–
912.

Deshpande, M. and Karypis, G. (2004). Item-based top-n recommendation algo-
rithms, ACM Transactions on Information Systems (TOIS) 22, 1, pp. 143–
177.

Dror, G., Koenigstein, N., Koren, Y. and Weimer, M. (2012). The yahoo! music
dataset and kdd-cup’11. in KDD Cup, pp. 8–18.

Friedman, J., Hastie, T. and Tibshirani, R. (2010). Regularization paths for gen-
eralized linear models via coordinate descent, Journal of statistical software
33, 1, p. 1.

Gates, M., Anzt, H., Kurzak, J. and Dongarra, J. (2015). Accelerating collabora-
tive filtering using concepts from high performance computing, in Big Data
(Big Data), 2015 IEEE International Conference on (IEEE), pp. 667–676.

Gemulla, R., Nijkamp, E., Haas, P. J. and Sismanis, Y. (2011). Large-scale matrix
factorization with distributed stochastic gradient descent, in Proceedings of
the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining (ACM), pp. 69–77.

Golub, G. and Kahan, W. (1965). Calculating the singular values and pseudo-
inverse of a matrix, Journal of the Society for Industrial and Applied Math-
ematics, Series B: Numerical Analysis 2, 2, pp. 205–224.

Halko, N., Martinsson, P.-G. and Tropp, J. A. (2011). Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix
decompositions, SIAM review 53, 2, pp. 217–288.

Harper, F. M. and Konstan, J. A. (2015). The movielens datasets: History and
context, ACM Trans. Interact. Intell. Syst. 5, 4, pp. 19:1–19:19.

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 409

Scalability and Distribution of Collaborative Recommenders 409

Hernandez, V., Roman, J., Tomas, A. and Vidal, V. (2007). Restarted lanczos
bidiagonalization for the svd in slepc, STR-8, Tech. Rep.

Karlsson, L., Kressner, D. and Uschmajew, A. (2015). Parallel algorithms for
tensor completion in the cp format, Parallel Computing.

Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R. and
Riedl, J. (1997). Grouplens: Applying collaborative filtering to usenet news,
Commun. ACM 40, 3, pp. 77–87, doi:10.1145/245108.245126, http://doi.
acm.org/10.1145/245108.245126.

Koren, Y. (2008). Factorization meets the neighborhood: a multifaceted col-
laborative filtering model, in Proceedings of the 14th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining (ACM),
pp. 426–434.

Koren, Y. (2009). The bellkor solution to the netflix grand prize, Netflix prize
documentation 81, pp. 1–10.

Lanczos, C. (1950). An iteration method for the solution of the eigenvalue problem
of linear di↵erential and integral operators (United States Governm. Press
O�ce Los Angeles, CA).

Ning, X. and Karypis, G. (2011). Slim: Sparse linear methods for top-n rec-
ommender systems, in 2011 IEEE 11th International Conference on Data
Mining (IEEE), pp. 497–506.

Nisa, I., Sukumaran-Rajam, A., Kunchum, R. and Sadayappan, P. (2017). Paral-
lel CCD++ on GPU for matrix factorization, in Proceedings of the General
Purpose GPUs (GPGPU) (ACM), pp. 73–83.

Recht, B., Re, C., Wright, S. and Niu, F. (2011). Hogwild: A lock-free approach to
parallelizing stochastic gradient descent, in Advances in Neural Information
Processing Systems, pp. 693–701.

Rendle, S. and Schmidt-Thieme, L. (2010). Pairwise interaction tensor factoriza-
tion for personalized tag recommendation, in Proceedings of the third ACM
international conference on Web search and data mining (ACM), pp. 81–90.

Sarwar, B., Karypis, G., Konstan, J. and Riedl, J. (2001). Item-based collabora-
tive filtering recommendation algorithms, in Proceedings of the 10th inter-
national conference on World Wide Web (ACM), pp. 285–295.

Shao, W. (2012). Tensor Completion, Master’s thesis, Universität des Saarlandes
Saarbrücken.

Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Oliver, N. and Hanjalic,
A. (2012). Climf: learning to maximize reciprocal rank with collaborative
less-is-more filtering, in Proceedings of the sixth ACM conference on Rec-
ommender systems (ACM), pp. 139–146.

Shin, K. and Kang, U. (2014). Distributed methods for high-dimensional and
large-scale tensor factorization, in Data Mining (ICDM), 2014 IEEE Inter-
national Conference on, pp. 989–994.

Smith, S. and Karypis, G. (2015). SPLATT: the Surprisingly Parallel spArse
Tensor Toolkit, http://cs.umn.edu/⇠splatt/.

Smith, S., Park, J. and Karypis, G. (2017). Hpc formulations of optimization
algorithms for tensor completion, Parallel Computing.

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 410

410 E. Christakopoulou et al.

Takács, G., Pilászy, I., Németh, B. and Tikk, D. (2009). Scalable collaborative
filtering approaches for large recommender systems, Journal of machine
learning research 10, Mar, pp. 623–656.

Tan, W., Cao, L. and Fong, L. (2016). Faster and cheaper: Parallelizing large-
scale matrix factorization on gpus, in Proceedings of the 25th ACM Inter-
national Symposium on High-Performance Parallel and Distributed Com-
puting (ACM), pp. 219–230.

Teflioudi, C., Makari, F. and Gemulla, R. (2012). Distributed matrix comple-
tion, in Data Mining (ICDM), 2012 IEEE 12th International Conference
on (IEEE), pp. 655–664.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso, Journal
of the Royal Statistical Society. Series B (Methodological), pp. 267–288.

Weimer, M., Karatzoglou, A., Le, Q. V. and Smola, A. J. (2008). Cofi rank-
maximum margin matrix factorization for collaborative ranking, in Ad-
vances in neural information processing systems, pp. 1593–1600.

Xie, X., Tan, W., Fong, L. L. and Liang, Y. (2017). CuMF SGD: Parallelized
stochastic gradient descent for matrix factorization on gpus, in Proceedings
of the 26th International Symposium on High-Performance Parallel and
Distributed Computing (HPDC), pp. 79–92.

Yu, H.-F., Hsieh, C.-J., Dhillon, I. et al. (2012). Scalable coordinate descent ap-
proaches to parallel matrix factorization for recommender systems, in Data
Mining (ICDM), 2012 IEEE 12th International Conference on (IEEE),
pp. 765–774.

Yun, H., Yu, H.-F., Hsieh, C.-J., Vishwanathan, S. V. N. and Dhillon, I.
(2014). Nomad: Non-locking, stochastic multi-machine algorithm for asyn-
chronous and decentralized matrix completion, Proc. VLDB Endow. 7, 11,
pp. 975–986, doi:10.14778/2732967.2732973, http://dx.doi.org/10.14778/
2732967.2732973.

Zhou, Y., Wilkinson, D., Schreiber, R. and Pan, R. (2008). Large-scale parallel
collaborative filtering for the netflix prize, in Algorithmic Aspects in Infor-
mation and Management (Springer), pp. 337–348.

Zhuang, Y., Chin, W.-S., Juan, Y.-C. and Lin, C.-J. (2013). A fast parallel sgd
for matrix factorization in shared memory systems, in Proceedings of the
7th ACM conference on Recommender systems (ACM), pp. 249–256.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic
net, Journal of the Royal Statistical Society: Series B (Statistical Method-
ology) 67, 2, pp. 301–320.

September 19, 2018 14:15 ws-rv9x6-9x6 Book Title 11131-11 page 411

Index

✏ nearest neighbor graph
(✏NNG), 381

k nearest neighbor graph
(kNNG), 384

all-pairs similarity search, 381
alternating least squares (ALS),

397
average reciprocal hit rank

(ARHR), 378, 394, 395, 407

canonical polyadic
decomposition, 396

coordinate descent (CCD++),
401

distributed memory, 392, 397,
400, 401

hit rate (HR), 378, 394, 395, 407

latent space approaches, 395

matrix factorization, 395

nearest-neighbor approaches, 379

parallel architectures, 376

parallel computing, 376
pL2AP, 382
pL2Knng, 385
PureSVD, 404

rating prediction, 377, 395
root mean squared error
(RMSE), 379, 403

shared memory, 385, 389, 397,
400, 401

similarity join, 381
singular value decomposition
(SVD), 404
randomized, 405

sparse linear methods (SLIM),
387
global and local (GLSLIM),

391
stochastic gradient descent
(SGD), 399

strong scaling, 383, 385, 389, 390

tensor factorization, 395
top-N recommendation, 377,
387, 391, 404

warm start, 390, 394

411

