
Improving the Quality of Top-N Recommendation

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Evangelia Christakopoulou

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

Dr. George Karypis, Advisor

February, 2018



c� Evangelia Christakopoulou 2018

ALL RIGHTS RESERVED



Acknowledgements

This thesis was accomplished with the tremendous help of many amazing people, who

I would like to thank from the bottom of my heart.

First and foremost, I would like to thank my advisor George Karypis. He is a great

teacher, and he has taught me so many skills in so many areas: data mining, machine

learning, software development, scientific writing and critical thinking. I would like to

thank him for believing in me and for giving me the great opportunity of coming to the

States. He is a truly amazing mentor, and I could not thank him enough for everything

he has done. I feel very lucky to have such an extremely intelligent and talented, but

also so good-hearted advisor guiding me through the PhD, and through life. I would

not be where I am today without him.

I would like to thank Professors Arindam Banerjee, Joseph Konstan, Gedas Ado-

mavicius, and Jaideep Srivastava for serving on my thesis and preliminary committees.

I feel very fortunate for having a committee comprising of such intelligent, insightful,

and accomplished professors with deep knowledge in the field. Their comments and

suggestions have shaped my research and their guidance has been invaluable.

A very special heartfelt and huge thanks to my amazing sister Konstantina. She

has helped me in countless ways, from our discussions on machine learning and data

mining as she is such an amazing researcher, to providing tremendous emotional support

throughout good and hard times. She is always next to me and the US and grad school

journey has been no exception. She inspires me, and helps me grow every day and I

would not be the person I am without her. I would like to thank her for being such an

amazing sister, friend and the best roommate anyone could possibly have. I am now

looking forward to our future collaboration together- it has been long awaited for!

I would also like to thank very much my parents, Eleni and Andreas. They are

i



always my rock and their continuous love and support is one of the main sources of my

energy and well-being. I could not have done this without them standing by me in all

of my decisions, even if these made things harder for them. I would like to thank them

for a myriad things they are doing for me and have done so in all my life, but we do not

have enough space. I would like to especially thank my amazing mum, who is also my

role model and my inspiration, who has taught me to be strong and who has gotten on

the plane a few more times than she would like to, just to be there for me. She is my

first teacher/mentor and the person who taught me to believe in me.

I would like to thank my friends back home who are so loving and understanding,

especially Anastasia, Maria, Kostas and Maria. Also, the friends I made in the States

who make me feel so at home and happy, especially Agi, Iwanna, Maria, Andreas, Nikos,

Nikos, Panos and Vasilis. I would also like to thank all of my friends on the fourth floor

of DTC, our talks have made my days and I am so glad we went through all of this

together. I would also like to thank my family for their unconditional support; especially

my uncle Yorgos. A very warm and special thanks to my boyfriend who has helped and

supported me so much, and who is one of the closest people to me; without him things

would be so very di↵erent.

I have been very lucky spending my days (and often evenings) with intelligent and

truly good people - my labmates at Karypis Lab. They have helped me in my bad times

and they have been very happy with me during the good times and throughout all of the

times they have helped me learn a lot. So, huge thanks to my girls: Agi, Ancy, Asmaa,

Maria, Sara, Shalini, and Xia for everything; I feel grateful. Also, thanks to Dominique,

Shaden, Saurav, Mohit, Jeremy, David, Santosh, Rezwan, and Haoji for teaching me so

much and for being friends whose company has given me great joy.

Furthermore, a great thanks to the sta↵ at the Department of Computer Science,

the Digital Technology Center, and the Minnesota Supercomputing Institute at the

University of Minnesota for providing the resources which were crucial for my research

and for helping me on many things. Last, I would like to thank all of the great mentors I

was fortunate to have: my mentors at the internships Shipeng Yu, Abhishek Gupta, Ajay

Bangla and Shilpa Arora, and my advisors in undergraduate degree Nikolaos Avouris

and Sophia Daskalaki for teaching me, and helping me achieve my goals.

ii



Dedication

To my parents, Eleni and Andreas.

For being the most supportive and loving parents in the world, and helping me live

my dreams. Without them, I would not be in the position of writing this thesis today.

iii



Abstract

Top-N recommenders are systems that provide a ranked list of N products to every

user; the recommendations are of items that the user will potentially like. Top-N rec-

ommendation systems are present everywhere and used by millions of users, as they

enable them to quickly find items they are interested in, without having to browse or

search through big datasets; an often impossible task. The quality of the recommen-

dations is crucial, as it determines the usefulness of the recommender to the users. So,

how do we decide which products should be recommended? Also, how do we address

the limitations of current approaches, in order to achieve better quality?

In order to provide insight into these problems, this thesis focuses on developing

novel, scalable algorithms that improve the state-of-the-art top-N recommendation qual-

ity, while providing insight into the top-N recommendation task. The developed algo-

rithms address some of the limitations of existent top-N recommendation approaches

and can be applied to real-world problems and datasets. The main areas of our contri-

butions are the following:

1. Exploiting higher-order sets of items: We investigate to what extent higher-

order sets of items are present in real-world datasets, beyond pairs of items. We

also show how to best utilize them to improve the top-N recommendation quality.

2. Estimating a global and multiple local models: We show that estimating

multiple user-subset specific local models, beyond a global model significantly

improves the top-N recommendation quality. We demonstrate this with both

item-item models and latent space models.

3. Investigating and using the error: We investigate what are the properties

of the error and how they correlate with the top-N recommendation quality, in

methods that treat the missing entries as zeros. Then, we utilize the learned

insights to develop a method, which explicitly uses the error.

We have applied our algorithms to big datasets, with millions of ratings, that span

di↵erent areas, such as grocery transactions, movie ratings, and retail transactions,

showing significant improvements over the state-of-the-art.

iv



Contents

Acknowledgements i

Dedication iii

Abstract iv

List of Tables viii

List of Figures x

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Related publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Definitions & Notation 7

2.1 Mathematical notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Recommender systems notation . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Common notations reference . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Related Work 10

3.1 Neighborhood-based top-N recommendation approaches . . . . . . . . . 11

3.1.1 SLIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Latent space top-N recommendation approaches . . . . . . . . . . . . . 13

3.2.1 PureSVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Ranking-based top-N recommendation approaches . . . . . . . . . . . . 14

v



3.4 Higher-order methods for top-N recommendation . . . . . . . . . . . . . 14

3.5 Local models for top-N recommendation . . . . . . . . . . . . . . . . . . 14

4 Datasets and Evaluation Methodology 17

4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Evaluation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Comparison algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Higher-Order Sparse LInear Method for Top-N Recommendation 22

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.2 Estimation of the sparse aggregation coe�cient matrices . . . . . 25

5.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3.1 Verifying the existence of higher-order relations . . . . . . . . . . 28

5.3.2 Performance comparison . . . . . . . . . . . . . . . . . . . . . . . 30

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Local Item-Item Models for Top-N Recommendation 36

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2.3 Estimating the item-item models . . . . . . . . . . . . . . . . . . 40

6.2.4 Finding the optimal assignment of users to subsets . . . . . . . . 41

6.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3.1 Performance of the proposed methods . . . . . . . . . . . . . . . 45

6.3.2 Performance against competing approaches . . . . . . . . . . . . 51

6.3.3 Time complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vi



7 Local Latent Space Models for Top-N Recommendation 55

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.2 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.2.4 Prediction and recommendation . . . . . . . . . . . . . . . . . . 61

7.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.3.1 Performance of the proposed methods . . . . . . . . . . . . . . . 63

7.3.2 Performance against competing approaches . . . . . . . . . . . . 68

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8 Investigating & Using the Error in Top-N Recommendation 73

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.2 Notation and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.2.1 Error on the missing entries . . . . . . . . . . . . . . . . . . . . . 75

8.2.2 Similarity matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.3 Analysis of the properties of the error for SLIM and PureSVD . . . . . . 76

8.3.1 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.3.2 Experimental analysis . . . . . . . . . . . . . . . . . . . . . . . . 78

8.4 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9 Conclusion 90

9.1 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.2 Future research directions . . . . . . . . . . . . . . . . . . . . . . . . . . 93

References 95

vii



List of Tables

2.1 Common notations used in this thesis. . . . . . . . . . . . . . . . . . . . 9

4.1 Dataset characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1 The average basket size of datasets we evaluated HOSLIM on. . . . . . . 27

5.2 HOSLIM: Coverage by a↵ected users. . . . . . . . . . . . . . . . . . . . 28

5.3 HOSLIM: Coverage by non-zeros. . . . . . . . . . . . . . . . . . . . . . . 29

5.4 Comparison of 1st order with 2nd order models. . . . . . . . . . . . . . . 31

5.5 Comparison of the HR of constrained HOSLIM with unconstrained HOSLIM

and SLIM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1 Comparison between our proposed approaches for the groceries dataset. 46

6.2 Comparison between our proposed approaches for the ml10m dataset. . 46

6.3 Comparison between our proposed approaches for the jester dataset. . . 46

6.4 Comparison between our proposed approaches for the flixster dataset. . 47

6.5 Comparison between our proposed approaches for the netflix dataset. . 47

6.6 Comparison of GLSLIM with competing approaches in terms of HR. . . 51

6.7 Comparison of GLSLIM with competing approaches in terms of ARHR. 52

7.1 Comparison between our proposed approaches for the groceries dataset. 65

7.2 Comparison between our proposed approaches for the ml10m dataset. . 66

7.3 Comparison between our proposed approaches for the jester dataset. . . 66

7.4 Comparison between our proposed approaches for the flixster dataset. . 66

7.5 Comparison between our proposed approaches for the netflix dataset. . 67

7.6 Comparison with competing latent space approaches in terms of HR. . . 69

7.7 Comparison with competing latent space approaches in terms of ARHR. 70

7.8 Comparison of global approaches with global & local approaches in terms

of HR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

viii



7.9 Comparison of global approaches with global & local approaches in terms

of ARHR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.10 The training time for ml10m dataset with 5 clusters. . . . . . . . . . . . 71

8.1 Overview of the notations used in this chapter. . . . . . . . . . . . . . . 75

8.2 Comparison between SLIM, ESLIM-u and ESLIM-i in terms of HR. . . 87

8.3 Comparison between SLIM, ESLIM-u and ESLIM-i in terms of ARHR. 87

ix



List of Figures

2.1 The user-item implicit feedback matrix R. . . . . . . . . . . . . . . . . . 8

3.1 A sparse aggregation coe�cient matrix S. . . . . . . . . . . . . . . . . . 12

5.1 An example of the HOSLIM matrices R0 and S0. . . . . . . . . . . . . . 25

5.2 Varying the size of the top-N list for HOSLIM. . . . . . . . . . . . . . . 32

5.3 E↵ect of � on the performance of HOSLIM. . . . . . . . . . . . . . . . . 34

6.1 (a) Local item-item models improve upon global item-item model. (b)

Global item-item model and local models yield the same results. . . . . 38

6.2 The e↵ect of the number of clusters on the performance of GLSLIM. . . 48

6.3 Comparing the performance of GLSLIM with CLUTO initialization ver-

sus with random initialization of user subsets. . . . . . . . . . . . . . . . 49

6.4 How the l1 norm of the global model S and local models Spu changes

from the beginning of GLSLIM until convergence. . . . . . . . . . . . . . 49

6.5 Varying the size of the top-N list for GLSLIM. . . . . . . . . . . . . . . 50

6.6 The speedup achieved by GLSLIM on the ml10m dataset, while increas-

ing the number of nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.7 The total time in mins achieved by GLSLIM with and without warm

start on the ml10m dataset, while increasing the number of nodes. . . . 53

7.1 The performance of the proposed methods: LSVD, sLSVD, rLSVD, GLSVD,

sGLSVD, and rGLSVD when varying the number of user subsets, in terms

of ARHR for the ml10m dataset. . . . . . . . . . . . . . . . . . . . . . . 67

7.2 The performance of sGLSVD in terms of HR for di↵erent sizes N of the

recommendation list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

x



8.1 Scatterplot of rating and error similarities auv and cuv for all pairs of

users u and v, for a good-performing SLIM model (estimated with � = 1

and resulting in HR = 0.33) and a worse-performing one (estimated with

� = 150 and resulting in HR = 0.24) for the ml100k dataset. . . . . . . 79

8.2 Scatterplot of rating and error similarities auv and cuv for all pairs of

users u and v, for a good-performing PureSVD model (estimated with

f = 50 and resulting in HR = 0.296) and for a bad-performing PureSVD

model (estimated with f = 500 and resulting in HR = 0.056), for the

ml100k dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.3 The e↵ect of the l2 regularization � on the performance of SLIM and on

the corresponding ‘User Rating.Error Similarity’ and ‘Item Rating.Error

Similarity’. The maximum HR and ARHR are achieved for the values

of � for which the ‘User Rating.Error Similarity’ and ‘Item Rating.Error

Similarity’ also obtain their local maxima. . . . . . . . . . . . . . . . . 81

8.4 The e↵ect of the rank f on the performance of PureSVD and on the cor-

responding ‘User Rating.Error Similarity’ and ‘Item Rating.Error Sim-

ilarity’. The maximum HR and ARHR are achieved for the values of

the rank f for which the ‘User Rating.Error Similarity’ and ‘Item Rat-

ing.Error Similarity’ also obtain their local maxima. . . . . . . . . . . . 82

8.5 Examining how close the user rating-based and error-based representa-

tions are, in terms of their average cosine similarity and the frobenius

norm of their di↵erence for the delicious dataset, for SLIM and PureSVD

models, while varying the respective parameters. The cosine similarity

takes its highest values for the parameter values for which the frobenius

norm of their di↵erence takes its lowest values. . . . . . . . . . . . . . . 84

8.6 The performance of ESLIM-u and ESLIM-i for the tail items (50% least

frequent items), while varying the lu/li regularization parameters. The

performance of SLIM on the tail items is also shown for comparison pur-

poses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xi



Chapter 1

Introduction

In today’s society, consumers have a huge variety of products to choose from; the options

seem limitless in many cases [1]. Choosing the product that best fits their needs is a

needle in a haystack problem.

This is why a good recommendation system which takes into account their needs, as

inferred from their likes, views, purchases, clicks and absence of those, while at the same

time going through all possible items for them instead of them, seems promising and

much needed. As a result, recommender systems have exploded in the last decade [2, 3, 4]

and lots of online web portals, systems and websites heavily rely on recommendation to

help users find what they want the most, in a personalized way that fits their needs.

1.1 Contributions

The work presented in this thesis lies in the general area of recommender systems. It

is focused on developing algorithms to improve the accuracy of top-N recommendation

systems, utilizing implicit feedback data.

Top-N recommenders identify a small number of N items that a user will find

useful to purchase, view, like, click e.t.c. among a large collection of such items by

leveraging historical information from that and other users. They are wildly popular,

ranging from Netflix movie recommendations, to Amazon product recommendations, to

Facebook friend recommendations e.t.c.

The focus of the thesis is on top-N recommenders and not on the more traditional

1



2

rating prediction systems which try to estimate the ratings for missing items as accu-

rately as possible. The reason is that users tend to look at the top provided recom-

mendations, without being interested in the recommended items in the middle or at the

bottom of the list. It is thus a lot more important to provide good top recommenda-

tions, instead of accurately predicting the ratings for all possible items, as is the case

for rating prediction.

Also, the work presented in this thesis utilizes implicit historical data, as they are

more prevalent than explicit ratings or additional side information, and thus more easily

available.

Within this context, this thesis has made significant contributions along the following

directions.

Higher-Order Sparse LInear Method for Top-N Recommendation

Item-item approaches, that explore co-occurrence relationships between pairs of items,

have been shown to be very e↵ective for the top-N recommendation task. However,

in many application domains, users tend to consume items in sets, and the sets that

di↵erent users consume are often overlapping. For example, in a grocery store, people

tend to buy multiple items that are required to make a certain dish and in a music

streaming site, users tend to listen to songs that are organized in playlists. This thesis

(Chapter 5) shows that the recommendation quality can be improved by identifying

and exploiting these sets of items. It also presents an approach (HOSLIM) based on

structural equation modeling to generalize the item-item approaches to also incorporate

itemset-item information. The experimental evaluation of this approach, performed on a

variety of real-world datasets, shows that HOSLIM achieves considerable improvements

of 7.86% on average over competing item-item approaches. Also, for domains that

exhibit such set-based consumption characteristics, the gains can reach up to 32% over

competing baselines.

Local Item-Item Models for Top-N Recommendation

The item-item approaches, although being very well-suited for the top-N recommen-

dation task, su↵er from the fact that since they estimate a single model, they are not



3

very personalized to the individual users. For example, there could be a pair of items

that are extremely similar for a specific user subset, while they have low similarity for

another user subset. By using a global model, the similarity between these items will

tend to be towards some average value; thus losing the high correlation of the pair for

the first user subset. Building on this insight, this thesis (Chapter 6) presents an ap-

proach (GLSLIM) that combines the global model along with local item-item models

estimated for di↵erent subsets of users. The assignment of the users to the subsets is

not made apriori, but it is discovered as part of the optimization problem. The rec-

ommendations for a user are derived by aggregating information from a global model,

which captures population-wide preferences, and a local model that captures the pref-

erences of like-minded users. The evaluation performed on various real-world datasets

shows that GLSLIM achieves better results than the standard global approach and also

outperforms other state-of-the-art approaches, on average by 9.29% and up to 17.37%.

Local Latent Space Models for Top-N Recommendation

Further pursuing this research direction, this thesis (Chapter 7) also studies the benefits

that such a global and local approach can provide to latent space top-N recommendation

approaches. Users’ behaviors are driven by their preferences across various aspects.

Latent space approaches model these aspects in the form of latent factors. Though such

a user-model has been shown to lead to good results, the aspects that di↵erent users

care about can vary. In many domains, there may be a set of aspects for which all users

care about and a set of aspects that are specific to di↵erent subsets of users. Following

this insight, the thesis proposes two latent space models: rGLSVD and sGLSVD, that

combine such a global and user subset specific sets of latent factors. The rGLSVD model

assigns the users into fixed subsets based on their rating patterns and then estimates a

global and a set of user subset specific local models whose number of latent dimensions

can vary. The sGLSVDmodel estimates both global and user subset specific local models

by keeping the number of latent dimensions the same among these models but optimizes

the grouping of the users in order to achieve the best approximation. The experimental

evaluation shows that the proposed approaches outperform state-of-the-art latent space

top-N recommendation approaches on average by 13% and up to 37%.



4

Investigating & Using the Error in Top-N Recommendation

Di↵erent popular top-N recommendation approaches, such as SLIM [5] and PureSVD [6],

treat the missing entries as zeros; in other words they make the assumption that the

unconsumed items are probably disliked. However, in order to perform top-N recom-

mendation, they sort the predicted values of the missing entries and they recommend

the ones with the highest values, thus the ones that have the highest error. In other

words, they recommend the unconsumed items for which the underlying assumption is

wrong and the corresponding items are probably liked by the user. The question then

becomes: given a dataset, what are the properties of the error, how they correlate with

the top-N recommendation quality, and how the performance of the underlying methods

can be improved by utilizing the error properties uncovered? This thesis (Chapter 8)

attempts to answer this question, showing that for SLIM and PureSVD methods, users

and items with similar ratings also have similar errors in their missing entries, and vice

versa. Also, for the same training set, among the di↵erent models that are estimated

by changing their respective hyperparameters, the ones that achieve the best recom-

mendation performance are those that display the closest rating-based and error-based

similarities. Also, utilizing this insight, the thesis proposes a method called ESLIM,

which explicitly enforces users with similar rating behavior to also have similar error,

and likewise for items. The method is shown to outperform SLIM, especially for items

that have been rated by a few users (tail items).

1.2 Outline

The remainder of the thesis is organized as follows:

• Chapter 2 defines the notation used.

• Chapter 3 gives an overview of the prior related work on top-N recommendation.

• Chapter 4 describes the datasets used and the evaluation methodology employed

in the thesis.

• Chapter 5 presents the Higher-Order Sparse Linear Method for top-N recommen-

dation (HOSLIM), which utilizes higher order sets of items present in the data.



5

• Chapter 6 presents the Global and Local Sparse Linear Method for top-N recom-

mendation (GLSLIM), which estimates multiple local item-item models, beyond

a global item-item model.

• Chapter 7 extends the idea of multiple local models to latent space methods and

presents two methods that estimate both a global low-rank model and multiple

user subset specific low-rank models: the Global and Local Singular Value De-

composition with varying ranks method (rGLSVD) and the Global and Local

Singular Value Decomposition with varying subsets method (sGLSVD) for top-N

recommendation.

• Chapter 8 analyzes the properties of the error for SLIM and PureSVD and de-

scribes the ESLIM method.

• Chapter 9 summarizes the collective conclusions drawn by the works in the thesis

and discusses future directions.

1.3 Related publications

The work presented in this thesis has been published in a variety of top-tier conferences

and journals. The related publications are presented in the following list:

• Evangelia Christakopoulou and George Karypis. HOSLIM: higher-order sparse

linear method for top-n recommender systems. In Pacific-Asia Conference on

Knowledge Discovery and Data Mining, pages 38–49. Springer, Cham, 2014. [7]

• Evangelia Christakopoulou. Moving beyond linearity and independence in

top-n recommender systems. In Proceedings of the 8th ACM Conference on Rec-

ommender systems, pages 409–412. ACM, 2014. [8]

• Evangelia Christakopoulou and George Karypis. Local item-item models for

top-n recommendation. In Proceedings of the 10th ACM Conference on Recom-

mender Systems, pages 67–74. ACM, 2016. [9]

• David Anastasiu, Evangelia Christakopoulou, Shaden Smith, Mohit Sharma

and George Karypis. Big data and recommender systems. In Novatica: Journal



6

of the Spanish Computer Scientist Association. 2016. [10]

• Evangelia Christakopoulou, Shaden Smith, Mohit Sharma, Alex Richards,

David Anastasiu and George Karypis. Scalability and distribution of collabo-

rative recommenders. In Collaborative Recommendations: Algorithms, Practical

Challenges and Applications. 2018. [11]

• Evangelia Christakopoulou and George Karypis. Investigating & using the

error in top-N recommendation. Ready for submission.

• Evangelia Christakopoulou and George Karypis. Local Latent Space Models

for Top-N Recommendation. Under review.



Chapter 2

Definitions & Notation

This chapter introduces definitions in top-N recommendation that will be useful in this

thesis. It also provides the notation that will be followed in the following chapters of

the thesis.

2.1 Mathematical notations

All vectors are represented by bold lower case letters and they are column vectors (e.g.,

p, q). Row vectors are represented by having the transpose superscript T , (e.g., pT ).

All matrices are represented by bold upper case letters (e.g., R, A, U). For a given

matrix A, its ith row is represented by aTi and its jth column by aj . The element of

matrix A that corresponds to the ith row and jth column is noted as aij .

We use calligraphic letters to denote sets.

A predicted value is denoted by having a ⇠ over it (e.g., r̃).

We use the symbol � to denote the Hadamart product (element-wise multiplication).

2.2 Recommender systems notation

The number of users are denoted by n and the number of items are denoted by m.

Symbols u and i will be used to denote individual users and items, respectively.

Matrix R is used to represent the user-item implicit feedback matrix of size n⇥m,

containing the items that the users have purchased/viewed/rated. So, the implicit

7



8

1

1

1

1

!"#

!$

%
&
'%&

Figure 2.1: The user-item implicit feedback matrix R.

behavior of user u is presented in rTu and the implicit feedback of all users for items i is

shown in ri. If user u provided feedback for item i, the rui entry of R is 1, otherwise it

is 0. An illustration of matrix R is shown in Figure 2.1.

We use the term rating to refer to the non-zero entries of R, even though these

entries can represent implicit feedback. We also refer to the items that the user has

purchased/viewed/rated as rated items and to the rest as unrated items. The set of

items that the user u has rated is denoted by Ru.

The number of items to be recommended is N , which is by default 10, unless stated

otherwise.

2.3 Common notations reference

A reference table containing all the common notations is provided, for convenience of

the reader (Table 2.1).

The top part of the table contains the general top-N recommendation notation,

introduced in this chapter. The bottom part of the table contains the notation belonging

to popular top-N recommendation methods (namely k-NN, PureSVD and SLIM) that

are described in Chapter 3, and which will be used throughout the thesis. The reason

why they are presented in this Table 2.1 is for convenience of the reader, who wants to

look up commonly used notations.



9

Table 2.1: Common notations used in this thesis.
Symbol Definition

n number of users

m number of items

u individual user

i individual item

R n⇥m implicit feedback matrix

rTu implicit feedback of user u

ri implicit feedback of item i

rui feedback of user u to item i

Ru set of items the user u has rated

N the number of recommended items

S m⇥m SLIM coe�cient matrix

k number of neighbors

f number of latent factors

P n⇥ f user latent matrix

Q m⇥ f item latent matrix

The rest of the notations, that are algorithm-specific, are described in each chapter,

when needed.



Chapter 3

Related Work

There has been extensive research dedicated to the top-N recommendation task [2, 4,

5, 12, 13, 14, 15, 16]. In this chapter, we will present a few of the most notable methods

developed for the top-N recommendation task, that use only user-item feedback data,

with a special emphasis on implicit feedback data. Methods that utilize context [17, 18],

or social information [19, 20] are outside the scope of this thesis. The methods shown

in bold below are the baselines against which we compare our methods, which are

presented in this thesis. The way we evaluate them is described in Section 4.4.

The methods developed to tackle the top-N recommendation task broadly fall into

two categories: the neighborhood-based (which focus either on users or items) and the

latent space ones. The latent space methods [6] perform a low-rank factorization of the

user-item matrix into user factor and item factor matrices, which represent both the

users and the items in a common latent space. The neighborhood-based methods [12]

(user-based or item-based) focus on identifying similar users/items based on the rating

matrix.

The latent space methods have been shown to be superior for solving the rating

prediction problem, in which every missing rating is estimated as accurately as possi-

ble [21, 22, 23, 24, 25, 26, 27]. However, it is the neighborhood methods that have been

shown to be better for the top-N recommendation problem [5, 12, 28, 29]. Among the

latter, the item-based methods, which include item k-NN [12] and Sparse LInear Meth-

ods (SLIM) [5], have been shown to outperform the user-based schemes for the top-N

recommendation task. In fact, the winning method in a recent million song dataset

10



11

challenge [28] was a rather straightforward item-based neighborhood top-N recommen-

dation approach.

3.1 Neighborhood-based top-N recommendation approaches

The neighbor methods (k-NN) consist of the user-based and the item-based ones. The

user-based neighbor methods [30, 31, 32] first identify the k users that are most similar

to the target user. Then, they compute the union of items purchased by these users

and associate a weight with each item, based on how frequently it was purchased by the

k most similar users. From this union, the N items that have the highest weight and

have not been purchased by the target user are recommended.

The traditional approaches for developing item-based top-N recommendation meth-

ods (k-NN) [12, 33, 34, 35] use various vector-space similarity measures (e.g., cosine,

extended Jaccard, Pearson correlation coe�cient, etc.) to identify for each item the k

most similar other items based on the sets of users that co-rated these items. Then, given

a set of items that have already been rated by a user, they derive their recommendations

by combining the most similar unrated items to those already rated. Karypis [34] and

Deshpande and Karypis [12] in particular showed that item-based models lead to better

top-N recommendation than user-based.

In recent years, the performance of these item-based neighborhood schemes has

been significantly improved by using supervised learning methods to learn a model that

both captures the similarities (or aggregation coe�cients) and also identifies the sets of

neighbors that lead to the best overall performance [5, 36]. One of these methods is the

Sparse LInear Method for top-N recommendation (SLIM), which was the first method

to compute the item-item relations using statistical learning and which has been shown

to be one of the best approaches for top-N recommendation [5].

3.1.1 SLIM

SLIM [5] computes the item-item relations by estimating a sparse aggregation ma-

trix coe�cient matrix. As it has been shown to be very well-suited for the top-N

recommendation task, di↵erent top-N recommendation methods use it as a building

block [36, 37, 38, 39].



12

3

0.4 5

0.7

0.9

!"#

Figure 3.1: A sparse aggregation coe�cient matrix S.

SLIM treats the missing entries as zeros and estimates a sparse m⇥m aggregation

coe�cient matrix S. An example matrix S is shown in Figure 3.1. The recommendation

score on an unrated item i for user u is computed as a sparse aggregation of all the user’s

past rated items:

r̃ui = rTu si, (3.1)

where rTu is the row-vector of R corresponding to user u and si is the ith column vector

of matrix S, that is estimated by solving the following optimization problem:

minimize
si

1
2 ||ri �Rsi||22 +

�
2 ||si||

2
2 + �||si||1,

subject to si � 0, and

sii = 0,

(3.2)

where ri denotes the column-vector of R containing the feedback associated to the item

i, ||si||22 is the l2 norm of si and ||si||1 is the entry-wise l1 norm of si. The optimization

problem of Equation (3.2) is an elastic net problem [40, 41], which means that both l2

and l1 regularizations are used. The l1 regularization gets used so that sparse solutions

are found [42]. The l2 regularization prevents over-fitting. The parameters � and � are

regularization parameters, controlling the strength of the l2 regularization and the l1

regularization, respectively.



13

The non-negativity constraint is applied so that the vector estimated contains pos-

itive coe�cients. The sii = 0 constraint makes sure that when computing the weights

of an item, that item itself is not used as this would lead to trivial solutions.

All the si vectors can be put together into a matrix S, which can be thought of as

an item-item similarity matrix that is learned from the data. So, the model introduced

by SLIM can be presented as R̃ = RS.

In order to create the top-N list for user u, we compute r̃ui for every unrated item i,

we sort these values and we recommend the N items with the highest estimated ratings.

3.2 Latent space top-N recommendation approaches

There are a lot of latent space approaches used for top-N recommendation [6, 43, 44,

45, 46, 47, 48, 49] that have been shown to have good top-N recommendation quality.

The latent space approaches perform a low-rank factorization of the user-item feedback

matrix into user factors and item-factors that represent user and item characteristics

in a common latent space. Among those, the matrix factorization method by Hu et

al. [45] and Pan et al. [46] is especially applied for implicit feedback datasets in which

the observed and the non-observed entries of the matrix are weighted di↵erently.

3.2.1 PureSVD

Among the latent space methods for the top-N recommendation task, a notable one is

the PureSVD method developed by Cremonesi et al. [6], which performs a truncated

Singular Value Decomposition of the matrix R of rank f to generate the recommen-

dations. In order to do so, the authors proposed to treat the missing entries as zeros.

PureSVD is a simple but powerful method, for generating top-N recommendations and

demonstrates that treating the missing entries as zero leads to better results than the

matrix completion approaches. Specifically, PureSVD estimates the user–item matrix

R by the factorization:

R̃ = P⌃fQ
T , (3.3)

where P is an n⇥ f orthonormal matrix, Q is an m⇥ f orthonormal matrix and ⌃f is

an f ⇥ f diagonal matrix containing the f largest singular values.



14

3.3 Ranking-based top-N recommendation approaches

There is also a class of methods, where the top-N recommendation task has been for-

mulated as a ranking problem [50, 51, 52, 53, 54]. These methods, instead of focusing

on estimating the rating for specific unrated items, focus on estimating the rankings of

the unrated items. The ranking objective can be used both in context of neighborhood-

based and latent space methods.

Among these approaches, a well-known one is Bayesian Personalized Ranking - Ma-

trix Factorization (BPRMF) [50]. BPRMF focuses on finding the correct personalized

ranking for all items to maximize the posterior probability.

3.4 Higher-order methods for top-N recommendation

There have been various works which utilize the concept of frequent itemsets and asso-

ciation rules [55, 56], for recommendation [57, 58, 59, 60].

Higher-order interactions between di↵erent features can be modeled with the popular

method of Factorization Machines [61]. However, although Factorization Machines can

theoretically model high-order feature interactions, typically researchers consider only

second order feature interactions due to high complexity, as there is no e�cient training

algorithm for higher-order factorization machines [62].

The closest method to our thesis work is the one proposed by Deshpande and

Karypis [12] which takes into account higher-order relations, beyond pairwise relations

between items. The method called Higher Order k Nearest Neighbors (HOKNN), in-

corporates combinations of items (itemsets) in the following way: The most similar items

are found not for each individual item, as it is typically done in the neighborhood-based

models, but for all possible itemsets up to a particular size l.

3.5 Local models for top-N recommendation

The idea of using multiple local models is well researched in the literature [63, 64, 65,

66, 67, 68, 69, 70]. Among them, the approaches that are the most relevant to our work

are discussed here.



15

The idea of estimating multiple local models has been proposed in the work by

O’connor and Herlocker [67], who performed rating prediction by clustering the rating

matrix item-wise and estimating a separate local model for each cluster with nearest

neighbor collaborative filtering.

Xu et al. [69] developed a method that co-clusters users and items and estimates a

separate local model on each cluster, by applying di↵erent collaborative filtering meth-

ods; including the item-based neighborhood method. The predicted rating for a user-

item pair is the prediction from the subgroup with the largest weight for the user.

Koren [14] proposed a combined model, which estimates every user-item rating rui

as a combination of a global latent space model and local neighborhood interactions.

Weston et al. [47] modeled a user with T latent vectors, each of dimension m, to

model the user’s latent tastes, while every item has a single latent vector of size m. In

order to compute the prediction for each user and item, they compute the maximum

possible score after multiplying each of the T user latent vectors to the item one.

Lee et al. [65, 66] proposed a method called Local Low-Rank Matrix Approximation

(LLORMA) that relies on the idea that the rating matrix R is locally low-rank and is

approximated as a weighted sum of low-rank matrices. In their method, neighborhoods

are identified surrounding di↵erent anchor points of user-item pairs, based on a function

that measures distances between pairs of users and items and then a local low-rank

model is estimated for every neighborhood. The estimation is done in an iterative way

where first the latent factors representing the anchor points are estimated and then

based on the similarities of the observed entries to the anchor points, the latent factors

are re-estimated, until convergence. The predicted rating of a target user-item pair is

calculated as a weighted combination of the estimated local models, where the weight

is the similarity of the pair to the anchor points. Lee et al. have tested this approach

with both a squared error objective [65] and a pairwise ranking objective [66].

LLORMA is the closest approach to the work presented in this thesis in Chapters 6

and 7. However, our work di↵ers from LLORMA in multiple ways: LLORMA considers

only local models; while our work also computes a global model and has a personal-

ization factor for each user determining the interplay between the global and the local

information. Also, in order to learn better local models, our work considers updating

the user subsets for which the local models are estimated (Chapter 6 and Chapter 7),



16

and also having varying ranks among the local models (Chapter 7), which is not the

case for LLORMA. Finally, the way the local models are created is di↵erent: the local

models in LLORMA are based on anchor points, while in our work they correspond to

di↵erent user subsets.



Chapter 4

Datasets and Evaluation

Methodology

4.1 Datasets

We used multiple real-world datasets that span the movie, social-bookmarking and

point-of-sales domains and one synthetic dataset to evaluate the methods in this thesis.

Table 4.1 shows their characteristics. The columns corresponding to #users, #items

and #non-zeros show the number of users, number of items and number of non-zeros,

respectively, in each dataset. The column corresponding to density shows the density

of each dataset (i.e., density=#non-zeros/(#users⇥#items)).

The synthetic dataset is generated by using the IBM synthetic dataset generator [56],

which simulates the behavior of customers in a retail environment. The parameters used

for generating the dataset are: average size of itemset= 4 and total number of itemsets

existent= 1, 200. The ml100k dataset corresponds to MovieLens-100K [71], which con-

tains user ratings on di↵erent movies. The bms1 dataset [72] contains several months

worth of clickstream data from an e-commerce website. The delicious dataset [46] was

obtained from the social bookmarking site http://del.ici.ous. In this dataset, the items

refer to tags and the non-zeros refer to posts. A non-zero entry indicates that the corre-

sponding user wrote a post using the corresponding tag. The ctlg3 dataset corresponds

to the catalog purchasing transactions of a major mail-order catalog retailer. The retail

dataset [73] contains the retail market basket data from a Belgian retail store. The

17



18

Table 4.1: Dataset characteristics.

Name #Users #Items #Non-zeros Density

synthetic 5,000 1,000 73,597 1.47%

ml100k 943 1,681 100,000 6.30%

bms1 26,667 496 116,704 0.88%

delicious 2,989 2,000 246,430 4.12%

ctlg3 56,593 39,079 451,247 0.02%

retail 85,146 16,470 905,560 0.06%

jester 57,732 150 1,760,039 20.32%

groceries 63,034 15,846 2,060,719 0.21%

bms-pos 435,319 1,657 3,286,742 0.46%

flixster 29,828 10,085 7,356,146 2.45%

ml10m 69,878 10,677 10,000,054 1.34%

netflix 274,036 17,770 31,756,784 0.65%

jester dataset [74] corresponds to an online joke recommender system and contains rat-

ings that users gave on jokes. The groceries dataset corresponds to transactions of a

local grocery store. Each user corresponds to a customer and the items correspond to

the distinct products purchased over a period of one year. The bms-pos dataset [72]

contains several years worth of point-of-sales data from a large electronics retailer. The

flixster dataset is a subset of the original Flixster dataset [75], which consists of movie

ratings taken from the corresponding social movie site. The subset was created by

keeping the users who have rated more than thirty items and the items that have been

rated by at least twenty-five users. The ml10m dataset corresponds to the MovieLens

10M dataset [71], and contains ratings that users gave on various movies. The netflix

dataset is a subset of the original Netflix dataset [21], which contains anonymous movie

ratings. The subset was created by keeping the users who have rated between thirty

and five hundred items.

Note that some of the datasets originally have ratings, but they were converted to



19

implicit feedback, by transforming the rated entries to ones and the missing entries to

zeros. The existence of a rating (1) indicates that the user purchased/rated the item

and its absence (0) that he/she did not. For the di↵erent methods presented in this

thesis, we use a subset of the listed datasets.

4.2 Evaluation methodology

Throughout the thesis, we employ leave-one-out cross-validation [76] to evaluate the

performance of the developed and competing methods. For each user, we randomly

select an item rated by him/her, and we place it in the test set. The rest of the data

comprise the training set.

The reason why we hide only rated items in the test set is because an unrated item

leaves doubts as to whether the item would be a good candidate for recommendation

to the user.

4.3 Performance metrics

There are multiple possible metrics we can use to evaluate the success of a top-N

recommendation system and its usefulness to the user. More often than not, identifying

the correct metric is a line of research on its own [4, 13], as beyond the accuracy of the

recommendation, the novelty and diversity of the recommendation are very important

as well [8, 77].

In this thesis, we focus on the accuracy of the top-N recommenders and we follow the

metrics used by Deshpande and Karypis [12] and Ning and Karypis [5], when evaluating

their top-N recommendation approaches.

Specifically, we measure the performance by considering the number of times the

single left-out item is in the top-N recommended items for this user and its position in

that list. The quality measures used are the hit-rate (HR) and average-reciprocal hit

rank (ARHR).

HR is defined as

HR =
#hits

#users
, (4.1)



20

and ARHR is defined as

ARHR =
1

#users

#hitsX

i=1

1

pi
, (4.2)

where “#users” is the total number of users (n), and “#hits” is the number of users

whose item in the test set is present in the size-N recommendation list. The symbol pi

denotes the position of the item i in the list, which ranges from 1 specifying the top of

the list, to N specifying the bottom of the list.

The ARHR is a weighted version of HR, where the position of the test item in the

top-N list is taken into account. Both measures have a range from 0 to 1, with 1 being

the ideal.

4.4 Comparison algorithms

In this thesis, we compare our methods against other competing modern top-N rec-

ommendation approaches, that span both the item-item approaches: item k-NN [12],

HOKNN [12], SLIM [5], and the latent space approaches: PureSVD [6], BPRMF [50]

and LLORMA [65]. The details behind these methods are described in Chapter 3.

Software

For SLIM, we used the SLIM package1 . For PureSVD, we used the SVDLIBC package2

, which is based on the SVDPACKC library [78]. For BPRMF,we used the LibRec

package [79] and for LLORMA we used the PREA toolkit [80].

Model selection

We performed an extensive search over the parameter space of the various methods, in

order to find the set of parameters that gives us the best performance for all the methods.

In the thesis, we only report the performance corresponding to the parameters that lead

to the best results.

For item k-NN and HOKNN, the number of neighbors k examined lie in the interval

[1 � 50, 60, 70, 80, 90, 100, 200, 300, . . . , 900, 1000]. For HOKNN, the support threshold

1 www-users.cs.umn.edu/~xning/slim/html
2 https://tedlab.mit.edu/~dr/SVDLIBC/



21

� took on values:{10, 15, 20, . . . , 100, 150, 200, . . . , 950, 1000, 1500, 2000, 2500, 3000}.
For SLIM, the l1 and l2 regularization parameters � and � were chosen from the set

of values: {0.0001, 0.001, 0.01, 0.1, 1, 2, 3, 5, 7, 10}. The larger the regularization param-

eters are, the stronger the regularization is.

For PureSVD, the number of singular values f tried lie in the interval:

{10, 15, 20, . . . , 95, 100, 150, 200, . . . , 1450, 5000}.
For BPRMF, the number of factors used in order to get the best results lie in the in-

terval [1, 10000]. The values of the learning rate that we tried are: {0.0001, 0.001, 0.01, 0.1}.
The values of the regularization we tried are: {0.0001, 0.001, 0.01, 0.1}.

Finally, for LLORMA, we followed the parameter methodology of the original pa-

per [65] and we kept fixed the number of iterations T = 100, the convergence thresh-

old to ✏ = 0.0001, the number of anchor points to q = 50, and used the Epanech-

nikov kernel with h1 = h2 = 0.8. We tried for the regularization values �U = �V

the values: {0.001, 0.01, 0.1}. We also tried for the rank of the models the values:

{1, 2, 3, 5, 7, 10, 15, 20, 25, 30, 35, 40, 45, 50}.
As however LLORMA was developed for rating prediction, but we want to use

it for top-N recommendation with the evaluation methodology described in Section

4.2, we need to also utilize the unrated items feedback beyond the rated items. It is

of very high complexity to introduce in LLORMA all of the unrated items, making

it computationally infeasible. Thus, in this thesis, we sample the unrated items for

LLORMA. After experimentation, we concluded that sampling for every user ten times

the number of unrated items as the number of items he/she has rated gives overall a

good approximation of the overall training matrix R.

Significance testing

When comparing our proposed approaches to the competing methods, we can see some

performance di↵erences. We need though a principled way to evaluate how significant

the improvement of one approach versus another approach is.

To do so, we perform paired t-tests [81] and we report the performance di↵erence to

be statistically significant, if it falls within the 95% confidence interval.



Chapter 5

Higher-Order Sparse LInear

Method for Top-N

Recommendation

This chapter focuses on the development of a top-N recommendation method that re-

visits the issue of higher-order relations, in the context of modern item-item top-N rec-

ommendation methods, as past attempts to incorporate them in the context of classical

neighborhood-based methods did not lead to significant improvements in recommen-

dation quality (discussed in Section 3.4). We propose a method called Higher-Order

Sparse LInear Method (HOSLIM), which estimates two sparse aggregation coe�cient

matrices S and S0 that capture the item-item and itemset-item similarities, respectively.

Matrix S0 allows HOSLIM to capture higher-order relations, whose complexity is deter-

mined by the length of the itemset. A comprehensive set of experiments is conducted

which show that higher-order interactions exist in real datasets and when incorporated

in the HOSLIM framework, the recommendations made are improved, in comparison

to only using pairwise interactions. Also, the experimental results show that HOSLIM

outperforms state-of-the-art item-item recommenders, and the greater the presence of

higher-order relations, the more substantial the improvement in recommendation quality

is.

22



23

5.1 Introduction

Item-based methods have been shown to be very well-suited for the top-N recommenda-

tion problem [5, 12, 28]. In recent years, the performance of these item-based neighbor-

hood schemes has been significantly improved by using supervised learning methods to

learn a model that both captures the similarities and also identifies the sets of neighbors

that lead to the best overall performance. One of these methods is SLIM [5] (discussed

in Section 3.1), which learns a sparse aggregation coe�cient matrix S from the user-item

implicit feedback matrix R, by solving an optimization problem.

However, there is an inherent limitation to both the old and the new top-N recom-

mendation methods, as they capture only pairwise relations between items and they are

not capable of capturing higher-order relations. For example, in a grocery store, users

tend to often buy items that form the ingredients in recipes. Similarly, the purchase

of a phone is often combined with the purchase of a screen protector and a case. In

both of these examples, purchasing a subset of items in the set significantly increases

the likelihood of purchasing the rest. Ignoring this type of relations, when present, can

lead to suboptimal recommendations.

The potential of improving the performance of top-N recommendation methods

was recognized by Deshpande et al. [12] (discussed in Section 3.4), who incorporated

combinations of items (i.e., itemsets) in their method called HOKNN. The most similar

items were identified not only for each individual item, but also for all su�ciently

frequent itemsets that are present in the active user’s basket. The recommendations

were computed by combining itemsets of di↵erent size. However, in most datasets this

method did not lead to significant improvements. We believe that the reason for this

is that the recommendation score of an item was computed simply by an item-item or

itemset-item similarity measure, which does not take into account the subtle relations

that exist when these individual predictors are combined.

In this chapter, we revisit the issue of utilizing higher-order information, in the

context of modern item-item methods. The research question answered is whether the

incorporation of higher-order information in the recently developed top-N recommenda-

tion methods will improve the recommendation quality further. Our contribution is two-

fold: First, we verify the existence of higher-order information in real-world datasets,



24

which suggests that higher-order relations do exist and thus if properly taken into ac-

count, they can lead to performance improvements. Second, we develop an approach

referred to as Higher-Order Sparse Linear Method (HOSLIM), in which the itemsets

capturing the higher-order information are treated as additional items. We conduct a

comprehensive set of experiments on di↵erent datasets from various applications, which

show that HOSLIM improves the recommendation quality on average by 7.86% beyond

competing item-item schemes and for datasets with prevalent higher-order information

up to 32%. In addition, we present the requirements that need to be satisfied, in order

to ensure that HOSLIM computes the predictions in an e�cient way.

5.2 Proposed approach

In this chapter, we present our proposed approach HOSLIM for top-N recommendation,

which combines the ideas of the higher-order models with the SLIM learning framework,

in order to estimate the various item-item and itemset-item similarities.

For the purpose of this chapter, itemsets are defined as the sets of items that are

co-purchased by at least � users in the user-item implicit feedback matrix R, where �

denotes the minimum support threshold [55, 56]. The set of itemsets, denoted by I, has
cardinality p. We use the notation j to refer to an individual itemset. For the rest of

this chapter, every itemset will be frequent and of size two, unless stated otherwise.

5.2.1 Overview

In HOSLIM, we first identify the itemsets with the use of the method Lpminer by Seno

and Karypis [82]. We construct the n ⇥ p user-itemset implicit feedback matrix R0,

whose columns correspond to the di↵erent itemsets in I. An entry r0uj is 1 if user u has

purchased all the items corresponding to the itemset of the jth column of R0, and 0

otherwise.

Then, we estimate the sparse aggregation coe�cient matrix S of size m⇥m, which

captures the item-item similarities and the sparse aggregation coe�cient matrix S0, of

size p ⇥m that captures the itemset-item similarities. An example of the matrices R0

and S0 can be shown in Figure 5.1.



25

1

!′#$

!′%

&
'

(′&'

1

(a) R0

0.4

0.7

!′#

$

%

(b) S0

Figure 5.1: An example of the HOSLIM matrices R0 and S0.

The predicted score for user u on an unrated item i is computed as a sparse aggre-

gation of both the items purchased and the itemsets that the user’s basket supports:

r̃ui = rTu si + r
0T
u s0i, (5.1)

where si is a sparse vector of size m corresponding to the ith column of S, s0i is sparse

vector of size p corresponding to the ith column of S0, rTu is the uth row of R showing

the item implicit feedback of user u, and r
0T
u is the uth row of R0 showing the itemset

implicit feedback of user u.

Finally, top-N recommendation gets done for the uth user by computing the scores

for all the unpurchased items, sorting them and then taking the top-N values.

5.2.2 Estimation of the sparse aggregation coe�cient matrices

The sparse matrices S and S0 encode the similarities (or aggregation coe�cients)

between the items/itemsets and the items. The ith columns of S and S0 can be estimated

by solving the following optimization problem:



26

Algorithm 1 HOSLIM

1: Compute the itemsets with Lpminer [82].

2: Construct the user-itemset feedback matrix R0 (Section 5.2.1)

3: Estimate the item-item matrix S and the itemset-item matrix S0, with Equation

(5.2).

4: For every user u, estimate the predictions on all his unrated items i with Equation

(5.1), sort them and recommend the N with the highest values.

minimize
si,s0i

1
2 ||ri �Rsi �R0s0i||22 +�

2 ||si||
2
2 +

�
2 ||s

0
i||22

+�||si||1 + �||s0i||1
subject to si � 0

s0i � 0

sii = 0, and

s0ji = 0, where {i 2 Ij},

(5.2)

where Ij is the set of items that constitute the itemset of the jth column of R0, ri is

the ith column of R containing the feedback of item i. The optimization problem of

Equation (5.2) is an elastic net regularization problem. It can be solved using coordinate

descent and soft thresholding [40].

The constant � is the l1 regularization parameter, which controls the sparsity of

the solutions found [42]. The constant � is the l2 regularization so that overfitting is

prevented.

The non-negativity constraints are applied so that the vectors estimated contain

positive coe�cients. The constraint sii = 0 makes sure that when computing rui,

the element rui is not used. If this constraint was not enforced, then an item would

recommend itself. Following the same logic, the constraint s0ji = 0 ensures that the

itemsets j, for which i 2 Ij will not contribute to the computation of rui.

All the si vectors can be put together into a matrix S, which can be thought of as

an item-item similarity matrix that is learned from the data. All the s0i vectors can be

put together into a matrix S0, which can be thought of as an itemset-item similarity

matrix that is learned from the data.

Since the estimation of columns si and s0i is independent from the estimation of the



27

Table 5.1: The average basket size of datasets we evaluated HOSLIM on.

Name Average Basket Size

groceries 32.69

synthetic 14.72

delicious 82.45

ml100k 106.04

retail 10.64

bms-pos 7.55

bms1 4.38

ctlg3 7.97

rest of the columns, as shown in Equation (5.2), HOSLIM allows for parallel estimation

of the di↵erent columns. This makes HOSLIM scalable and easy to be applied on big

datasets, even though more aggregation coe�cients are estimated. A continuation of

the discussion of the e�ciency/scalability of HOSLIM can be found in Section 5.3.2.

Overall, the model introduced by HOSLIM can be presented as R̃ = RS + R0S0.

The overview of HOSLIM can be found in Algorithm 1.

5.3 Experimental results

The experimental evaluation consists of two parts: First, we analyze various datasets

in order to assess the extent to which higher-order relations exist in them. Second,

we present the performance of HOSLIM and compare it to competing item-item top-

N recommender methods: item k-NN and SLIM, as well as the competing baseline

HOKNN, which also incorporates itemset information.

Details of the datasets we used can be found in Section 4.1. Also, Table 5.1 presents

the average basket size of the datasets we used. The average basket size is the average

number of transactions per user. An overview of the competing methods: item k-NN,

SLIM, and HOKNN can be found in Chapter 3. Also, details on how we ran them

(parameters tried and software used) can be found in Section 4.4.

For HOSLIM as well, we performed an extensive search over the parameter space,

in order to find the set of parameters that gives us the best performance. We only



28

Table 5.2: HOSLIM: Coverage by a↵ected users.

Name Dependency

max� 2 max� 5 min� 2 min� 5

groceries 95.17 88.11 97.53 96.36

synthetic 98.04 98.00 98.06 98.06

delicious 81.33 55.34 81.80 72.57

ml100k 99.47 28.42 99.89 63.63

retail 23.54 8.85 49.70 38.48

bms-pos 59.66 32.61 66.71 51.53

bms1 31.52 29.47 31.55 31.54

ctlg3 34.95 34.94 34.95 34.95

report the performance corresponding to the parameters that lead to the best re-

sults. For fairness of comparison with the competing baselines, the values of � and

� tried were from the same interval as the corresponding values of � and � for SLIM:

{0.0001, 0.001, 0.01, 0.1, 1, 2, 3, 5, 7, 10}. Also, the values of the support threshold � tried

belonged to the same interval as the values of � for HOKNN:

{10, 15, 20, . . . , 100, 150, 200, . . . , 950, 1000, 1500, 2000, 2500, 3000}.

5.3.1 Verifying the existence of higher-order relations

We verified the existence of higher-order relations in the datasets, by measuring how

prevalent are the itemsets with strong association between the items that comprise it

(beyond pairwise associations). In order to identify such itemsets, (which will be referred

to as “good”), we conducted the following experiment:

We found all frequent itemsets of size 3 with � equal to 10. For each of these itemsets

we computed two quality metrics.

dependency max =
P (ABC)

max(P (AB)P (C), P (AC)P (B), P (BC)P (A))
, (5.3)

and

dependency min =
P (ABC)

min(P (AB)P (C), P (AC)P (B), P (BC)P (A))
, (5.4)



29

Table 5.3: HOSLIM: Coverage by non-zeros.

Name Dependency

max� 2 max� 5 min� 2 min� 5

groceries 68.30 47.91 84.69 73.09

synthetic 76.50 75.83 76.80 76.79

delicious 59.02 22.88 59.97 44.14

ml100k 69.77 3.75 77.94 37.62

retail 13.69 4.10 40.66 25.63

bms-pos 81.51 44.77 91.92 80.09

bms1 63.18 60.82 63.22 63.21

ctlg3 24.85 24.81 24.85 24.85

where ABC is such an example itemset of size 3 with support � = 10 and AB, AC and

BC are the induced pairs of items.

The metric dependency max measures how much greater the probability of a pur-

chase of all the items of an itemset is than the maximum probability of the purchase of

an induced pair. The metric dependency min measures how much greater the proba-

bility of the purchase of all the items of an itemset is than the minimum probability of

the purchase of an induced pair.

These metrics are suited for identifying the “good” itemsets, as they discard the

itemsets that are frequent just because their induced pairs are frequent. Instead, the

above-mentioned metrics discover the frequent itemsets that have all or some infrequent

induced pairs, meaning that these itemsets contain higher-order information.

The dependency max is a stricter metric than the dependency min, as an itemset

needs to have a greater probability of being rated than all the associated pairs, in order

to be identified as carrying higher-order information with the dependency max metric.

The dependency min metric has a more relaxed criterion; it also captures the itemsets

ABC for which the existence of one pair (e.g., AB) increases the probability of the third

item (e.g., C); but this property does not hold for other pairs.

Given these metrics, we then selected the itemsets of size three that have quality

metrics greater than 2 and 5. The higher the quality cut-o↵, the more certain we are

that a specific itemset is “good”.



30

For these sets of high quality itemsets, we analyzed how well they cover the original

datasets. We used two metrics of coverage. The first is the percentage of users that

have at least one “good” itemset, while the second is the percentage of the non-zeros

in the user-item matrix R covered by at least one “good” itemset. A non-zero in R is

considered to be covered, when the corresponding item of the non-zero value participates

in at least one “good” itemset supported by the associated user.

Tables 5.2 and 5.3 show the coverage of the di↵erent datasets, in terms of users and

non-zeros, respectively. The itemsets considered have a support threshold of 10, except

in the case of delicious and ml100k, where the support threshold is 50, (as delicious and

ml100k are dense datasets and thus a large number of itemsets is induced).

We can see from Tables 5.2 and 5.3 that not all datasets have uniform coverage with

respect to high quality itemsets. The groceries and synthetic datasets contain a large

number of “good” itemsets that cover a large fraction of non-zeros in R and nearly all

the users. On the other hand, the ml100k, retail and ctlg3 datasets contain “good”

itemsets that have significantly lower coverage with respect to both coverage metrics.

The coverage characteristics of the good itemsets that exist in the remaining datasets

is somewhere in between these two extremes.

These results suggest that the potential gains that HOSLIM can achieve will vary

across the di↵erent datasets and should perform better for the datasets with abundant

“good” itemsets, such as groceries and synthetic datasets. We can observe that the

stricter the quality metric and the quality cut-o↵, the smaller the coverage is with

respect to these itemsets.

5.3.2 Performance comparison

Table 5.4 shows the performance achieved by HOSLIM, SLIM, k-NN and HOKNN.

For each method, columns corresponding to the best HR (Equation (4.1)) and the

set of parameters with which it is achieved are shown. For k-NN (1st order), the

parameter used is the number of nearest neighbors (nnbrs). For HOKNN (2nd order),

the parameters are the number of nearest neighbors (nnbrs) and the support threshold �.

For SLIM (1st order), the set of parameters consists of the l2 regularization parameter

� and the l1 regularization parameter �. For HOSLIM (2nd order), the parameters are

�, � and the support threshold �.



31

Table 5.4: Comparison of 1st order with 2nd order models.

k-NN models SLIM models

k-NN HOKNN SLIM HOSLIM

Dataset nnbrs HR nnbrs � HR � � HR � � � HR

groceries 1000 0.174 800 10 0.240 5 0.001 0.259 10 10 0.0001 0.338

synthetic 41 0.697 47 10 0.769 0.1 0.1 0.733 10 3 1 0.860

delicious 80 0.134 80 10 0.134 10 0.01 0.148 50 10 0.01 0.156

ml100k 15 0.267 15 10 0.267 1 5 0.338 180 5 0.0001 0.349

retail 1000 0.281 1,000 10 0.282 10 0.0001 0.310 10 10 0.1 0.317

bms-pos 700 0.478 600 10 0.480 7 2 0.502 20 10 5 0.509

bms1 200 0.571 200 10 0.571 15 0.01 0.588 10 10 0.001 0.594

ctlg3 700 0.559 700 11 0.559 5 0.1 0.581 15 5 0.1 0.582

The results of Table 5.4 show that HOSLIM produces recommendations that are

better than the other methods in all the datasets. We can also see that by comparing

first-order with second-order models, that the incorporation of higher-order information

can only improve the recommendation quality. This is the case especially in the HOSLIM

framework.

Moreover, we can observe that the greater the existence of higher-order relations in

the dataset, the more significant the improvement in recommendation quality is. For

example, the greater improvement happens in the groceries and the synthetic datasets,

in which the higher-order relations are the greatest (as seen from Tables 5.2 and 5.3).

On the other hand, the ctlg3 dataset does not benefit from higher-order models, since

there are not enough higher-order relations.

These results are to a large extent in agreement with our expectations based on

the analysis presented in Section 5.3.1. The datasets for which HOSLIM achieves the

highest improvement are those that contain the largest number of users and non-zeros

that are covered by high-quality itemsets.

Also, in order to better understand how the existence of “good” itemsets a↵ects

the performance of HOSLIM, we computed the correlation coe�cient of the percentage

improvement of HOSLIM beyond SLIM (presented in Table 5.4) with the product of the

a↵ected users coverage and the number of non-zeros coverage (presented in Tables 5.2



32

 0

 0.2

 0.4

5 10 15 20

H
R

N

k-NN
HOKNN

SLIM
HOSLIM

(a) Groceries Dataset

 0

 0.2

 0.4

5 10 15 20

H
R

N

k-NN
HOKNN

SLIM
HOSLIM

(b) Retail Dataset

Figure 5.2: Varying the size of the top-N list for HOSLIM.

and 5.3). The correlation coe�cient is 0.712, indicating a strong positive correlation

between the coverage (in terms of users and non-zeros) of higher-order itemsets in the

dataset and the performance gains achieved by HOSLIM.

Sensitivity to the size of the top-N list

Figure 5.2 demonstrates the performance of HOSLIM and the competing baselines for

di↵erent values of N : 5, 10, 15 and 20 for the groceries and the retail datasets. Similar



33

trends hold for the rest of the datasets as well. The size of the recommendation list N

was chosen to be quite small, as a user will not see an item that exists in the bottom of

a top-100 or top-200 list.

We can see that HOSLIM outperforms the competing methods for di↵erent values

of N , beyond the default value of 10, which was used in the rest of the chapter. We can

also see that as N increases, the performance of the di↵erent methods increases as well,

as there is higher probability that the hidden item of our test set will be in the top-N

list.

Sensitivity on the support of the itemsets

Figure 5.3 shows the sensitivity of HOSLIM to the support threshold �, for the groceries

and the retail datasets. The trends are the same for the rest of the datasets.

We can see that there is a wide range of support thresholds for which HOSLIM

outperforms SLIM. Also, a low support threshold means that more itemsets get utilized

and HOSLIM benefits more from the itemsets, leading to better performance.

E�cient recommendation by controlling the complexity

Until this point, the model selected was the one producing the best recommendations,

with no further constraints. However, in order for HOSLIM to be used in real-life

scenarios, it also needs to be applied fast. In other words, the model should compute

the recommendations fast and this means that it should have non-prohibitive complexity.

The question that normally arises is the following: If we find a way to control the

complexity, how much will the performance of HOSLIM be a↵ected? In order to answer

this question, we did the following experiment: As the cost of computing the top-N

recommendation list depends on the number of non-zeros in the model, we selected

from all learned models the ones that satisfied the constraint:

nnz(S0) + nnz(SHOSLIM )  2nnz(SSLIM ). (5.5)

With this constraint, we increased the complexity of HOSLIM a little beyond the original

SLIM (since the original number of non-zeros is now at most doubled).

Table 5.5 shows the HR achieved by SLIM and constrained and unconstrained

HOSLIM. It can be observed that the HR of the constrained HOSLIM model is close to



34

 0.25

 0.3

 0.35

 10  100  1000

H
R

m

HOSLIM
SLIM

(a) Groceries Dataset

 0.3

 0.31

 0.32

 10  100  1000  10000

H
R

m

HOSLIM
SLIM

(b) Retail Dataset

Figure 5.3: E↵ect of � on the performance of HOSLIM.

the HR of unconstrained HOSLIM, and always better than the HR of SLIM. This means

that HOSLIM is applicable in real-world scenarios and can be scaled to big datasets,

improving the top-N recommendation quality e�ciently.



35

Table 5.5: Comparison of the HR of constrained HOSLIM with unconstrained HOSLIM

and SLIM.

Dataset
constrained unconstrained

HOSLIM HOSLIM SLIM

groceries 0.327 0.338 0.259

synthetic 0.860 0.860 0.733

delicious 0.154 0.156 0.148

ml 0.340 0.349 0.338

retail 0.317 0.317 0.310

bms-pos 0.509 0.509 0.502

bms1 0.594 0.594 0.588

ctlg3 0.582 0.582 0.581

5.4 Conclusion

In this chapter, we revisited the research question of the existence of higher-order infor-

mation in real-world datasets and whether its incorporation could help the recommen-

dation quality. This was done in the light of modern top-N item-item recommendation

methods. The developed approach (HOSLIM) couples the incorporation of higher-order

associations (beyond pairwise) with the modern top-N recommendation method SLIM.

The two main take-away messages are that higher-order information exists in di↵er-

ent real-world datasets and that its incorporation in modern top-N item-based methods

can help the recommendation quality, on average about 7.86% upon competing item-

item approaches. Also, when the dataset in question contains abundant higher-order

itemsets, the gain can reach up to 32%.



Chapter 6

Local Item-Item Models for

Top-N Recommendation

Item-based approaches based on SLIM (described in Section 3.1.1) have demonstrated

very good performance for top-N recommendation; however they only estimate a single

model for all the users. This work is based on the intuition that not all users behave

in the same way – instead there exist subsets of like-minded users. By using di↵erent

item-item models for these user subsets, we can capture di↵erences in their preferences

and this can lead to improved performance for top-N recommendations.

In this chapter, we extend SLIM by combining global and local SLIM models. We

present a method that computes the prediction scores as a user-specific combination of

the predictions derived by a global and local item-item models. We present an approach

in which the global model, the local models, their user-specific combination, and the

assignment of users to the local models are jointly optimized to improve the top-N rec-

ommendation performance. Our experiments show that the proposed method improves

upon the standard SLIM model and outperforms competing top-N recommendation

approaches, both item-item based and latent space ones.

6.1 Introduction

Item-based methods have the drawback of estimating only a single model for all users.

In many cases, there are di↵erences in users’ behavior, which cannot be captured by a

36



37

single model. For example, there could be a pair of items that are extremely similar for

a specific user subset, while they have low similarity for another user subset. By using

a global model, the similarity between these items will tend to be towards some average

value; thus, losing the high correlation of the pair for the first user subset.

In this chapter we present a top-N recommendation method that extends the SLIM

model in order to capture the di↵erences in the preferences between di↵erent user sub-

sets. Our method, which we call GLSLIM (Global and Local SLIM), combines global

and local SLIM models in a personalized way and automatically identifies the appropri-

ate user subsets. This is done by solving a joint optimization problem that estimates

the di↵erent item-item models (global and local), their user-specific combination, and

the assignment of the users to these models. Our experimental evaluation shows that

GLSLIM significantly outperforms competing top-N recommendation methods, reach-

ing up to 17% improvement in recommendation quality.

6.2 Proposed approach

6.2.1 Motivation

A global item-item model may not be su�cient to capture the preferences of a set

of users, especially when there are user subsets with diverse and sometimes opposing

preferences. An example of when local item-item models (item-item models capturing

similarities in user subsets) will be beneficial and outperform the item-item model cap-

turing the global similarities is shown in Figure 6.1. It portrays the training matrix R

of two di↵erent datasets that both contain two distinct user subsets. Item i is the target

item for which we will try to compute predictions. The predictions are computed by

using an item-item cosine similarity-based method, in this motivation example.

In the left dataset, (Figure 6.1(a)) there exist some items which have been rated

only by the users of one subset, but there is also a set of items which have been rated

by users in both subsets. Items c and i will have di↵erent similarities when estimated

for user-subset A, than when estimated for user-subset B, than for the overall matrix.

Specifically, their similarity will be zero for the users of subset B (as item i is not rated

by the users of that subset), but it will be non-zero for the users of subset A – and we

can further assume without loss of generality that in this example it is high. Then, the



38

U
se

rs
Subset
  A

Subset
  B

c i j

Items

(a) Overlapping rated items between user subsets

U
se

rs

Items

Subset
 C

Subset
 D

i j

(b) No common rated items between user subsets

Figure 6.1: (a) Local item-item models improve upon global item-item model. (b)

Global item-item model and local models yield the same results.

similarity between i and c will be of average value when computed in the global case.

So, estimating the local item-item similarities for the user subsets of this dataset will

help capture the diverse preferences of user-subsets A and B, which would otherwise be

missed if we only computed them globally.

However, when using item j to make predictions for item i, their similarity will be

the same, either globally estimated, either locally for subset A, as they both have been

rated only by users of subset A. The same holds for the dataset pictured in Figure 6.1(b),



39

Algorithm 2 GLSLIM
1: Assign gu = 0.5, to every user u.

2: Compute the initial clustering of users.

3: while number of users who switched clusters > 1% of the total number of users do

4: Estimate S and Spu , 8pu 2 {1, . . . , k} with Equation (6.2).

5: for all user u do

6: for all cluster pu do

7: Compute gu for cluster pu with Equation (6.3).

8: Compute the training error.

9: end for

10: Assign user u to the cluster pu that has the smallest training error and update

gu to the corresponding one for cluster pu.

11: end for

12: end while

as this dataset consists of user subsets who have no common rated items between them.

Although datasets like the one in Figure 6.1(b) cannot benefit from using local item-

item similarity models, datasets such as the one pictured in Figure 6.1(a) can greatly

benefit as they can capture item-item similarities, which could be missed in the case of

just having a global model.

6.2.2 Overview

In this chapter, we present the method GLSLIM, which computes top-N recommen-

dations that utilize user–subset specific models and a global model. These models are

jointly optimized along with computing the user assignments for them. We use SLIM

for estimating the models. Thus, we estimate a global item-item coe�cient matrix S

and also k local item-item coe�cient matrices Spu , where k is the number of user sub-

sets and pu 2 {1, . . . , k} is the index of the user subset, for which we estimate the local

matrix Spu . Every user can belong to one user subset.

The predicted rating of user u, who belongs to subset pu, for item i will be estimated



40

by:

r̃ui =
X

l2Ru

gusli + (1� gu)s
pu
li . (6.1)

The meanings of the various terms are as follows: The term sli shows the global item-

item similarity between the lth item rated by u and the target item i. The term spuli
depicts the item-item similarity between the lth item rated by u and target item i,

corresponding to the local model of the user-subset pu, to which target user u belongs.

Finally, the term gu is the personalized weight per user, which controls the interplay

between the global and the local part. It lies in the interval [0, 1], with 0 showing that

the recommendation is a↵ected only by the local model and 1 showing that the user u

will use only the global model.

In order to perform top-N recommendation for user u, we compute the estimated

rating r̃ui for every unrated item i with Equation (6.1). Then, we sort these values and

we recommend the top-N items with the highest ratings to the user.

The estimation of the item-item coe�cient matrices, the user assignments and the

personalized weight is done with alternating minimization, which will be further ex-

plained in the following subsections.

6.2.3 Estimating the item-item models

We first separate the users into subsets with either a clustering algorithm (we used

CLUTO by Karypis [83]) or randomly. We initially set gu to be 0.5 for all users, in

order to have equal contribution of the global and the local part and we estimate the

coe�cient matrices S and Spu , with pu 2 {1, . . . , k}. We use two vectors g and g0 each

of size n, where the vector g contains the personalized weight gu for every user u and the

vector g0 contains the complement of the personalized weight (1� gu) for every user u.

When assigning the users into k subsets, we split the training matrix R into k training

matrices Rpu of size n ⇥m, with pu 2 {1, . . . , k}. Every row u of Rpu will be the uth

row of R, if the user u who corresponds to this row belongs in the puth subset. If the

user u does not belong to the puth subset, then the corresponding row of Rpu will be

empty, without any ratings.

When estimating the local model Spu , only the corresponding Rpu will be used.

Following SLIM, the item–item coe�cient matrices can be calculated per column, which



41

allows for the di↵erent columns (of both the global and the local coe�cient matrices)

to be estimated in parallel. In order to estimate the ith column of S (si) and Spu (spui )

where pu 2 {1, . . . , k}, GLSLIM solves the following optimization problem:

minimize
si,{s1i ,...,ski }

1
2 ||ri � g �Rsi � g0 �

Pk
pu=1R

puspui ||22+

1
2�g||si||

2
2 + �g||si||1+

Pk
pu=1

1
2�l||s

pu
i ||22 + �l||spui ||1,

subject to si � 0,

spui � 0, 8pu 2 {1, . . . , k},
sii = 0,

spuii = 0, 8pu 2 {1, . . . , k},

(6.2)

where ri is the ith column ofR. �g and �l are the l2 regularization weights corresponding

to S and Spu 8pu 2 {1, . . . , k} respectively. Finally �g and �l are the l1 regularization

weights controlling the sparsity of S and Spu 8pu 2 {1, . . . , k}, respectively.
By having di↵erent regularization parameters for the global and the local sparse

coe�cient matrices, we allow flexibility in the model. In this way, we can control

through regularization which of the two components will play a more major part in the

recommendation.

The constraint sii = 0 makes sure that when computing rui, the element rui is not

used. If this constraint was not enforced, then an item would recommend itself. For

the exact same reason, we enforce the constraint spuii = 0, 8pu 2 {1, . . . , k} for the local

sparse coe�cient matrices too.

The optimization problem of Equation (6.2) is an elastic net regularization problem

and can be solved using coordinate descent and soft thresholding [40].

6.2.4 Finding the optimal assignment of users to subsets

After estimating the local models (and the global model), GLSLIM fixes them and

proceeds with the second part of the optimization: updating the user subsets. While

doing that, GLSLIM also determines the personalized weight gu. We will use the term

refinement to refer to finding the optimal user assignment to subsets.



42

Specifically, GLSLIM tries to assign each user u to every possible cluster, while

computing the weight gu that the user would have if assigned to that cluster. Then, for

every cluster pu and user u, the training error is computed. The cluster for which this

error is the smallest is the cluster to which the user is assigned. If there is no di↵erence

in the training error, or if there is no cluster for which the training error is smaller, the

user u remains at the initial cluster. The training error is computed for both the user’s

rated and unrated items.

In order to compute the personalized weight gu, we minimize the squared error of

Equation (6.1) for user u who belongs to subset pu, over all items i.

By setting the derivative of the squared error to 0, we get:

gu =

Pm
i=1 (

P
l2Ru

sli �
P

l2Ru
spuli )(rui �

P
l2Ru

spuli )Pm
i=1 (

P
l2Ru

sli �
P

l2Ru
spuli )

2
. (6.3)

Note that while updating the user subsets, every user is independent of the others,

as the models are fixed, thus their new assignment an be computed in parallel. The

overview of GLSLIM as well as the stopping criterion are shown in Algorithm 2.

6.3 Experimental results

In this section we present the results of our experiments. Details of the datasets we

used can be found in Section 4.1.

An overview of the competing methods we compare GLSLIM against: PureSVD,

BPRMF, and SLIM can be found in Chapter 3. Also, details on how we ran them

(parameters tried and software used) can be found in Section 4.4.

As our method contains multiple elements, we want to investigate how each of them

impacts the recommendation performance. Thus, beyond GLSLIM, we also investigate

the following methods:

• LSLIMr0, which stands for Local SLIM without refinement. In LSLIMr0, a sepa-

rate item-item model is estimated for each of the k user subsets. No global model

is estimated; so there is no personalized weight gu either. Specifically, the ith

column of the puth local model Spu (spui ) is estimated by solving the optimization



43

Algorithm 3 LSLIM
1: Compute the initial clustering of users.

2: while number of users who switched clusters > 1% of the total number of users do

3: Estimate Spu , 8pu 2 {1, . . . , k} with Equation (6.4).

4: for all user u do

5: for all cluster pu do

6: Compute the training error.

7: end for

8: Assign user u to the cluster pu that has the smallest training error.

9: end for

10: end while

Algorithm 4 GLSLIMr0
1: Assign gu = 0.5, to every user u.

2: Compute the initial clustering of users.

3: while diff > 0.01% do

4: Estimate S and Spu , 8pu 2 {1, . . . , k} with Equation (6.2).

5: 8 user u compute gu with Equation (6.3).

6: Compute di↵erence in the objective function (diff) between subsequent itera-

tions.

7: end while

problem:

minimize
{s1i ,...,ski }

1
2 ||ri �

Pk
pu=1R

puspui ||22+
Pk

pu=1
1
2�l||s

pu
i ||22 + �l||spui ||1,

subject to

spui � 0, 8pu 2 {1, . . . , k},
spu ii = 0, 8pu 2 {1, . . . , k},

(6.4)

where the meanings of the di↵erent terms are identical to those used in Equation

(6.2).

In LSLIMr0, the initial assignment of users to subsets is the one used and never



44

gets updated. The predicted rating for user u, who belongs to subset pu, and item

i is estimated by:

r̃ui =
X

l2Ru

spuli . (6.5)

The overall recommendation quality is computed as the weighted average of the

item-item model performance in every subset.

• LSLIM, which stands for Local SLIM with refinement. In LSLIM, the predicted

rating for user u and item i is also estimated by Equation (6.5) and the local

models are estimated in the same way as in LSLIMr0. However, the users switch

subsets and the local models get updated accordingly, until convergence. The

algorithm for LSLIM is shown in Algorithm 3.

• GLSLIMr0, which stands for Global and Local SLIM without refinement. In

GLSLIMr0, both a global model and separate item-item local models are estimated

along with the per user weight gu. However the assignment of users to subsets

remains fixed. The algorithm for this method is shown in Algorithm 4.

For our proposed approaches, we performed an extensive search over the parameter

space, in order to find the set of parameters that gives us the best performance. We

only report the performance corresponding to the parameters that lead to the best

results. The number of clusters examined took on the values: {2, 3, 5, 10, 15, 20,

25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100 and 150}. For fairness of comparison, the

l1 and l2 regularization parameters were chosen from the same set of values as SLIM:

{0.0001, 0.001, 0.01, 0.1, 1, 2, 3, 5, 7, 10}. The software for all our proposed approaches is

available online1 .

For the clustering of users, we used the CLUTO algorithm [83], as mentioned in

Section 6.2.3. For running it, we used the CLUTO toolkit2 and more specifically the

vcluster clustering program, with the cosine similarity. All the other parameters were

the default ones.

In the rest of this section, the following questions will be answered:

1. How do the proposed methods compare between them?

1 https://www-users.cs.umn.edu/~chri2951/code.html
2 http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview



45

2. How does our method compare against competing top-N recommendation meth-

ods?

3. What is the time complexity of our method?

6.3.1 Performance of the proposed methods

The comparison of our proposed approaches in terms of HR (Equation (4.1)) and ARHR

(Equation (4.2)) is shown in Tables 6.1, 6.2, 6.3, 6.4 and 6.5, respectively for each

dataset. For each method, the columns correspond to the best HR and ARHR and the

parameters for which they are achieved. The parameters are: the number of clusters,

the global l2 regularization parameter �g, the local l2 regularization parameter �l, the

global l1 regularization parameter �g and the local l1 regularization parameter �l. The

bold numbers show the best HR/ARHR achieved, per dataset.

Overall, we can see that the general pattern is that GLSLIM is the best-performing

method, followed by GLSLIMr0 and LSLIM, while LSLIMr0 is the approach with the

lowest performance.

By comparing these methods, we can see the relative benefits provided by the dif-

ferent components of GLSLIM. The comparisons of LSLIMr0 with GLSLIMr0 and also

of LSLIM with GLSLIM show the benefit of adding a global model with a personalized

weight gu. The comparisons of LSLIMr0 with LSLIM, and also between GLSLIMr0 and

GLSLIM demonstrate the benefit of allowing users to switch subsets.

We can see that both these components improve the performance. However, in all

of the datasets but ml10m, the relative gain of considering a global model beyond the

local item-item models and also computing a personalized weight gu is higher than the

gain of allowing users to switch subsets. When all of the components are combined, as

in the case of GLSLIM, we get the best performance, both in terms of HR and ARHR.



46

Table 6.1: Comparison between our proposed approaches for the groceries dataset.

groceries

Method Cls �g �l �g �l HR Cls �g �l �g �l ARHR

LSLIMr0 15 - 5 - 0.1 0.263 3 - 3 - 0.1 0.133

LSLIM 15 - 5 - 1 0.268 15 - 3 - 3 0.135

GLSLIMr0 3 5 5 1 1 0.280 3 5 5 1 1 0.144

GLSLIM 100 5 5 1 1 0.304 100 5 5 1 1 0.155

Table 6.2: Comparison between our proposed approaches for the ml10m dataset.

ml10m

Method Cls �g �l �g �l HR Cls �g �l �g �l ARHR

LSLIMr0 20 - 5 - 1 0.329 25 - 7 - 2 0.163

LSLIM 15 - 5 - 3 0.339 15 - 7 - 3 0.167

GLSLIMr0 15 7 3 1 5 0.335 15 7 7 1 3 0.166

GLSLIM 10 10 7 1 1 0.345 10 10 7 1 1 0.170

Table 6.3: Comparison between our proposed approaches for the jester dataset.

jester

Method Cls �g �l �g �l HR Cls �g �l �g �l ARHR

LSLIMr0 5 - 5 - 0.1 0.898 10 - 0.1 - 0.1 0.775

LSLIM 10 - 0.1 - 0.1 0.916 10 - 10 - 5 0.804

GLSLIMr0 20 7 1 10 1 0.929 150 1 1 1 1 0.820

GLSLIM 10 10 10 10 0.1 0.940 100 1 1 1 1 0.835

Sensitivity on the number of clusters

Figure 6.2 shows how the number of clusters a↵ects the HR for GLSLIM and its variants

in the groceries and ml10m datasets. The trends are the same for the rest of the datasets

and for the metric ARHR. We can see that GLSLIM outperforms the rest of the methods

for all clusters.

Also, we should note that for all datasets GLSLIM can achieve at least 95% of its

best performance for only ten clusters, outperforming its closest competing method.



47

Table 6.4: Comparison between our proposed approaches for the flixster dataset.

flixster

Method Cls �g �l �g �l HR Cls �g �l �g �l ARHR

LSLIMr0 3 - 1 - 2 0.248 3 - 0.1 - 2 0.121

LSLIM 3 - 0.1 - 3 0.250 3 - 1 - 3 0.122

GLSLIMr0 3 1 1 5 5 0.254 3 5 5 1 3 0.125

GLSLIM 3 1 1 1 5 0.255 3 1 1 1 5 0.126

Table 6.5: Comparison between our proposed approaches for the netflix dataset.

netflix

Method Cls �g �l �g �l HR Cls �g �l �g �l ARHR

LSLIMr0 10 - 1 - 5 0.238 20 - 0.1 - 5 0.113

LSLIM 10 - 1 - 5 0.241 10 - 3 - 10 0.114

GLSLIMr0 20 1 1 5 5 0.243 20 1 1 5 5 0.115

GLSLIM 5 1 1 5 5 0.245 5 1 1 5 5 0.116

This is the case even for the datasets where the best performance occurred at a much

bigger number of clusters.

Initializing with random user subsets

The results presented up to this point have been obtained by initializing the user subsets

with the user clustering algorithm CLUTO. In order to show that the good performance

of GLSLIM is not dependent on the clustering algorithm used, we present the perfor-

mance when the initialization of the user subsets is random.

In Figure 6.3, we can see for the ml10m and flixster datasets, the HR achieved across

iterations with the two di↵erent ways of initialization, for the same regularization and

for ten clusters. The same trends hold for ARHR and for di↵erent regularizations,

clusters and the rest of the datasets.

We can see that the HR of the first iteration with random initialization is lower than

the HR of the first iteration when initializing with CLUTO. This is expected, as in the

first iteration, only the global and local models are estimated; no personalization nor



48

0.250
0.255
0.260
0.265
0.270
0.275
0.280
0.285
0.290
0.295
0.300

 5  10  15  20  25  30  35  40  45  50

groceries

H
R

clusters

 

0.324
0.326
0.328
0.330
0.332
0.334
0.336
0.338
0.340
0.342
0.344

 5  10  15  20  25  30  35  40  45  50

ml10m

H
R

clusters

 
LSLIMr0

LSLIM
GLSLIMr0

GLSLIM

Figure 6.2: The e↵ect of the number of clusters on the performance of GLSLIM.

cluster refinement has been done yet. Thus, the local models estimated from CLUTO

are more meaningful than the local models on random user subsets.

As the iterations progress and cluster refinement is done, we see that the HR in-

creases. In the converged state, the final HR achieved is very similar with both initial-

izations. However, when starting from random user subsets, more iterations are needed

until convergence. We can then conclude that our method is able to estimate the local

models and reach convergence, even with random initialization.

The interplay between the global and the local part of the model

In order to see how the local models a↵ect the recommendation performance, we look

at the l1 norm of the global model S and the local models Spu in the beginning of the

algorithm and when the algorithm has converged.

Figure 6.4 shows these l1 norms for 5, 50 and 100 clusters, for the groceries and

ml10m datasets. We can see that the l1 norm of the global model S is small and it

remains small for all possible clusters and throughout the iterations of the algorithm.

For the local models Spu , their l1 norm is larger than the l1 norm of the global model. As

the number of clusters increases, the l1 norm of the local models increases. In addition,

the l1 norm of the local models in the converged state is larger than the l1 norm of the

local models in the beginning. This shows that the e↵ect of local information on the

models is major and it becomes greater as the iterations progress and as the number of



49

0.310

0.315

0.320

0.325

0.330

0.335

0.340

0.345

 0  5  10 15 20 25 30 35 40 45 50 55 60 65

H
R

Iterations

 

ml10m

0.240

0.245

0.250

0.255

 0  5  10  15  20  25  30  35

H
R

Iterations

 

flixster

Random Initialization
CLUTO Initialization

Figure 6.3: Comparing the performance of GLSLIM with CLUTO initialization versus

with random initialization of user subsets.

 10000

 20000

 30000

 40000

 50000

 60000

 70000

5 50 100

Su
m

 o
f n

on
-z

er
o 

va
lu

es

Clusters

  

groceries

 0

 50000

 100000

 150000

 200000

 250000

5 50 100

Su
m

 o
f n

on
-z

er
o 

va
lu

es

Clusters

  

ml10m

Global part - initial model
Local part - initial model

Global part - final model
Local part - final model

Figure 6.4: How the l1 norm of the global model S and local models Spu changes from

the beginning of GLSLIM until convergence.

clusters increases.



50

 0

 0.2

 0.4

 0.6

 0.8

 1

groceries ml10m jester flixster netflix

H
R

top 5
top 10

top 15
top 20

Figure 6.5: Varying the size of the top-N list for GLSLIM.

Sensitivity to the size of the top-N list

The results presented throughout the chapter show the performance of our algorithms

for a list of size 10. The recommendation list can be of di↵erent sizes. In this section,

we describe how the performance of our method is a↵ected by using lists of sizes 5, 15

and 20 as well. We choose N to be quite small because users do not look past the very

top presented recommendations in a list, anyway.

In Figure 6.5, we can see the HR of GLSLIM, while using the parameters with the

best results as presented in Tables 6.1, 6.2, 6.3, 6.4, 6.5, for the di↵erent sizes of top-N

list.

We can see that as N increases, the performance of our method increases as well,

which is expected, as there is higher probability that the hidden item of our test set will

be in the top-N list. The impact of the size of the recommendation list N on ARHR is

similar to the one shown in Figure 6.5.



51

Table 6.6: Comparison of GLSLIM with competing approaches in terms of HR.
PureSVD BPRMF SLIM GLSLIM

Dataset f HR factors lrnrate reg HR � � HR Cls �g �l �g �l HR

groceries 738 0.134 3000 0.01 0.001 0.214 5 0.1 0.259 100 5 5 1 1 0.304

ml10m 64 0.295 5000 0.01 0.01 0.240 7 5 0.312 10 10 7 1 1 0.345

jester 25 0.860 300 0.01 0.01 0.903 3 0.1 0.878 10 10 10 10 0.1 0.940

flixster 90 0.194 4000 0.01 0.001 0.200 0.1 2 0.242 3 1 1 1 5 0.255

netflix 50 0.204 5000 0.01 0.01 0.210 0.1 5 0.231 5 1 1 5 5 0.245

6.3.2 Performance against competing approaches

Tables 6.6 and 6.7 present the performance of the competing algorithms PureSVD,

BPRMF and SLIM versus the performance of our best method, which is GLSLIM, in

terms of HR and ARHR, respectively. The above-mentioned tables present the best

performance achieved, along with the set of parameters for which they were achieved.

For PureSVD the parameter is the number of singular values (f). For BPRMF, the

parameters are: the number of factors, the learning rate and the regularization. For

SLIM, the parameters are the l2 regularization parameter � and the l1 regularization

parameter �. For GLSLIM, the parameters are the number of clusters, global � (�g),

local � (�l), global � (�g) and local � (�l). Bold numbers indicate the best HR and

ARHR across the di↵erent algorithms, for every dataset.

We can see that GLSLIM outperforms all competing approaches for all datasets.

Moreover, we checked the statistical significance of this performance increase, following

the methodology found in Section 4.4. The improvement of GLSLIM over the best

competing baseline (which is SLIM in our case), was shown to be statistically significant

in all of the datasets, both in terms of HR and ARHR.

By comparing Tables 6.6 and 6.7 with Tables 6.1, 6.2, 6.3, 6.4 and 6.5, we can also

see that LSLIMr0, which is our simplest method, still outperforms the best competing

approach, which shows that using multiple item-item models helps top-N recommenda-

tion quality.



52

Table 6.7: Comparison of GLSLIM with competing approaches in terms of ARHR.
PureSVD BPRMF SLIM GLSLIM

Dataset f ARHR factors lrnrate reg ARHR � � ARHR Cls �g �l �g �l ARHR

groceries 700 0.059 3100 0.01 0.001 0.099 3 0.1 0.130 100 5 5 1 1 0.155

ml10m 56 0.139 7000 0.01 0.01 0.105 5 2 0.151 10 10 7 1 1 0.170

jester 15 0.740 100 0.01 0.01 0.766 7 0.1 0.755 100 1 1 1 1 0.835

flixster 80 0.086 4000 0.01 0.001 0.089 0.1 2 0.116 3 1 1 1 5 0.126

netflix 50 0.091 5000 0.01 0.01 0.100 5 5 0.107 5 1 1 5 5 0.116

6.3.3 Time complexity

Theoretical time complexity

We will use O(SLIMi(R)) to denote the computational cost of estimating the ith col-

umn of S. Then, the complexity of estimating the ith column of S and S1, . . . ,Sk, is

O(SLIMi(R)) + O(SLIMi(R1)) + . . . + O(SLIMi(Rk)), where R1, . . . ,Rk are non-

overlapping submatrices of R. Since in order to estimate the ith column of S, we need

to touch every non-zero in the input matrix R, the complexity O(SLIMi(R)) is at least

linear in the number of non-zeros (nnz). We can then say that the complexity of estimat-

ing the ith column for the submatrices R1, . . . ,Rk is less than or equal to the complexity

of solving it on the matrix R: O(SLIMi(R)) � O(SLIMi(R1))+ . . .+O(SLIMi(Rk)).

As a result, the complexity of Equation (6.2) is the dominant term O(SLIMi(R)). Since

the regression problem of Equation (6.2) needs to be solved for all m columns (items),

the complexity of estimating the global and local models is O(m⇥ SLIMi(R)).

The complexity of updating the cluster assignment for each of the n users, after

trying to assign them to each of the k clusters (lines 5� 11 of Algorithm 2), is O(nmk),

since both the computation of the training error and gu is O(m). Thus, the per iteration

cost of GLSLIM is O(m(SLIMi(R) + nk)). The number of iterations until GLSLIM

converges is typically small, as can be seen in Section 6.3.1.

Experimental time complexity

Having seen the theoretical complexity, we will now proceed to investigate GLSLIM

experimentally. For this purpose, we use our software, which is available online3 . The

3 https://www-users.cs.umn.edu/~chri2951/code.html



53

Figure 6.6: The speedup achieved by GLSLIM on the ml10m dataset, while increasing

the number of nodes.

Figure 6.7: The total time in mins achieved by GLSLIM with and without warm start

on the ml10m dataset, while increasing the number of nodes.

software is MPI-based, taking advantage of the inherent parallelism in terms of items

in the model estimation, and in terms of users in the subset refinement. More details

on how the parallelism is achieved can be found in Sections 6.2.3 and 6.2.4.

Figure 6.6 shows the speedup achieved by GLSLIM on di↵erent nodes, with respect

to the time taken by GLSLIM on one node (which consists of 24 cores in our experiments)



54

for the ml10m dataset. The speedup is computed with respect to the time of running

GLSLIM on one node. Similar trends hold for the rest of the datasets. The system we

conducted the experiments on consists of identical nodes equipped with 62 GB RAM and

two twelve-core 2.5 GHz Intel Xeon E5-2680v3 (Haswell) processors. We can see that

distributing the computations across multiple nodes can greatly a↵ect the performance

of GLSLIM, making it more scalable.

Besides taking advantage of the parallelism, warm start is employed for further

improving the e�ciency of GLSLIM in the following two ways:

1. The model estimated in every iteration is initialized with the model estimated in

the previous iteration (with the exception of the first iteration).

2. When estimating a model with a new choice of parameters, we use another model

learned with a di↵erent choice of parameters as its initialization.

Figure 6.7 shows the time taken in minutes to run GLSLIM on the ml10m dataset,

with and without warm start. Similar trends hold for the other datasets, as well. We

can see that by using warm start, we can further decrease the required training time.

6.4 Conclusion

In this chapter, we proposed a method to improve upon top-N recommendation item-

based schemes, by capturing the di↵erences in the preferences between di↵erent user

subsets, which cannot be captured by a single model.

For this purpose, we estimate a separate local item-item model for every user subset,

in addition to the global item-item model. The proposed method allows cluster refine-

ment, in the context of users being able to switch the subset they belong to, which leads

to updating the local model estimated for this subset, as well as the global model. The

method is personalized, as we compute for all users their own personal weight, defining

the degree to which their top-N recommendation list will be a↵ected from global or

local information.

Our experimental evaluation shows that our method significantly outperforms com-

peting top-N recommender methods, indicating the value of multiple item-item models.



Chapter 7

Local Latent Space Models for

Top-N Recommendation

Continuing the same research direction as the previous chapter, this chapter investi-

gates the benefits that multiple local models can bring to latent space methods. Users’

behaviors are driven by their preferences across various aspects and latent space ap-

proaches model these aspects in the form of latent factors. Though such a user-model

has been shown to lead to good results, the aspects that di↵erent users care about can

vary. In many domains, there may be a set of aspects for which all users care about

and a set of aspects that are specific to di↵erent subsets of users. To explicitly capture

this, we consider models in which there are some latent factors that capture the shared

aspects and some user subset specific latent factors that capture the set of aspects that

the di↵erent subsets of users care about. In particular, we propose two latent space

models: rGLSVD and sGLSVD, that combine such a global and user subset specific

sets of latent factors. The rGLSVD model assigns the users into di↵erent subsets based

on their rating patterns and then estimates a global and a set of user subset specific

local models whose number of latent dimensions can vary. The sGLSVD model esti-

mates both global and user subset specific local models by keeping the number of latent

dimensions the same among these models but optimizes the grouping of the users in or-

der to achieve the best approximation. Our experiments on various real-world datasets

show that the proposed approaches significantly outperform state-of-the-art latent space

55



56

top-N recommendation approaches.

7.1 Introduction

Latent space approaches do not su↵er from ine�cient personalization, as could be the

case with item-item approaches. The reason is that the increase of the rank can easily

lead to more latent features estimated for every user. However, they assume that users

base their behavior on a set of aspects, shared by all, which they model by estimating

a set of global latent factors. We believe that this user model is limiting; we instead

propose that a user determines his/her preferences based on some global aspects, shared

by all, and on some more specific aspects, that are shared by users that are similar to

him/her. For example, a young girl can decide on a piece of clothing to purchase, based

on some general aspects, such as whether it is in good condition, and also on some more

specific aspects, such as whether this item of clothing is fashionable at the time for girls

her age. Thus, we estimate for every user a set of factors capturing the aspects shared

by all, and a set of factors capturing the aspects shared by the subset this user belongs

to. Estimating such structure with a global latent model could be di�cult, since the

data at hand are often very sparse.

In this chapter, we propose explicitly encoding such structure, by estimating both

a global low-rank model and multiple user subset specific low-rank models. We pro-

pose two approaches: rGLSVD (Global and Local Singular Value Decomposition with

varying ranks) that considers fixed user subsets but allows for di↵erent local models to

have varying ranks and sGLSVD (Global and Local Singular Value Decomposition with

varying subsets) that allows users to switch subsets, while the local models have fixed

ranks. The two approaches explore di↵erent ways to learn the local low-rank represen-

tations that will achieve the best top-N recommendation quality for the users. The

experimental evaluation shows that our approaches outperform competing top-N latent

space methods, on average by 13%.



57

7.2 Proposed approach

7.2.1 Motivation

Latent space approaches assume that every user’s behavior can be described by a set

of aspects, which are shared by all the users. However, consider the following scenario.

When deciding on which restaurant to go to, people generally tend to agree on a set

of aspects that are important: how clean the restaurant is, how delicious the food is.

However, there could be other factors which are important to only a subset of users,

such as if vegan options are available and if live music exists. Users of a di↵erent subset

could care about other factors, such as what is the average waiting time, and how big

the portions are. We hypothesize that a user model that assumes that users’ preferences

can be described by some aspects which are common to all but also some additional

user subset specific aspects, can better capture user behavior such as the one described

above.

As the available data is generally sparse, estimating the global and user subset

specific factors from a global low-rank model could be di�cult. Thus, we propose

to impose such a structure explicitly, by estimating a global latent space model, and

multiple user subset specific latent space models.

7.2.2 Overview

In this chapter, we present two approaches: Global and Local Singular Value Decompo-

sition with varying ranks (rGLSVD) and Global and Local Singular Value Decomposi-

tion with varying subsets (sGLSVD), which estimate a personalized combination of the

global and local low-rank models.

Both approaches utilize PureSVD (Section 3.2) as the underlying model, as it has

been shown to have good top-N recommendation performance, while being scalable [6,

14].

The rGLSVD approach assigns the users into di↵erent subsets based on their rating

patterns, which remain fixed, and then estimates a global model and multiple user

subset specific local models whose number of latent dimensions can vary.

The sGLSVD model estimates a global model and multiple user subset specific local

models by keeping the number of latent dimensions the same among the di↵erent local



58

Algorithm 5 rGLSVD
1: Assign gu = 0.5 for every user u.

2: Compute the initial clustering of users.

3: while (users whose gu changed more than 0.01) > 1% of the total users do

4: Construct Rg and Rc, 8c 2 {1, . . . , k}, as discussed in Section 7.2.3.

5: Compute a truncated SVD of rank fg on Rg.

6: for all cluster c do

7: Compute a truncated SVD of rank f c on Rc.

8: end for

9: for all user u do

10: Compute his personalized weight gu with Equation (7.3).

11: end for

12: end while

models, but optimizes the grouping of the users in order to achieve the best approxima-

tion.

The reason why the two methods are not combined, in other words the reason why we

do not allow users to switch subsets between local models with varying ranks, is because

most of the users would always move to the subset with the highest corresponding

number of local dimensions, causing a lot of them to overfit.

7.2.3 Estimation

We now proceed to describe both rGLSVD and sGLSVD, since they follow the same

overall estimation methodology. Both approaches use alternating minimization. We

will emphasize the points where the approaches di↵er.

The approaches first estimate the global and user subset specific latent factors.

Then, rGLSVD proceeds to estimate the personalized weights, while sGLSVD proceeds

to estimate the personalized weights and the user assignments. Then, the global and

local latent space models are re-estimated and so on, until convergence.

We initially set the personalized weight gu controlling the interplay between the

global and local low-rank model to be the same and equal to 0.5 for all users, so that

the global and local component will have equal contribution. The personalized weight



59

Algorithm 6 sGLSVD
1: Assign gu = 0.5 for every user u.

2: Compute the initial clustering of users.

3: while number of users switching clusters > 1% of the total users do

4: Construct Rg and Rc, 8c 2 {1, . . . , k}, as discussed i n Section 7.2.3.

5: Compute a truncated SVD of rank fg on Rg.

6: for all cluster c do

7: Compute a truncated SVD of the same rank f c on Rc.

8: end for

9: for all user u do

10: for all cluster c do

11: Project user u on cluster c with Equation 7.4.

12: Compute his personalized gu for cluster c with Equation 7.3

13: Compute the training error.

14: end for

15: Assign u to the cluster c with the corresponding smallest training error and

update his personalized weight gu to the corresponding one for cluster c.

16: end for

17: end while

can take values from 0 to 1, where 0 shows that only local models are utilized, and 1

that only a global model is used.

We construct the global n ⇥ m training matrix Rg by stacking the vectors gurTu ,

for all users u. We then compute a truncated singular value decomposition on the

global matrix Rg of rank fg, which allows us to estimate the global user factors, in the

following way:

R̃g = P⌃fgQT , (7.1)

where P is an n⇥fg orthonormal matrix showing the global user factors, Q is an m⇥fg

orthonormal matrix showing the global item factors, and ⌃fg is an fg ⇥ fg diagonal

matrix containing the fg largest singular values.

Then, we separate the users into k subsets with a clustering algorithm (we use

CLUTO by Karypis [83]). Every user can belong to one subset. For every subset



60

c 2 {1, . . . , k}, we construct the corresponding local training matrix Rc by stacking the

vectors (1 � gu)rTu , for all users u belonging to subset c. So, every matrix Rc has m

columns and as many rows as the number of users belonging to subset c, which we note

as nc. For every subset c, we compute a truncated singular value decomposition on Rc,

of rank f c:

R̃c = Pc⌃fcQcT , (7.2)

where Pc is a nc⇥f c matrix containing the local user factors which are specific to subset

c, and Qc is a m ⇥ f c matrix containing the local item factors of subset c. Note that

in rGLSVD, the ranks f c can be di↵erent for each local subset c. Instead, the ranks f c

are the same across the local subsets c in sGLSVD.

So, we estimate a global user latent factor matrix P, a global item latent factor

matrix Q, k user subset specific user latent factor matrices Pc and k user subset specific

item latent factor matrices Qc.

Then, we proceed to the step of updating the personalized weights for rGLSVD or

to the step of updating the personalized weights with the user assignments for sGLSVD.

We compute the personalized weight gu, 8u by minimizing the squared error for

every user u over all items (both rated and unrated ones). After setting the derivative

of the squared error to 0, we get:

gu =

Pm
i=1 (a� b)(rui � b)Pm

i=1 (a� b)2
, (7.3)

where a = 1
gu
pT
u⌃fgqi and b = 1

1�gu
pcT
u ⌃fcqc

i .

The method sGLSVD updates the user subsets, in the following way: We try to

assign each user u to every possible cluster c, while computing the weight gu that the

user would have if assigned to that cluster, with Equation (7.3). After every possible

such assignment, we compute the training error for user u, and we assign him/her to

the cluster that produced the smallest training error. In order to compute the training

error for user u, who is trying to be assigned to a new subset c he/she did not belong to

before, we need to project him/her to the new subset c, by learning his/her projected

user latent factor:

pcT
u = rTuQ

c⌃fc
�1. (7.4)

An overview of rGLSVD along with the stopping criterion is shown in Algorithm 5.



61

Algorithm 7 rLSVD
1: Compute the initial clustering of users.

2: for all cluster c do

3: Construct Rc, as discussed in Section 7.3.

4: Compute a truncated SVD of rank f c on Rc.

5: end for

An overview of sGLSVD along with the stopping criterion can be found in Algorithm

6.

When the user and item latent factors are fixed, we can estimate the personalized

weights of the users for rGLSVD and the personalized weights and user assignments for

sGLSVD in parallel.

7.2.4 Prediction and recommendation

The predicted rating of user u, who belongs to subset c, for item i is a combination of

the global model and the local model of subset c:

r̃ui = pT
u⌃fgqi + pcT

u ⌃fcqc
i , (7.5)

where pT
u is the uth row of P corresponding to user u, qi is the ith column of QT

corresponding to item i, pcT
u is the uth row of Pc and qc

i is the ith column of QcT . Note

that the personalized weights gu and 1 � gu are enclosed inside the user latent factors

pT
u and pcT

u correspondingly.

In order to compute the top-N recommendation list for user u, we estimate the

predicted rating r̃ui with Equation (7.5) for all his unrated items i, we sort their values

in a descending order, and we recommend the N items with the highest corresponding

values.

7.3 Experimental results

In this section, we present the results of the experimental evaluation of rGLSVD

and sGLSVD on a variety of real-world datasets. Details of the datasets we used can be

found in Section 4.1. An overview of the competing methods: PureSVD, BPRMF and



62

Algorithm 8 sLSVD
1: Compute the initial clustering of users.

2: while number of users switching clusters > 1% of the total users do

3: for all cluster c do

4: Construct Rc, as discussed in Section 7.3.

5: Compute a truncated SVD of the same rank f c on Rc.

6: end for

7: for all user u do

8: for all cluster c do

9: Project user u on cluster c with Equation 7.4.

10: Compute the training error.

11: end for

12: Assign u to the cluster c with the corresponding smallest training error.

13: end for

14: end while

LLORMA can be found in Chapter 3. Also, details on how we ran them (parameters

tried and software used) can be found in Section 4.4.

As rGLSVD and sGLSVD estimate multiple components, we propose di↵erent vari-

ants, to investigate the e↵ect of each component on the top-N recommendation quality:

• LSVD, which stands for Local Singular Value Decomposition: We estimate mul-

tiple local latent space models of constant rank f c. The user subsets remain fixed.

• GLSVD, which stands for Global and Local Singular Value Decomposition: We

estimate a global latent space model along with multiple local latent space models

of constant rank f c. The user subsets are fixed.

• rLSVD, which stands for Local Singular Value Decomposition with varying ranks:

We estimate multiple latent space models of varying ranks. There is no global

model, and the users remain in their original predefined subsets. We compute the

predicted rating of user u, who belongs to subset c, for item i as:

r̃ui = pcT
u ⌃fcqc

i . (7.6)



63

After separating the users into k subsets, we construct the corresponding local

training matrices Rc 8c 2 {1, . . . , k} by stacking the vectors rTu , for all users u

belonging to subset c. We then perform truncated singular value decompositions

of varying ranks f c on each matrix Rc. An overview of rLSVD can be found in

Algorithm 7.

• sLSVD, which stands for Local Singular Value Decomposition with varying sub-

sets: We estimate multiple latent space models of the same rank; however every

user can switch to the subset c, which provides the low-rank representation of u

with the smallest training error. There is no global model. We also compute the

predicted ratings with Equation (7.6). An overview of sLSVD can be found in

Algorithm 8.

For our proposed approaches, we performed an extensive search over the parameter

space, in order to find the set of parameters that gives us the best performance. We only

report the performance corresponding to the parameters that lead to the best results.

The number of clusters examined took on the values: {2, 3, 5, 10, 15, . . . , 90, 95, 100}.
The rank of the local models f c was varied among the values:

{1, 2, 3, 5, 10, 15, . . . , 90, 95, 100}. We did not conduct parameter search on the rank of

the global model fg, instead we fixed it to the value f shown to provide the best results

in PureSVD.

In the rest of the section, the following questions will be answered:

1. How do the proposed approaches compare against each other?

2. How does our method compare against competing top-N recommendation meth-

ods?

7.3.1 Performance of the proposed methods

Tables 7.1, 7.2, 7.3, 7.4 and 7.5 show the performance of our proposed approaches

in terms of HR (Equation (4.1)) and ARHR (Equation (4.2)), respectively for every

dataset, along with the set of parameters for which this performance was achieved.

The parameters are: the number of user subsets/clusters (Cls), the rank of the global



64

model (fg), and the ranks of the local models (f c). The bold numbers show the best

HR/ARHR achieved, per dataset.

We can see that the overall best performing methods are the proposed methods:

rGLSVD and sGLSVD. We can also see that we can achieve the best low-rank represen-

tation in some datasets by varying the rank of local models (rGLSVD), and in others

by allowing users to switch subsets, while having local models of fixed rank (sGLSVD).

We can reach the same conclusion from the pairwise comparison of sLSVD and rLSVD.

This shows the merit of both ways to reach the best local low-rank representation.

We can also observe that the global component improves the recommendation qual-

ity, by performing a pairwise comparison of LSVD with GLSVD, sLSVD with sGLSVD,

and rLSVD with rGLSVD. After performing paired t-tests, the di↵erence in their per-

formance was shown to be statistically significant, with 95% confidence.

Finally, we can see that rLSVD and sLSVD outperform LSVD, both in terms of

HR and ARHR, as LSVD is a simpler method than rLSVD and sLSVD: rLSVD with

constant rank f c results in LSVD and sLSVD with fixed user subsets results in LSVD.

Also, rGLSVD and sGLSVD outperform GLSVD, which is also expected as GLSVD

results from sGLSVD with fixed user subsets, or rGLSVD with constant ranks f c.

We do not show the rank of each local model f c that leads to the best performance

of rLSVD and rGLSVD in Tables 7.1, 7.2, 7.3, 7.4 and 7.5 for space reasons, but we

present it instead here. We will use the following notation scheme: {c1 : f c
1 , c2 : f

c
2 , . . .},

where c1 shows how many clusters have local rank f c
1 , c2 shows how many clusters have

local rank f c
2 etc. The sum of c1, c2, . . . equals the total number of user subsets.

The ranks f c that correspond to the best rLSVD results in terms of HR are: {25 :

5, 42 : 10, 10 : 15, 6 : 20, 2 : 25, 2 : 30, 8 : 40, 2 : 50, 1 : 65, 1 : 85, 1 : 90} for the

groceries dataset, {1 : 2, 2 : 3, 4 : 5, 4 : 10, 1 : 15, 2 : 20, 1 : 25} for the ml10m dataset,

{1 : 1, 1 : 5, 3 : 10} for the jester dataset, {3 : 5, 5 : 10, 2 : 20} for the flixster dataset,

and {45 : 5, 42 : 10, 3 : 15} for the netflix dataset.

The ranks f c that correspond to the best rLSVD results in terms of ARHR are:

{44 : 5, 35 : 10, 14 : 15, 7 : 20} for the groceries dataset, {5 : 5, 7 : 10, 5 : 15, 1 :

20, 1 : 25, 1 : 30} for the ml10m dataset, {2 : 1, 2 : 5, 1 : 10} for the jester dataset,

{5 : 5, 3 : 10, 2 : 20} for the flixster dataset, and {51 : 5, 37 : 10, 2 : 15} for the netflix

dataset.



65

Table 7.1: Comparison between our proposed approaches for the groceries dataset.

groceries

Method Cls fg f c HR Cls fg f c ARHR

LSVD 100 - 20 0.192 100 - 15 0.091

sLSVD 100 - 25 0.271 100 - 15 0.130

rLSVD 100 - 0.210 100 - 0.105

GLSVD 100 25 25 0.204 100 20 20 0.100

sGLSVD 100 25 25 0.283 100 20 20 0.136

rGLSVD 90 30 0.216 90 30 0.105

The ranks f c that correspond to the best rGLSVD results in terms of HR are:

{16 : 10, 13 : 15, 15 : 20, 7 : 25, 5 : 30, 7 : 35, 4 : 40, 4 : 45, 2 : 50, 4 : 55, 1 : 60, 2 :

65, 2 : 70, 3 : 80, 2 : 85, 2 : 95, 1 : 100} for the groceries dataset, {6 : 10, 4 : 15, 1 : 20, 2 :

25, 2 : 30, 3 : 40, 1 : 45, 1 : 55, 1 : 60, 2 : 65, 1 : 80, 2 : 85, 1 : 90, 1 : 95, 2 : 100} for the

ml10m dataset, {2 : 2, 1 : 3, 1 : 5, 1 : 10, 2 : 15, 1 : 20, 2 : 35} for the jester dataset,

{1 : 25, 1 : 40, 1 : 50, 2 : 55} for the flixster dataset, {2 : 10, 10 : 15, 11 : 20, 9 : 25, 9 :

30, 9 : 35, 8 : 40, 6 : 45, 3 : 55, 1 : 60, 1 : 75, 1 : 95} for the netflix dataset.

The ranks f c that correspond to the best rGLSVD in terms of ARHR are: {28 :

10, 14 : 15, 13 : 20, 18 : 25, 1 : 30, 5 : 35, 3 : 40, 1 : 45, 1 : 50, 2 : 55, 1 : 60, 1 : 65, 1 : 85, 1 :

90} for the groceries dataset, {9 : 10, 4 : 15, 2 : 20, 7 : 25, 1 : 30, 1 : 35, 2 : 45, 3 : 50, 1 :

55, 1 : 60, 1 : 65, 1 : 75, 1 : 80, 2 : 85, 2 : 90, 2 : 100} for the ml10m dataset, {1 : 1, 1 :

10, 1 : 35} for the jester dataset, {2 : 25, 2 : 35, 2 : 45, 1 : 55, 1 : 65, 1 : 80, 1 : 90} for the

flixster dataset, and {2 : 10, 11 : 15, 17 : 20, 21 : 30, 14 : 35, 7 : 40, 9 : 45, 1 : 50, 1 : 60, 2 :

100} for the netflix dataset.

Sensitivity on the number of user subsets

We can see the above observations more clearly in Figure 7.1, which shows the perfor-

mance of the proposed methods when varying the number of clusters, in terms of ARHR

for the ml10m dataset. The trends are similar for HR and for the rest of the datasets.

We can see for a wide range of user subsets, and not for just a specific choice, that:

(i) rGLSVD and sGLSVD outperform the rest of the approaches, (ii) estimating a global



66

Table 7.2: Comparison between our proposed approaches for the ml10m dataset.

ml10m

Method Cls fg f c HR Cls fg f c ARHR

LSVD 25 - 20 0.300 25 - 20 0.142

sLSVD 50 - 15 0.311 55 - 15 0.146

rLSVD 15 - 0.317 20 - 0.150

GLSVD 75 65 10 0.311 35 65 15 0.149

sGLSVD 85 55 10 0.320 45 55 15 0.152

rGLSVD 30 65 0.321 40 65 0.154

Table 7.3: Comparison between our proposed approaches for the jester dataset.

jester

Method Cls fg f c HR Cls fg f c ARHR

LSVD 5 - 3 0.816 5 - 1 0.693

sLSVD 2 - 3 0.816 3 - 2 0.697

rLSVD 5 - 0.895 5 - 0.772

GLSVD 2 25 2 0.863 3 15 1 0.746

sGLSVD 2 25 2 0.865 5 15 1 0.746

rGLSVD 10 15 0.910 3 15 0.783

Table 7.4: Comparison between our proposed approaches for the flixster dataset.

flixster

Method Cls fg f c HR Cls fg f c ARHR

LSVD 5 - 40 0.202 5 - 50 0.091

sLSVD 15 - 30 0.207 15 - 30 0.096

rLSVD 10 - 0.207 10 - 0.095

GLSVD 3 80 40 0.214 3 80 40 0.099

sGLSVD 25 80 30 0.218 25 80 35 0.102

rGLSVD 5 80 0.217 10 80 0.101

model beyond local models helps the performance, and (iii) allowing users to switch

subsets or estimating multiple local models with varying ranks allows for estimation of



67

Table 7.5: Comparison between our proposed approaches for the netflix dataset.

netflix

Method Cls fg f c HR Cls fg f c ARHR

LSVD 90 - 20 0.211 90 - 20 0.097

sLSVD 65 - 20 0.215 95 - 20 0.100

rLSVD 90 - 0.216 90 - 0.099

GLSVD 65 50 25 0.219 65 50 20 0.101

sGLSVD 100 50 20 0.225 100 50 20 0.105

rGLSVD 70 50 0.223 85 50 0.104

0.135

0.140

0.145

0.150

0.155

 10  20  30  40  50  60  70

A
R

H
R

User Subsets

 

ml10m

LSVD
sLSVD

rLSVD
GLSVD

sGLSVD
rGLSVD

Figure 7.1: The performance of the proposed methods: LSVD, sLSVD, rLSVD, GLSVD,

sGLSVD, and rGLSVD when varying the number of user subsets, in terms of ARHR

for the ml10m dataset.

better low-rank representations than the ones estimated with constant local ranks and

fixed user subsets.



68

 0

 0.2

 0.4

 0.6

 0.8

 1

groceries ml10m jester flixster netflix

H
R

top 5
top 10

top 15
top 20

Figure 7.2: The performance of sGLSVD in terms of HR for di↵erent sizes N of the

recommendation list.

Varying the size N of the recommendation list

We obtained the results shown until this point by using a recommendation list of size

N = 10. Figure 7.2 shows the performance of sGLSVD for di↵erent sizes of recom-

mendation list, namely N = {5, 10, 15, 20}, in terms of HR. The same trends hold for

ARHR, and for the rest of the proposed approaches. We consider small sizes of N ,

because users are interested only in the first set of recommendations returned, as not

many people would look at the hundredth item recommended.

We can see that as the size of the recommendation list increases, the performance of

sGLSVD is improved, as a bigger list means that it is more probable for the test item

to appear in the recommended list.

7.3.2 Performance against competing approaches

Comparison against competing latent space approaches

Tables 7.6 and 7.7 compare the performance of our proposed methods rGLSVD and

sGLSVD against competitive modern latent space top-N recommendation approaches:



69

Table 7.6: Comparison with competing latent space approaches in terms of HR.
LLORMA PureSVD BPRMF sGLSVD rGLSVD

Dataset � rank HR f HR factors lrnrate reg HR HR HR

groceries 0.01 20 0.096 738 0.134 3000 0.01 0.001 0.214 0.283 0.216

ml10m 0.01 35 0.194 64 0.295 5000 0.01 0.01 0.240 0.320 0.321

jester 0.01 30 0.812 25 0.860 300 0.01 0.01 0.903 0.865 0.910

flixster 0.001 35 0.148 90 0.194 4000 0.01 0.001 0.200 0.218 0.217

netflix 0.01 7 0.108 50 0.204 5000 0.01 0.01 0.210 0.225 0.223

LLORMA, PureSVD and BPRMF for all datasets, in terms of HR and ARHR, re-

spectively. The columns indicate the best HR/ARHR achieved along with the set of

parameters for which the best results were achieved. The parameters for which the best

performance of rGLSVD and sGLSVD is achieved are the same as the ones reported in

Tables 7.1, 7.2, 7.3, 7.4 and 7.5.

We can see that our proposed methods outperform the competing latent space top-N

approaches, both in terms of HR and in terms of ARHR. We performed paired t-tests of

rGLSVD/sGLSVD against the best competing latent space baseline, which was either

BPRMF or PureSVD, and the performance di↵erence was shown to be statistically sig-

nificant. The results of LLORMA being lower in top-N quality than PureSVD surprised

us; we believe that the reason is that the original use of LLORMA was for datasets with

explicit feedback and for the rating prediction task, thus not necessarily resulting in

as good of recommendation quality for performing top-N recommendation on implicit

feedback.

From comparing Tables 7.6 and 7.7 with Tables 7.1, 7.2, 7.3, 7.4 and 7.5 we can also

see that rLSVD and sLSVD tend to outperform the best competing baseline as well.

Comparing global & local approaches against standard global approaches

Tables 7.8 and 7.9 compare the use of global and local approaches, against standard

global models both in terms of item-based models (SLIM vs GLSLIM) and latent space

models (PureSVD vs proposed method sGLSVD). The comparison is shown both in

terms of HR and ARHR.

We can see from the pairwise comparison of SLIM with GLSLIM and of PureSVD



70

Table 7.7: Comparison with competing latent space approaches in terms of ARHR.
LLORMA PureSVD BPRMF sGLSVD rGLSVD

Dataset � rank ARHR f ARHR factors lrnrate reg ARHR ARHR ARHR

groceries 0.01 20 0.046 700 0.059 3100 0.01 0.001 0.099 0.136 0.105

ml10m 0.01 25 0.080 56 0.139 7000 0.01 0.01 0.105 0.152 0.154

jester 0.01 7 0.673 15 0.740 100 0.01 0.01 0.766 0.746 0.783

flixster 0.001 35 0.058 80 0.086 4000 0.01 0.001 0.089 0.102 0.101

netflix 0.01 7 0.043 50 0.091 5000 0.01 0.01 0.100 0.105 0.104

Table 7.8: Comparison of global approaches with global & local approaches in terms of

HR.
SLIM models PureSVD models

Dataset SLIM GLSLIM Improved PureSVD sGLSVD Improved

groceries 0.259 0.304 17.37% 0.134 0.283 111.19%

ml10m 0.312 0.345 10.58% 0.295 0.320 8.47%

jester 0.878 0.940 7.06% 0.860 0.865 0.58%

flixster 0.242 0.255 5.37% 0.194 0.218 12.37%

netflix 0.231 0.245 6.06% 0.204 0.225 10.29%

Table 7.9: Comparison of global approaches with global & local approaches in terms of

ARHR.
SLIM models PureSVD models

Dataset SLIM GLSLIM Improved PureSVD sGLSVD Improved

groceries 0.130 0.155 19.23% 0.059 0.136 130.51%

ml10m 0.151 0.170 12.58% 0.139 0.152 9.35%

jester 0.755 0.835 10.60% 0.740 0.746 0.81%

flixster 0.116 0.126 8.62% 0.086 0.102 18.60%

netflix 0.107 0.116 8.41% 0.091 0.105 15.38%

with sGLSVD that the global and local approaches always outperform the standard

global models. The paired t-tests we ran showed that the performance di↵erence is

statistically significant. This showcases their value.

We can also see that GLSLIM performs better than the rest of the approaches. We



71

Table 7.10: The training time for ml10m dataset with 5 clusters.

Method mins

sGLSVD 9.3

GLSLIM 199.2

GLSLIM-warm 53.7

believe that the reason GLSLIM outperforms sGLSVD is that its underlying model,

which is SLIM outperforms PureSVD. Also, even though rGLSVD/sGLSVD does not

outperform GLSLIM, we can see that in di↵erent cases, its percentage of improvement

beyond the underlying global model PureSVD can be higher than the corresponding

percentage of improvement of GLSLIM beyond SLIM.

Finally, Table 7.10 shows the training time needed for GLSLIM versus sGLSVD,

for the ml10m dataset with 5 clusters. GLSLIM-warm corresponds to an optimized

runtime for GLSLIM, where we initialize the estimated model with a previous model

learned, instead of starting from scratch. More details on GLSLIM-warm and on its

experimental timing results can be found in Section 6.3.3. For SLIM and GLSLIM,

the times shown correspond to �g = �l = 10 and �g = �l = 1. For sGLSVD, the

times correspond to fg = 55 and f c = 10. Similar timewise comparisons hold for other

parameter choices and for the rest of the datasets. The times shown correspond to one

node of the supercomputer Mesabi1 , which is equipped with 62 GB RAM and 24 cores.

We can see that the time needed to train sGLSVD is only a fraction of the time needed

to train GLSLIM, which can be of use in cases when faster training is needed.

7.4 Conclusion

In this chapter, we proposed the following user model: the behavior of a user can be

described by a combination of a set of aspects shared by all users, and of a set of aspects

which are specific to the subset the user belongs to. This user model is an extension

of the model usually employed by the latent space approaches, which assumes that the

behavior of a user can be described by a set of aspects shared by all.

Learning the user model we proposed with a global latent space approach can be

1 https://www.msi.umn.edu/content/mesabi



72

di�cult, because we often have sparse data. Thus, we propose two methods: rGLSVD

and sGLSVD, which explicitly encode this structure, by estimating both a set of global

factors and sets of user subset specific latent factors. The rGLSVD method assigns

the users into di↵erent subsets based on their rating patterns and estimates a global

model and a set of user subset specific local models whose number of latent dimensions

can vary. The sGLSVD method estimates both global and user subset specific local

models by keeping the number of latent dimensions the same among the local models

but optimizes the grouping of the users.

The experimental evaluation shows that the proposed approaches estimate better

latent representations for the users, outperforming competing latent space top-N rec-

ommendation approaches significantly, thus showing the merits of the proposed user

model. The performance improvement is on average 13% and up to 37%.



Chapter 8

Investigating & Using the Error

in Top-N Recommendation

Di↵erent popular top-N recommender methods, such as SLIM (presented in Section

3.1.1) and PureSVD (presented in Section 3.2.1) recommend items that users have

not yet consumed, and as such correspond to missing entries in the user-item matrix.

These methods estimate their respective parameters by treating the missing entries as

zeros. Consequently, when recommending the missing entries with the highest predicted

values, they essentially recommend the missing entries with the highest error. A natural

question that arises is what are the properties of the error, how they correlate with the

top-N recommendation quality, and how the performance of these algorithms can be

improved by shaping their errors.

In this chapter, we consider the SLIM and PureSVD methods and that users and

items with similar ratings also have similar errors in their missing entries, and vice

versa. In particular, for each of these two methods, we show that for the same training

set, among the di↵erent models that are estimated by changing their respective hyper-

parameters, the ones that achieve the best recommendation performance are those that

display the closest rating-based and error-based similarities. Utilizing this insight, we

develop a method, called ESLIM, which extends SLIM, by enforcing users with similar

rating behaviors to also have similar error in their missing entries and likewise for the

items. The method is shown to outperform SLIM, especially for predicting items that

73



74

have been rated by few users (tail items).

8.1 Introduction

Many popular top-N recommender methods, such as PureSVD [6] and SLIM [5], have

loss functions which minimize the error on both the observed and the missing entries.

They treat the missing entries as zeros, under the assumption that unconsumed items

by a user are disliked items, as well. The predictions correspond to the missing entries

that have the highest value. Since during model estimation, the missing entries were

set to zero, what those methods do is recommend the missing entries that contribute

the most to the loss function; i.e., the missing entries with high error.

Consequently, the question that arises is: which are the properties of the error

associated with the missing entries and how do they relate to the recommendation

performance of top-N recommender methods that estimate their models by treating

the missing entries as zero?

In this chapter, we study for the PureSVD and SLIM methods, how the top-N rec-

ommendation performance and the error varies for di↵erent models, which are estimated

with the same training set, by varying the corresponding hyperparameters. Our results

show that users and items with similar rating patterns also have similar patterns of error

on their missing entries and the best-performing models are the ones that maximize this

property. Utilizing these insights, we develop a method called Error-Constrained Sparse

LInear Method for top-N recommendation (ESLIM), which enforces the constraint of

users and items with similar rating patterns to also have similar error at their missing

entries. This is done by incorporating in the SLIM loss function the constraints that

the error-based and rating-based representations of users and items need to be close, as

additional regularization factors. ESLIM is shown to outperform SLIM, especially for

the items that have not been rated by a large number of users (tail items).



75

Table 8.1: Overview of the notations used in this chapter.

Symbol Meaning

Ė Error on the missing entries matrix of size n⇥m

A User rating-based similarities matrix of size n⇥ n

B User error-based similarities matrix of size n⇥ n

C Item rating-based similarities matrix of size m⇥m

D Item error-based similarities matrix of size m⇥m

8.2 Notation and definitions

8.2.1 Error on the missing entries

We use the notation Ė to represent the n⇥m matrix of the error on the missing entries.

For SLIM, every entry ėui corresponding to user u and item i of matrix Ė is:

ėui =

8
<

:
rTu si, if rui = 0

0, if rui 6= 0,
(8.1)

whereas for PureSVD is:

ėui =

8
<

:
pT
u⌃fqi, if rui = 0

0, if rui 6= 0.
(8.2)

8.2.2 Similarity matrices

We represent a user u as a vector of size n, which shows the similarities of user u to other

users. We utilize the cosine similarity measure for the similarity computations. We use

two representations for every user: a rating-based representation, that shows how similar

he/she is to other users in terms of their ratings, and an error-based representation,

which shows how similar he/she is to other users in terms of their error at the missing

entries, as shown in Equations 8.1 and 8.2. Thus, we have two n⇥n matrices containing

the user similarities to the other users: the matrix A that contains the rating-based user

similarities, and the matrix C that contains the error-based user similarities.

Correspondingly, we use two m ⇥ m matrices containing the cosine similarities of

items to other items: the matrix B that contains the item similarities based on the



76

ratings, and the matrix D that contains the item similarities based on the error at

the missing entries. All the matrices representing the user and item similarities are

dense, non-negative and symmetric. An overview of the notations we use throughout

the chapter can be found in Table 8.1.

8.3 Analysis of the properties of the error for SLIM and

PureSVD

8.3.1 Theoretical analysis

We hypothesize that in good-performing models users with similar rating behaviors have

similar error in their missing entries. Likewise for items, we hypothesize that similarly

rated items have similar error in their missing entries. Also, the better the performance

of a model the closer their rating-based and error-based representations are.

The reasoning behind our hypothesis is the following: If users u and v are very similar

based on their ratings, their rating-based similarity auv will have a large value. We

expect their error-based similarity cuv to also have a large value, as a good-performing

model should have similar predicting performance, thus similar error on users with

similar ratings. Similarly, if users u and v are extremely dissimilar, their rating similarity

auv will be small. Then, we would also expect their error-based similarity cuv to be

small, as a good-performing model should have di↵erent performance on users with

very di↵erent rating behaviors, thus di↵erent error on their missing entries. A similar

argument can be made for the items.

The above hypothesis can be shown mathematically in the following way: If we

denote with Nu the set of items that have not been rated by user u, and with Nv the

set of items that have not been rated by user v, the error-based similarity for users u



77

and v, for SLIM models can be expressed as:

cuv =
ėTu ėv

||ėu||2||ėv||2
=

P
i2Nu\Nv

(ėui)(ėvi)

r P
i2Nu

(ėui)2
r P

i2Nv

(ėvi)2
=

P
i2Nu\Nv

(rTu si)(r
T
v si)

r P
i2Nu

(rTu si)
2
r P

i2Nv

(rTv si)
2

=

P
i2Nu\Nv

(rTu si)(s
T
i rv)

r P
i2Nu

(rTu si)(s
T
i ru)

r P
i2Nv

(rTv si)(s
T
i rv)

=

P
i2Nu\Nv

(rTu ||si||22rv)
r P

i2Nu

rTu ||si||22ru)
r P

i2Nv

rTv ||si||22rv)

=
rTu rv

||ru||2||rv||2

P
i2Nu\Nv

||si||22
r P

i2Nu

||si||22
r P

i2Nv

||si||22
= auv

P
i2Nu\Nv

||si||22
r P

i2Nu

||si||22
r P

i2Nv

||si||22
.

(8.3)

A similar mathematical relation holds for PureSVD models: The rating-based sim-

ilarity auv between pairs of users u and v can be expressed as:

auv =
rTu rv

||ru||2||rv||2
=

mP
i=1

(rui)(rvi)

s
mP
i=1

(rui)2

s
mP
i=1

(rvi)2

=

mP
i=1

(pT
u⌃fqi)(pT

v ⌃fqi)

s
mP
i=1

(pT
u⌃fqi)2

s
mP
i=1

(pT
v ⌃fqi)2

=

mP
i=1

pT
u⌃f ||qi||22⌃fpv

s
mP
i=1

pT
u⌃f ||qi||22⌃fpu

s
mP
i=1

pT
v ⌃f ||qi||22⌃fpv

=

pT
u⌃

2
fpv

mP
i=1

||qi||22
s

pT
u⌃

2
fpu

mP
i=1

||qi||22

s
pT
v ⌃

2
fpv

mP
i=1

||qi||22

=
pT
u⌃

2
fpvq

pT
u⌃

2
fpu

q
pT
v ⌃

2
fpv

.

(8.4)

Thus, by taking into account Equation (8.4), the error-based similarity between



78

users u and v is:

cuv =
ėTu ėv

||ėu||2||ėv||2
=

P
i2Nu\Nv

(ėui)(ėvi)

r P
i2Nu

(ėui)2
r P

i2Nv

(ėvi)2
=

P
i2Nu\Nv

(pT
u⌃fqi)(pT

v ⌃fqi)

r P
i2Nu

(pT
u⌃fqi)2

r P
i2Nv

(pT
v ⌃fqi)2

=

P
i2Nu\Nv

pT
u⌃f ||qi||22⌃fpv

r P
i2Nu

pT
u⌃f ||qi||22⌃fpu

r P
i2Nv

pT
v ⌃f ||qi||22⌃fpv

=

pT
u⌃

2
fpv

P
i2Nu\Nv

||qi||22
r

pT
u⌃

2
fpu

P
i2Nu

||qi||22
r

pT
v ⌃

2
fpv

P
i2Nv

||qi||22
= auv

P
i2Nu\Nv

||qi||22
r P

i2Nu

||qi||22
r P

i2Nv

||qi||22
.

(8.5)

This shows that the error-based similarity cuv between users u and v is their rating-

based similarity auv multiplied by a term, which is

P
i2Nu\Nv

||si||22
r P

i2Nu

||si||22
r P

i2Nv

||si||22
for SLIM mod-

els and

P
i2Nu\Nv

||qi||22
r P

i2Nu

||qi||22
r P

i2Nv

||qi||22
for PureSVD models, from which we can conclude that

users with similar error should have similar ratings and vice versa. Similar conclusions

can be reached for the items.

8.3.2 Experimental analysis

We estimate multiple PureSVD and SLIM models for the same train and test data, by

varying the corresponding parameters: the rank f for PureSVD and the l2 regularization

parameter � for SLIM. We keep the l1 regularization parameter � fixed for SLIM, in

order to only have one parameter a↵ecting the performance. We thus decided to run

SLIM with only l2 regularization. For every model estimated, we compare the error-

based and the rating-based representations of users and items and see how they correlate

with the performance of the model.

Figures 8.1 and 8.2 show for every pair of users (u, v) their rating-based similarity auv

and their error-based similarity cuv, for SLIM and PureSVD models, correspondingly,

for the ml100k dataset. The line shown corresponds to the line that best fits the data

shown, minimizing the least square error. Similar trends can be seen for other datasets,



79

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Er
ro

r S
im

ila
rit

y

Rating Similarity

 

l2reg = 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Er
ro

r S
im

ila
rit

y
Rating Similarity

 

l2reg = 150

Figure 8.1: Scatterplot of rating and error similarities auv and cuv for all pairs of users

u and v, for a good-performing SLIM model (estimated with � = 1 and resulting in HR

= 0.33) and a worse-performing one (estimated with � = 150 and resulting in HR =

0.24) for the ml100k dataset.

and for item-based similarities. Note that the rating-based similarities remain constant

across the di↵erent models, while the error-based similarities change.

Figure 8.1 shows the user similarities for a good-performing SLIM model (esti-

mated with � = 1 and resulting in HR = 0.33) and for a bad-performing SLIM model

(estimated with � = 150 with HR = 0.24). We can see that for the majority of user

pairs, their error-based similarities remain in the same range of values as their rating-

based similarities [0.2, 0.6], for the good-performing SLIM model, generally indicating

a linear-type relationship between auv and cuv. On the other hand, we can see for the

SLIM model with the worse performance, that the error-based similarities tend to be in

a di↵erent range [0.4, 0.9] than the corresponding rating-based similarities. As the reg-

ularization is very high, the model estimated is very sparse, thus most of the users are

very similar in terms of their error. We also computed the Pearson correlation coe�cient

among all the pairs of similarities auv and cuv, and it is 0.787 for the good-performing

SLIM model with � = 1 and 0.580 for the worse-performing SLIM model with � = 150.

Similarly, Figure 8.2 shows the user similarities for a good-performing PureSVD



80

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Er
ro

r S
im

ila
rit

y

Rating Similarity

 

rank = 50

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Er
ro

r S
im

ila
rit

y
Rating Similarity

 

rank = 500

Figure 8.2: Scatterplot of rating and error similarities auv and cuv for all pairs of users

u and v, for a good-performing PureSVD model (estimated with f = 50 and resulting

in HR = 0.296) and for a bad-performing PureSVD model (estimated with f = 500 and

resulting in HR = 0.056), for the ml100k dataset.

model (estimated with f = 50 with HR = 0.296) and for a bad-performing PureSVD

model (estimated with f = 500 with HR = 0.056). We can see that with the good-

performing PureSVD model, the majority of users have error similarity within the values

of 0.2 and 0.6, which is where the majority of rating-based similarities lie. The Pearson

correlation coe�cient was found to be 0.817. On the other hand, the bad-performing

PureSVD model leads to the majority of the users having a zero error similarity, as the

estimated model overfits the users. The Pearson correlation coe�cient was found to be

0.288.

We can see that the good-performing models (both SLIM and PureSVD models)

tend to show for the majority of pairs of users error-based similarities very close to

their rating-based similarities, as indicated from the similar range of values, the shape

of the data, and the high Pearson correlation coe�cient. On the other hand, the mod-

els with worse performance exhibit error-based similarities, which are not close to the

corresponding rating-based similarities.



81

0.10

0.15

0.20

0.25

0.30

0.35

 0.001 0.01  0.1  1  10  100  1000
l2 regularization

  

ml100k

HR ARHR

0.65

0.70

0.75

0.80

0.85

0.90

0.95

 0.001 0.01  0.1  1  10  100  1000
l2 regularization

  

ml100k

User Rating.Error Sim
Item Rating.Error Sim

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 0.001 0.01  0.1  1  10  100  1000
l2 regularization

  

delicious

HR ARHR

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 0.001 0.01  0.1  1  10  100  1000
l2 regularization

  

delicious

User Rating.Error Sim
Item Rating.Error Sim

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 0.001 0.01  0.1  1  10  100  1000
l2 regularization

  

netflix

HR ARHR

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 0.001 0.01  0.1  1  10  100  1000
l2 regularization

  

netflix

User Rating.Error Sim
Item Rating.Error Sim

Figure 8.3: The e↵ect of the l2 regularization � on the performance of SLIM and on the

corresponding ‘User Rating.Error Similarity’ and ‘Item Rating.Error Similarity’. The

maximum HR and ARHR are achieved for the values of � for which the ‘User Rat-

ing.Error Similarity’ and ‘Item Rating.Error Similarity’ also obtain their local maxima.



82

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 1  10  100  1000
rank

  

ml100k

HR ARHR

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 1  10  100  1000
rank

  

ml100k

User Rating.Error Sim
Item Rating.Error Sim

0.02

0.04

0.06

0.08

0.10

0.12

0.14

 1  10  100  1000
rank

  

delicious

HR ARHR

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 1  10  100  1000
rank

  

delicious

User Rating.Error Sim
Item Rating.Error Sim

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 1  10  100  1000
rank

  

netflix

HR ARHR

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 1  10  100  1000
rank

  

netflix

User Rating.Error Sim
Item Rating.Error Sim

Figure 8.4: The e↵ect of the rank f on the performance of PureSVD and on the corre-

sponding ‘User Rating.Error Similarity’ and ‘Item Rating.Error Similarity’. The max-

imum HR and ARHR are achieved for the values of the rank f for which the ‘User

Rating.Error Similarity’ and ‘Item Rating.Error Similarity’ also obtain their local max-

ima.



83

In order to better examine the performance of the model in relation to how simi-

lar the error-based and the rating-based representations of users are, we compute the

measure:

User Rating.Error Similarity =

Pn
u=1 cos(au, cu)

n
, (8.6)

which computes for every user u the cosine similarity between his/her rating-based

vector of similarities au and his/her error-based vector of similarities cu, thus finding

how similar his/her two representations are and then takes the average for all of the

users.

Similarly, we compute for the items the measure:

Item Rating.Error Similarity =

Pm
i=1 cos(bi,di)

m
, (8.7)

which computes for every item i how close its rating-based representation bi and its

error-based representation di are, using the cosine similarity measure and then finds the

average for all items.

Figures 8.3 and 8.4 show how the performance of the models (SLIM and PureSVD

correspondingly), the ‘User Rating.Error Similarity’ (Equation (8.6)) and the ‘Item Rat-

ing.Error Similarity’ (Equation (8.7)) vary while varying the regularization parameters,

for the ml100k, delicious and netflix datasets. The regularization parameters are � for

SLIM models and the rank f for the PureSVD models.

We can see that for both PureSVD and SLIM, the performance in terms of HR

and ARHR follows the same trend as the ‘User Rating.Error Similarity’ and ‘Item

Rating.Error Similarity’ measures, showing that the performance of the models achieves

its peak for the values of the parameters for which the ‘User Rating.Error Similarity’

and ‘Item Rating.Error Similarity’ measures are maximum.

We can also see that the best performing model is the one producing very close error-

based and rating-based representations. In other words, the performance on the test

set is the highest in terms of HR and ARHR, when the ‘User Rating.Error Similarity’

and ‘Item Rating.Error Similarity’ obtain their highest values.

Although Figures 8.3 and 8.4 compute how close the rating-based and error-based

representations are using the cosine similarity measure, we can reach the same conclusion

by using a di↵erent measure. Figure 8.5 shows for the delicious dataset the average

cosine similarity between the user rating-based and error-based representations (‘User



84

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

 0.001  0.01  0.1  1  10  100
l2 regularization

  

SLIM

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

 1  10  100  1000
rank

  

PureSVD

User Rating.Error Sim
User Rating.Error Diff (1m)

Figure 8.5: Examining how close the user rating-based and error-based representations

are, in terms of their average cosine similarity and the frobenius norm of their di↵erence

for the delicious dataset, for SLIM and PureSVD models, while varying the respective

parameters. The cosine similarity takes its highest values for the parameter values for

which the frobenius norm of their di↵erence takes its lowest values.

Rating.Error Similarity’) and the frobenius norm of their di↵erence (||C � A||F ) for

SLIM and PureSVD models, while varying their respective regularization parameters.

Similar conclusions can be drawn for the items as well, and for the rest of the datasets.

We can see that the average cosine similarity between the two representations becomes

lower for the values of the regularization parameters for which the frobenius norm of

the di↵erence between the two representations (shown in millions) becomes higher, and

vice versa.

Thus, from Figures 8.3, 8.4 and 8.5, we can see that the performance on the test

set is the highest in terms of HR and ARHR, when the rating-based and error-based

representations are the closest for users and items, which can be expressed in terms

of their cosine similarity being the highest, or in terms of the frobenius norm of their

di↵erence being the lowest.



85

8.4 Proposed approach

8.4.1 Overview

Utilizing the above insights, we develop a method called Error-Constrained Sparse LIn-

ear Method for top-N recommendation (ESLIM), which modifies the loss function of

SLIM (presented in Section 3.1.1) to introduce a regularization term that shapes the

error.

The overall optimization problem that ESLIM solves 8i 2 {1, . . . ,m} is:

minimize
si

1
2 ||ri �Rsi||22 +

�
2 ||si||

2
2 +

lu
2 ||C�A||2F + li

2 ||D�B||2F ,

subject to si � 0, and sii = 0.
(8.8)

The optimization problem has four components: (i) the main SLIM component of fitting

the ratings ||ri � Rsi||22, (ii) the l2 regularization of si controlled by the parameter �

(iii) the term that the user rating similarity matrix A and the user error similarity

matrix C should be similar which is controlled by the parameter lu and (iv) the term

that the item rating similarity matrix B and the item error similarity D should be

similar which is controlled by the regularization parameter li.

Higher values of lu and li lead to more severe regularization. The constraints si �
0 and sii = 0 enforce that the sparse aggregation vector si will have non-negative

coe�cients and when computing the weights of an item i, the item itself will not be

used; as this would lead to trivial solutions.

By stacking together every column si 8i, we get the sparse aggregation coe�cient

matrix S. Every column si can be estimated in parallel.

We use the RMSprop method [84] to solve the optimization problem of Equation

(8.8), which eliminates the need to manually tune the learning rate.

The top-N recommendation in ESLIM is performed in the following way: For every

user u, we compute the estimated ratings r̃ui for all the unrated items i:

r̃ui = rTu si, (8.9)

we sort these values and we recommend the top-N with the highest ratings to the target

user u.



86

8.5 Experimental results

Here, we present the performance of ESLIM, and compare it to SLIM to see how en-

forcing the constraint of similar structure between the rating similarity and the error

similarity matrices a↵ects the quality of top-N recommendation.

Details of the datasets we used can be found in Section 4.1. We compared the per-

formance of ESLIM against SLIM [5], which we implemented for fairness of comparison,

by solving the optimization problem of Equation (8.8), by setting lu = li = 0. We

performed an extensive search over the parameter space, to find the set of parameters

that gives us the best performance. The � regularization parameter was chosen from

the set of values: {0.1, 1, 10, 100, 1000}. The lu and li regularization parameters were

chosen from the set of values: {0, 0.001, 0.01, 0.1, 1}.
As ESLIM enforces the constraint of having close rating-based and error-based rep-

resentations for both the users and the items, we wanted to investigate how each of

these constraints a↵ects the recommendation performance. Thus, we experimentally

tested two variants of ESLIM:

• ESLIM-u, which stands for ESLIM for users. In ESLIM-u, the constraint shaping

the error for users is enforced: the users with similar ratings are enforced to have

a similar error on their missing entries. The optimization problem of ESLIM-u is

the following:

minimize
si

1
2 ||ri �Rsi||22 +

�
2 ||si||

2
2 + lu||C�A||2F ,

subject to si � 0, and sii = 0.
(8.10)

• ESLIM-i, which stands for ESLIM for items. In ESLIM-i, the constraint shaping

the error for items is enforced: the items that are rated similarly are enforced to

have similar error on their missing entries. The optimization problem of ESLIM-i

is the following:

minimize
si

1
2 ||ri �Rsi||22 +

�
2 ||si||

2
2 + li||D�B||2F ,

subject to si � 0, and sii = 0.
(8.11)

Table 8.3 compares the performance of ESLIM-u, ESLIM-i and SLIM, in terms of

HR and ARHR, for the ml100k dataset, the delicious dataset and a subset of the netflix



87

Table 8.2: Comparison between SLIM, ESLIM-u and ESLIM-i in terms of HR.

SLIM ESLIM-u ESLIM-i

Dataset � HR lu � HR li � HR

ml100k 1 0.333 0.001 100 0.342 0.01 10 0.342

delicious 100 0.150 0.01 100 0.142 0.01 100 0.146

netflix-s 10 0.394 0.01 10 0.395 0.01 1 0.396

Table 8.3: Comparison between SLIM, ESLIM-u and ESLIM-i in terms of ARHR.

SLIM ESLIM-u ESLIM-i

Dataset � ARHR lu � ARHR li � ARHR

ml100k 10 0.153 0.1 100 0.155 0.01 10 0.154

delicious 100 0.069 0.001 1 0.066 0.01 100 0.070

netflix-s 100 0.187 0.01 100 0.189 0.01 100 0.188

0.048

0.050

0.052

0.054

0.056

0.058

0.060

0.062

 0.001  0.01  0.1  1

H
R

lu/li regularization

  

ml100k

0.042

0.044

0.046

0.048

0.050

0.052

0.054

0.056

0.058

0.060

0.062

 0.001  0.01  0.1  1

H
R

lu/li regularization

  

netflix-s

SLIM ESLIM-u ESLIM-i

Figure 8.6: The performance of ESLIM-u and ESLIM-i for the tail items (50% least

frequent items), while varying the lu/li regularization parameters. The performance of

SLIM on the tail items is also shown for comparison purposes.

dataset, which we call netflix-s. The netflix-s dataset was created by choosing random

2, 000 out of the top 25% of the densest users and from this subset choosing random

1, 000 items out of the top 50% of the densest items. For each method, the columns

correspond to the best HR and ARHR and the parameters for which they are achieved.



88

The parameters are: � for SLIM, � and lu for ESLIM-u and � and li for ESLIM-i. The

best performance is shown for each dataset in bold, along with the parameters for which

it was achieved.

We can see that ESLIM-u and ESLIM-i tend to outperform SLIM for the majority

of the cases, but the gains are not shown to be significant. This can be accounted to

the fact that the best SLIM model is found through model selection; in other words the

results shown correspond to the model that already exhibits the property that similar

users and items have similar error. Thus, by explicitly enforcing this property, we do

not have significant benefits.

We can better understand how adding the constraints of having close rating-based

and error-based representations for users and items in the loss function impacts the top-

N recommendation performance, in the following way: We split the items in two groups:

the 50% most frequent items in the train set which comprise the head items and the

50% least frequent items which comprise the tail items and examine the performance

of SLIM, ESLIM-u and ESLIM-i on each group separately. Figure 8.6 shows the

performance in terms of HR on the tail items for the ml100k and the netflix-s datasets.

The performance of SLIM on the tail items is shown as a constant line across the

di↵erent lu, li regularization values for comparison purposes, (although it was achieved

for the value of lu = li = 0). Similar trends hold for the ARHR.

We can see that ESLIM-u and ESLIM-i outperform SLIM for the tail items. Also,

higher values of the regularization parameters lu and li, which means more enforced

constraints of having close rating-based and error-based similarity matrices, lead to

even better recommendation performance. On the other hand, the performance of

ESLIM-u and ESLIM-i is similar to or worse than SLIM on the head items, with the

e↵ect increasing while the value of the parameters lu and li increases.

Thus, we can conclude that the gains of ESLIM-u and ESLIM-i beyond SLIM are

achieved for datasets which have a lot of tail items. The frequencies of the 50% least

frequent items for the ml100k dataset lie in the interval [1, 27], which means that they

have been rated from 1 up to at most 27 times. The frequencies of the 50% least frequent

items for the netflix-s dataset lie in the interval [8, 40]. So, both of these datasets have

a lot of infrequent items. On the other hand, for the delicious dataset, the frequencies

of the 50% least frequent items lie in the interval [63, 88] showing that there are not



89

infrequent items. We believe that the reason why the gains for the delicious dataset are

not as clear can be explained by the absence of tail items.

We can thus see that although ESLIM-u and ESLIM-i might not lead to significant

overall gains over SLIM, they achieve better performance over SLIM on the tail items.

The gains are more significant, when the tail is more prevalent. We think that the reason

is that while SLIM estimates models that tend to exhibit the property that similar

users/items should have similar error for the head items; the property is not satisfied

as clearly for the tail items, thus enforcing it explicitly leads to better performance for

them.

8.6 Conclusion

In this chapter, we studied how the properties of the error change, while the perfor-

mance of the models changes, for popular top-N recommendation methods SLIM and

PureSVD, which treat missing entries as zeros. We showed that users/items with sim-

ilar rating patterns, also have similar error on their missing entries. Moreover, the

best-performing model is the one that maximizes this property.

We used this finding to develop an approach ESLIM, which modifies the loss function

of SLIM, by adding constraints that enforce the rating similarity matrix to be close to

the error similarity matrix. The experimental evaluation of our method showed that

ESLIM, while achieving performance gains, does not outperform significantly SLIM,

since the best-performing SLIM model is chosen by model selection and already exhibits

the property of the rating similarity matrix and the error similarity matrix to be close.

However, ESLIM was shown to outperform SLIM, for the tail items.



Chapter 9

Conclusion

9.1 Thesis summary

Recommender systems are present on the everyday lives of millions of people. They help

them navigate through a plethora of choices and information and make an educated and

informed choice. Among them, top-N recommender systems that provide users with

a ranked list of N items are very popular as they present the users with a list of few

N items they would likely be interested in, and thus the user can make decisions fast,

without having to browse through a huge list. The quality of the recommendations is

crucial; a top-N recommendation system that provides bad recommendations will leave

the user unsatisfied and he/she will stop using it.

This thesis focused on the development of novel methods to improve the quality

of top-N recommendations in a scalable manner. The methods we proposed can be

applied on user-item implicit feedback data, which are prevalent. Our methods have

been applied on multiple real-world datasets and show significant improvement above

competing state-of-the-art baselines. Moreover, the thesis provided insight into the

top-N recommendation task, drawing novel conclusions.

The main areas that our thesis explored are:

• Identifying and exploiting higher-order sets of items, beyond pairs to

perform top-N recommendation. Although item-item approaches that uti-

lize pairs of items have been shown to perform well for the top-N recommen-

dation task, in many cases users consume items in sets. We showed that there

90



91

are a lot of real-world datasets with prevalent higher-order information. In order

to take advantage of this higher-order information, we contributed an approach

(HOSLIM) based on structural equation modeling to generalize the item-item

approaches to also incorporate itemset-item information. The experimental eval-

uation of this approach, performed on a variety of real-world datasets, shows that

HOSLIM achieves considerable improvements of 7.86% on average over competing

item-item approaches. Also, for domains that exhibit such set-based consumption

characteristics, the gains can reach up to 32% over competing baselines.

• Estimating multiple user-subset-specific item-item models for top-N

recommendation. The item-item approaches also su↵er from the fact that they

only estimate a global model, thus not being very personalized. If two items are

considered very similar for a user subset, but dissimilar for another, their similarity

computed from a global model will tend towards some average value; thus losing

the important information that they are considered very similar for the users of

the first subset. We contributed an approach (GLSLIM) that combines the global

model along with local item-item models estimated for di↵erent subsets of users.

The assignment of the users to the subsets is also refined. The models, their

personalized combination and the assignment of the users to the subsets are esti-

mated through solving an optimization problem. Our experimental evaluation on

di↵erent real-world datasets shows that GLSLIM outperforms the standard global

approach and also both latent space and item-item state-of-the-art approaches,

on average by 9.29% and up to 17.37%.

• Estimating multiple latent space models for top-N recommendation.

Seeing the benefits of the multiple local item-item models, we extended this line

of research to latent space top-N recommendation approaches. Latent space ap-

proaches model the aspects which contribute to users’ preferences in the form of

latent factors. Though such a user-model has been shown to lead to good results,

the aspects that di↵erent users care about can vary. In many domains, there may

be a set of aspects for which all users care about and a set of aspects that are

specific to di↵erent subsets of users. In order to capture this user model explicitly,

we proposed two latent space models: rGLSVD and sGLSVD, that combine a



92

global and multiple user subset specific sets of latent factors. The rGLSVD model

assigns the users into di↵erent subsets based on their rating patterns and then

estimates a global and a set of user subset specific local models whose number of

latent dimensions can vary. The sGLSVD model estimates both global and user

subset specific local models by keeping the number of latent dimensions the same

among these models but optimizes the grouping of the users in order to achieve the

best approximation. Our experimental evaluation on di↵erent real-world datasets

shows that the proposed approaches outperform significantly the global low-rank

model as well as other competing latent space approaches for top-N recommen-

dation, on average by 13% and up to 37%.

• Investigating and using the error in top-N recommendation. Di↵erent

popular top-N recommender methods, such as SLIM and PureSVD treat the miss-

ing entries as zeros. Thus, when recommending items that users have not yet

consumed, they recommend items that are assumed to be ‘disliked’ by the user.

Consequently, when recommending the missing entries with the highest predicted

values, they essentially recommend the missing entries with the highest error. We

believe that since the error drives the top-N recommendation in these methods,

it is important to look into what are the properties of the error, how they corre-

late with the top-N recommendation quality, and how the performance of these

algorithms can be improved by shaping their errors. We showed that users and

items with similar ratings also have similar errors in their missing entries, and

vice versa for SLIM and PureSVD. Also, among the di↵erent models that are es-

timated by changing their respective hyperparameters, the ones that achieve the

best recommendation performance are those that display the closest rating-based

and error-based similarities. Utilizing this insight, we developed a method, called

ESLIM, which extends SLIM, by enforcing users with similar rating behaviors to

also have similar error in their missing entries and likewise for the items. The

method is shown to outperform SLIM, especially for predicting items that have

been rated by few users (tail items).



93

9.2 Future research directions

In this work, we have taken di↵erent steps towards developing algorithms to improve

the quality of top-N recommendation. Here we outline some future research directions

that stem from our work.

• Our work on higher-order sets was shown to be e↵ective for the top-N recom-

mendation task. A possible next step is utilizing the proposed method for set

recommendation, such as travel package recommendation, course catalog recom-

mendation e.t.c.

• We showed that estimating multiple user-subset-specific latent space models allows

us to learn better low-rank representations for users, which led to improvement

of the top-N recommendation quality. What would happen if the subsets were

based on items, instead of users? Would the proposed method also improve the

low-rank representations for items?

• After seeing that both the update of user subsets, and the di↵erent ranks among

local models are great ways to learn better low-rank representations, an exciting

future direction would be to combine both in the context of a regularized latent

space model, such as regularized SVD. In this way, users would not all switch to

the subset of higher rank, as this would be penalized.

• We can extend to multiple levels of local latent space models, instead of one as

shown in this thesis, thus resulting in a hierarchical model.

• In Chapter 8, we saw that ESLIM improves the quality of top-N recommendation

for tail items (items that have not been rated by many users). In the future, we

believe it would be useful to develop a method which will combine a SLIM model

for the head items and ESLIM model for the tail items, in order to achieve bigger

performance gains.

• A possible future direction would be to add the constraints that enforce user

similarity matrices and error similarity matrices to be close in the loss function of

other approaches, beyond SLIM. Such an example is PureSVD or another latent



94

space approach that treats the missing entries as zeros, in order to investigate

their e↵ect on the top-N recommendation quality.

• The methods we developed have been applied in the recommendation domain.

However, the main ideas we are contributing could have an impact on other do-

mains as well. One such domain would be personalized medicine, where the users

could be mapped to patients, and the items to drugs. Another domain is course

recommendation, where the users would correspond to students, and the items to

courses. It would be beneficial to research such applications.

• The methods developed were evaluated in terms of their accuracy as measured by

the hit rate and the average reciprocal hit rank. Examining their performance with

respect to a di↵erent measure, such as novelty or diversity is another interesting

research direction.

• Our work was done in the context of utilizing implicit feedback data, since they are

prevalent. It would be interesting to modify the proposed methods, to also handle

additional data whenever they are available (such as social network information,

or contextual side information) and examine how they would a↵ect the top-N

recommendation performance.

In conclusion, the development of novel scalable methods which improve the top-N

recommendation quality and the insights that the analysis of the top-N recommenda-

tion task provides have high impact on millions of people, and bring on exciting new

directions.



References

[1] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques

for recommender systems. Computer, 42(8), 2009.

[2] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of

recommender systems: A survey of the state-of-the-art and possible extensions.

IEEE transactions on knowledge and data engineering, 17(6):734–749, 2005.

[3] Dietmar Jannach, Paul Resnick, Alexander Tuzhilin, and Markus Zanker. Rec-

ommender systems—: beyond matrix completion. Communications of the ACM,

59(11):94–102, 2016.

[4] Charu C Aggarwal. Recommender systems. Springer, 2016.

[5] Xia Ning and George Karypis. Slim: Sparse linear methods for top-n recommender

systems. In Data Mining (ICDM), 2011 IEEE 11th International Conference on,

pages 497–506. IEEE, 2011.

[6] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of recom-

mender algorithms on top-n recommendation tasks. In Proceedings of the fourth

ACM conference on Recommender systems, pages 39–46. ACM, 2010.

[7] Evangelia Christakopoulou and George Karypis. Hoslim: higher-order sparse linear

method for top-n recommender systems. In Pacific-Asia Conference on Knowledge

Discovery and Data Mining, pages 38–49. Springer, 2014.

[8] Evangelia Christakopoulou. Moving beyond linearity and independence in top-n

recommender systems. In Proceedings of the 8th ACM Conference on Recommender

systems, pages 409–412. ACM, 2014.

95



96

[9] Evangelia Christakopoulou and George Karypis. Local item-item models for top-n

recommendation. In Proceedings of the 10th ACM Conference on Recommender

Systems, pages 67–74. ACM, 2016.

[10] David C. Anastasiu, Evangelia Christakopoulou, Shaden Smith, Mohit Sharma,

and George Karypis. Big data and recommender systems. Novtica: Journal of the

Spanish Computer Scientist Association, (240), October 2016.

[11] Evangelia Christakopoulou, Shaden Smith, Mohit Sharma, Alex Richards, David

Anastasiu, and George Karypis. Scalability and distribution of collaborative rec-

ommenders. In Collaborative Recommendations: Algorithms, Practical Challenges

and Applications. World Scientific Publishing, 2018.

[12] Mukund Deshpande and George Karypis. Item-based top-n recommendation algo-

rithms. ACM Transactions on Information Systems (TOIS), 22(1):143–177, 2004.

[13] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B Kantor. Recommender

systems handbook. Springer, 2015.

[14] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative

filtering model. In Proceedings of the 14th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 426–434. ACM, 2008.

[15] Vito Claudio Ostuni, Tommaso Di Noia, Eugenio Di Sciascio, and Roberto Mirizzi.

Top-n recommendations from implicit feedback leveraging linked open data. In

Proceedings of the 7th ACM conference on Recommender systems, pages 85–92.

ACM, 2013.

[16] Cataldo Musto, Pierpaolo Basile, Pasquale Lops, Marco De Gemmis, and Giovanni

Semeraro. Linked open data-enabled strategies for top-n recommendations. In

CBRecSys@ RecSys, pages 49–56, 2014.

[17] Raymond J Mooney and Loriene Roy. Content-based book recommending using

learning for text categorization. In Proceedings of the fifth ACM conference on

Digital libraries, pages 195–204. ACM, 2000.



97

[18] Michael J Pazzani and Daniel Billsus. Content-based recommendation systems. In

The adaptive web, pages 325–341. Springer, 2007.

[19] Xin Liu and Karl Aberer. Soco: a social network aided context-aware recommender

system. In Proceedings of the 22nd international conference on World Wide Web,

pages 781–802. International World Wide Web Conferences Steering Committee,

2013.

[20] Jiliang Tang, Xia Hu, Huiji Gao, and Huan Liu. Exploiting local and global social

context for recommendation. In Proceedings of the Twenty-Third international joint

conference on Artificial Intelligence, pages 2712–2718. AAAI Press, 2013.

[21] James Bennett, Stan Lanning, et al. The netflix prize. In Proceedings of KDD cup

and workshop, volume 2007, page 35. New York, NY, USA, 2007.

[22] Jasson DM Rennie and Nathan Srebro. Fast maximum margin matrix factorization

for collaborative prediction. In Proceedings of the 22nd international conference on

Machine learning, pages 713–719. ACM, 2005.

[23] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. Major

components of the gravity recommendation system. ACM SIGKDD Explorations

Newsletter, 9(2):80–83, 2007.

[24] Andriy Mnih and Ruslan Salakhutdinov. Probabilistic matrix factorization. In

Advances in neural information processing systems, pages 1257–1264, 2007.

[25] Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix factoriza-

tion using markov chain monte carlo. In Proceedings of the 25th international

conference on Machine learning, pages 880–887. ACM, 2008.

[26] Hanhuai Shan and Arindam Banerjee. Generalized probabilistic matrix factoriza-

tions for collaborative filtering. In Data Mining (ICDM), 2010 IEEE 10th Inter-

national Conference on, pages 1025–1030. IEEE, 2010.

[27] Robert M Bell and Yehuda Koren. Lessons from the netflix prize challenge. Acm

Sigkdd Explorations Newsletter, 9(2):75–79, 2007.



98

[28] Fabio Aiolli. A preliminary study on a recommender system for the million songs

dataset challenge. Preference Learning: Problems and Applications in AI, 1, 2012.

[29] Fabio Aiolli. E�cient top-n recommendation for very large scale binary rated

datasets. In Proceedings of the 7th ACM conference on Recommender systems,

pages 273–280. ACM, 2013.

[30] Upendra Shardanand and Pattie Maes. Social information filtering: algorithms

for automating word of mouth. In Proceedings of the SIGCHI conference on Hu-

man factors in computing systems, pages 210–217. ACM Press/Addison-Wesley

Publishing Co., 1995.

[31] Joseph A Konstan, Bradley N Miller, David Maltz, Jonathan L Herlocker, Lee R

Gordon, and John Riedl. Grouplens: applying collaborative filtering to usenet

news. Communications of the ACM, 40(3):77–87, 1997.

[32] Jonathan L Herlocker, Joseph A Konstan, Al Borchers, and John Riedl. An al-

gorithmic framework for performing collaborative filtering. In Proceedings of the

22nd annual international ACM SIGIR conference on Research and development

in information retrieval, pages 230–237. ACM, 1999.

[33] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based

collaborative filtering recommendation algorithms. In Proceedings of the 10th in-

ternational conference on World Wide Web, pages 285–295. ACM, 2001.

[34] George Karypis. Evaluation of item-based top-n recommendation algorithms. In

Proceedings of the tenth international conference on Information and knowledge

management, pages 247–254. ACM, 2001.

[35] Greg Linden, Brent Smith, and Jeremy York. Amazon. com recommendations:

Item-to-item collaborative filtering. IEEE Internet computing, 7(1):76–80, 2003.

[36] Santosh Kabbur, Xia Ning, and George Karypis. Fism: factored item similarity

models for top-n recommender systems. In Proceedings of the 19th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 659–667.

ACM, 2013.



99

[37] Yong Zheng, Bamshad Mobasher, and Robin Burke. Cslim: Contextual slim recom-

mendation algorithms. In Proceedings of the 8th ACM Conference on Recommender

Systems, pages 301–304. ACM, 2014.

[38] Xiaodong Feng, Ankit Sharma, Jaideep Srivastava, Sen Wu, and Zhiwei Tang. So-

cial network regularized sparse linear model for top-n recommendation. Engineering

Applications of Artificial Intelligence, 2016.

[39] Mark Levy and Kris Jack. E�cient top-n recommendation by linear regression. In

RecSys Large Scale Recommender Systems Workshop, 2013.

[40] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for

generalized linear models via coordinate descent. Journal of statistical software,

33(1):1, 2010.

[41] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic

net. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

67(2):301–320, 2005.

[42] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

[43] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Application of

dimensionality reduction in recommender system-a case study. Technical report,

Minnesota Univ Minneapolis Dept of Computer Science, 2000.

[44] Yehuda Koren. Factor in the neighbors: Scalable and accurate collaborative fil-

tering. ACM Transactions on Knowledge Discovery from Data (TKDD), 4(1):1,

2010.

[45] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit

feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE International

Conference on, pages 263–272. Ieee, 2008.

[46] Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz,

and Qiang Yang. One-class collaborative filtering. In Data Mining, 2008. ICDM’08.

Eighth IEEE International Conference on, pages 502–511. IEEE, 2008.



100

[47] Jason Weston, Ron J Weiss, and Hector Yee. Nonlinear latent factorization by

embedding multiple user interests. In Proceedings of the 7th ACM conference on

Recommender systems, pages 65–68. ACM, 2013.

[48] Santosh Kabbur and George Karypis. Nlmf: Nonlinear matrix factorization meth-

ods for top-n recommender systems. In Data Mining Workshop (ICDMW), 2014

IEEE International Conference on, pages 167–174. IEEE, 2014.

[49] Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha Larson, and Alan Han-

jalic. Gapfm: Optimal top-n recommendations for graded relevance domains. In

Proceedings of the 22nd ACM international conference on Conference on informa-

tion & knowledge management, pages 2261–2266. ACM, 2013.

[50] Ste↵en Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

Bpr: Bayesian personalized ranking from implicit feedback. In Proceedings of

the twenty-fifth conference on uncertainty in artificial intelligence, pages 452–461.

AUAI Press, 2009.

[51] Konstantina Christakopoulou and Arindam Banerjee. Collaborative ranking with

a push at the top. In Proceedings of the 24th International Conference on World

Wide Web, pages 205–215. International World Wide Web Conferences Steering

Committee, 2015.

[52] Jason Weston, Samy Bengio, and Nicolas Usunier. Wsabie: Scaling up to large

vocabulary image annotation. In IJCAI, volume 11, pages 2764–2770, 2011.

[53] Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha Larson, Nuria Oliver,

and Alan Hanjalic. Climf: learning to maximize reciprocal rank with collaborative

less-is-more filtering. In Proceedings of the sixth ACM conference on Recommender

systems, pages 139–146. ACM, 2012.

[54] Markus Weimer, Alexandros Karatzoglou, Quoc Viet Le, and Alex Smola. Max-

imum margin matrix factorization for collaborative ranking. Advances in neural

information processing systems, pages 1–8, 2007.



101

[55] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules

between sets of items in large databases. In ACM SIGMOD Record, volume 22,

pages 207–216. ACM, 1993.

[56] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining asso-

ciation rules. In Proc. 20th int. conf. very large data bases, VLDB, volume 1215,

pages 487–499, 1994.

[57] Bamshad Mobasher, Honghua Dai, Tao Luo, and Miki Nakagawa. E↵ective person-

alization based on association rule discovery from web usage data. In Proceedings of

the 3rd international workshop on Web information and data management, pages

9–15. ACM, 2001.

[58] Weiyang Lin, Sergio A Alvarez, and Carolina Ruiz. E�cient adaptive-support

association rule mining for recommender systems. Data Mining and Knowledge

Discovery, 6(1):83–105, 2002.

[59] Ayhan Demiriz. Enhancing product recommender systems on sparse binary data.

Data Mining and Knowledge Discovery, 9(2):147–170, 2004.

[60] Weike Pan and Li Chen. Cofiset: Collaborative filtering via learning pairwise pref-

erences over item-sets. In Proceedings of the 2013 SIAM International Conference

on Data Mining, pages 180–188. SIAM, 2013.

[61] Ste↵en Rendle. Factorization machines. In Data Mining (ICDM), 2010 IEEE 10th

International Conference on, pages 995–1000. IEEE, 2010.

[62] Mathieu Blondel, Akinori Fujino, Naonori Ueda, and Masakazu Ishihata. Higher-

order factorization machines. In Advances in Neural Information Processing Sys-

tems, pages 3351–3359, 2016.

[63] Alex Beutel, Ed H Chi, Zhiyuan Cheng, Hubert Pham, and John Anderson. Beyond

globally optimal: Focused learning for improved recommendations. In Proceedings

of the 26th International Conference on World Wide Web, pages 203–212. Interna-

tional World Wide Web Conferences Steering Committee, 2017.



102

[64] Thomas George and Srujana Merugu. A scalable collaborative filtering framework

based on co-clustering. In Data Mining, Fifth IEEE international conference on,

pages 4–pp. IEEE, 2005.

[65] Joonseok Lee, Seungyeon Kim, Guy Lebanon, and Yoram Singer. Local low-rank

matrix approximation. In International Conference on Machine Learning, pages

82–90, 2013.

[66] Joonseok Lee, Samy Bengio, Seungyeon Kim, Guy Lebanon, and Yoram Singer.

Local collaborative ranking. In Proceedings of the 23rd international conference on

World wide web, pages 85–96. ACM, 2014.

[67] Mark OConnor and Jon Herlocker. Clustering items for collaborative filtering. In

Proceedings of the ACM SIGIR workshop on recommender systems, volume 128.

UC Berkeley, 1999.

[68] Badrul M Sarwar, George Karypis, Joseph Konstan, and John Riedl. Recom-

mender systems for large-scale e-commerce: Scalable neighborhood formation us-

ing clustering. In Proceedings of the fifth international conference on computer and

information technology, volume 1, 2002.

[69] Bin Xu, Jiajun Bu, Chun Chen, and Deng Cai. An exploration of improving

collaborative recommender systems via user-item subgroups. In Proceedings of the

21st international conference on World Wide Web, pages 21–30. ACM, 2012.

[70] Lyle H Ungar and Dean P Foster. Clustering methods for collaborative filtering.

In AAAI workshop on recommendation systems, volume 1, pages 114–129, 1998.

[71] F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and

context. ACM Transactions on Interactive Intelligent Systems (TiiS), 5(4):19, 2016.

[72] Zijian Zheng, Ron Kohavi, and Llew Mason. Real world performance of associa-

tion rule algorithms. In Proceedings of the seventh ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 401–406. ACM, 2001.

[73] Tom Brijs, Gilbert Swinnen, Koen Vanhoof, and Geert Wets. Using association

rules for product assortment decisions: A case study. In Proceedings of the fifth



103

ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 254–260. ACM, 1999.

[74] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. Eigentaste: A

constant time collaborative filtering algorithm. Information Retrieval, 4(2):133–

151, 2001.

[75] Flixster dataset. http://http://www.cs.sfu.ca/~sja25/personal/datasets/.

[76] Pang-Ning Tan et al. Introduction to data mining. Pearson Education India, 2007.

[77] Neil Hurley and Mi Zhang. Novelty and diversity in top-n recommendation–analysis

and evaluation. ACM Transactions on Internet Technology (TOIT), 10(4):14, 2011.

[78] Michael W Berry. Large-scale sparse singular value computations. The Interna-

tional Journal of Supercomputing Applications, 6(1):13–49, 1992.

[79] Guibing Guo, Jie Zhang, Zhu Sun, and Neil Yorke-Smith. Librec: A java library

for recommender systems. In UMAP Workshops, 2015.

[80] Joonseok Lee, Mingxuan Sun, and Guy Lebanon. Prea: Personalized recommenda-

tion algorithms toolkit. Journal of Machine Learning Research, 13(Sep):2699–2703,

2012.

[81] Douglas C Montgomery and George C Runger. Applied statistics and probability

for engineers. John Wiley & Sons, 2010.

[82] Masakazu Seno and George Karypis. Lpminer: An algorithm for finding frequent

itemsets using length-decreasing support constraint. In Data Mining, 2001. ICDM

2001, Proceedings IEEE International Conference on, pages 505–512. IEEE, 2001.

[83] George Karypis. Cluto-a clustering toolkit. Technical report, MINNESOTA UNIV

MINNEAPOLIS DEPT OF COMPUTER SCIENCE, 2002.

[84] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747, 2016.


