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ABSTRACT
Users’ behaviors are driven by their preferences across various
aspects of items they are potentially interested in purchasing, view-
ing, etc. Latent space approaches model these aspects in the form of
latent factors. Although such approaches have been shown to lead
to good results, the aspects that are important to di�erent users
can vary. In many domains, there may be a set of aspects for which
all users care about and a set of aspects that are speci�c to di�erent
subsets of users. To explicitly capture this, we consider models in
which there are some latent factors that capture the shared aspects
and some user subset speci�c latent factors that capture the set of
aspects that the di�erent subsets of users care about.

In particular, we propose two latent space models: rGLSVD and
sGLSVD, that combine such a global and user subset speci�c sets of
latent factors. The rGLSVD model assigns the users into di�erent
subsets based on their rating patterns and then estimates a global
and a set of user subset speci�c local models whose number of
latent dimensions can vary.

The sGLSVDmodel estimates both global and user subset speci�c
local models by keeping the number of latent dimensions the same
among thesemodels but optimizes the grouping of the users in order
to achieve the best approximation. Our experiments on various real-
world datasets show that the proposed approaches signi�cantly
outperform state-of-the-art latent space top-N recommendation
approaches.
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1 INTRODUCTION
Top-N recommender systems identify a small number of N items
that a user will �nd useful to purchase, view, like, click etc., among
a large collection of such items by leveraging historical information
from that and other users. They are wildly popular, ranging from
Net�ix movie recommendations, to Amazon product recommenda-
tions, to Facebook friend recommendations etc.
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Themethods developed to tackle the top-N recommendation task
broadly fall into two categories: the neighborhood-based (which
focus either on users or items) and the latent space ones. The la-
tent space methods [8] compute a low-rank factorization of the
user-item matrix into user and item factor matrices, which repre-
sent both the users and the items in a common latent space. The
neighborhood-based methods [9] (user-based or item-based) focus
on identifying similar users/items based on the rating matrix.

Item-item approaches can su�er from ine�cient personalization;
on the other hand latent space approaches do not face this issue, as
an increase of the rank leads to more latent features estimated for
every user. However, they assume that users base their behavior
on a set of aspects, shared by all of them, which they model by
estimating a set of shared latent factors. We believe that this user
model is limiting. We instead propose that a user determines his/her
preferences based on some aspects shared by all; i.e., global aspects,
and on somemore speci�c aspects, that are shared by similar subsets
of users, i.e., local aspects. For example, a young girl can decide on a
piece of clothing to purchase, based on some general aspects, such
as whether it is in good condition, and also on some more speci�c
aspects, such as whether this item of clothing is fashionable for
girls her age. Thus, such a preference model contains both global
as well as local elements.

In this paper, we propose to explicitly encode such structure, by
estimating both a global low-rank model and multiple user subset
speci�c low-rank models. We propose two approaches: rGLSVD
(Global and Local Singular Value Decomposition with varying
ranks) and sGLSVD (Global and Local Singular ValueDecomposition
with varying subsets). The approach rGLSVD considers �xed user
subsets but allows for di�erent local models to have varying ranks.
The approach sGLSVD solves a joint optimization problem, which
estimates local models of �xed ranks, while automatically deter-
mining the various subsets of users. The two approaches explore
di�erent ways to learn the local low-rank representations that will
achieve the best top-N recommendation quality for the users. Esti-
mating such structure with a global latent model can be di�cult,
since the data at hand are often very sparse.

We evaluated our methods on a variety of real-world datasets
and the results showed that our proposed approaches are of similar
performance and they outperform competing top-N latent space
methods, on average by 13%. Also, the comparison of sGLSVD to
the item-item approach GLSLIM, which also estimates a global and
multiple local models, shows that while GLSLIM achieves better
top-N recommendation results, sGLSVD is an order of magnitude
faster and its relative percentage of improvement above baseline
global method PureSVD is higher than the improvement of GLSLIM
beyond SLIM.

The rest of the paper is organized as follows. Section 2 introduces
the notation used. Section 3 describes existing work in literature

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1235



that is related to ours. Section 4 presents the proposed approaches:
rGLSVD and sGLSVD. Section 5 shows the experimental evalu-
ation we followed. Section 6 presents the experimental results.
Finally, Section 7 concludes this work and provides some future
directions.

2 NOTATION
We represent all column vectors by bold lower case letters (e.g., p, q).
We represent all row vectors by bold lower case letters and having
the transpose superscript T , (e.g., pT ). We represent all matrices
by bold upper case letters (e.g., R, A, U). For a given matrix A, we
use the notation aTi to refer to its ith row, and aj to refer to its jth
column. We note the element of matrix A that corresponds to the
ith row and jth column as ai j . We use calligraphic letters to denote
sets. We denote a predicted value, by having a ⇠ over it (e.g., r̃ ).

We denote the number of users by n and the number of items
bym. We use symbols u and i to denote individual users and items,
respectively. We use matrix R to represent the user-item implicit
feedback matrix of size n ⇥m, containing the items that the users
have purchased/viewed/rated. The vector rTu contains the implicit
behavior of user u and the vector ri contains the implicit feedback
of all users for item i . If user u provided feedback for item i , the
rui entry of R is 1, otherwise it is 0. We use the term rating to
refer to the non-zero entries of R, even though these entries can
represent implicit feedback. We also refer to the items that the
user has purchased/viewed/rated as rated items and to the rest as
unrated items. We denote the set of items that the user u has rated
with Ru . The number of items to be recommended is N .

3 RELATEDWORK
3.1 Latent Space Approaches for Top-N

Recommendation
There are a lot of latent-based approaches used for top-N recom-
mendation [8, 14, 17, 23, 28] that have been shown to have good
top-N recommendation quality. The latent-based approaches per-
form a low-rank factorization of the user-item feedback matrix
into two matrices that represent user and item characteristics in a
common latent space.

Among the latent-based methods for the top-N recommendation
task, a notable one is thePureSVDmethod developed byCremonesi
et al. [8], which performs a truncated Singular Value Decomposition
of rank f of the matrix R to generate the recommendations. In order
to do so, the authors proposed to treat the missing entries as zeros.

Many of the latent space approaches developed for the top-N
recommendation task focus on ranking the unrated items, instead
of accurately estimating the missing values [7, 24, 26]. Among
those, a popular one is the Bayesian Personalized Ranking - Matrix
Factorization approach (BPRMF) [24], which focuses on �nding the
correct personalized ranking for all items to maximize the posterior
probability.

3.2 Local Models for Top-N Recommendation
The idea of using multiple local models is well researched in the
literature [5, 10, 18, 19, 22, 25, 29]. Here we discuss these approaches

that are most relevant to our work, along with how our work di�ers
from them.

Koren [16] proposes a combined model, which estimates ev-
ery user-item rating rui as a combination of a global latent space
model and local neighborhood interactions. This method, although
utilizing both global and local components, estimates the local
components through standard k-NN approaches, thus being very
di�erent from our approach which is a latent space approach and
estimates multiple local latent space models.

Weston et al. [28] model a user with T latent vectors, each of
dimensionm, to model the user’s latent tastes, while every item has
a single latent vector of sizem. In order to compute the prediction
for each user and item, they compute the maximum possible score
after multiplying each of the T user latent vectors to the item one.
Although allowing users to have di�erent sets of latent factors,
instead of a global one, their method di�ers from ours, as it does
not assume the main user model that we have: that everyone has a
set of global latent factors and a set of user subset speci�c latent
factors.

Lee et al. [18, 19] propose amethod called Local Low-RankMatrix
Approximation (LLORMA). They assume that the ratingmatrixR is
locally low-rank and is approximated as a weighted sum of low-rank
matrices. In their method, they identify neighborhoods surrounding
di�erent anchor points of user-item pairs, based on a function that
measures distances between pairs of users and items and then
they estimate a local low-rank model for every neighborhood. The
estimation is done in an iterative way where �rst the latent factors
representing the anchor points are estimated and then based on the
similarities of the observed entries to the anchor points, they are re-
estimated, until convergence. The predicted rating of a target user-
item pair is calculated as a weighted combination of the estimated
local models, where the weight is the similarity of the pair to the
anchor points. Lee et al. have tested this approach with both a
squared error objective [19] and a pairwise ranking objective [18].
Their approach, although also using multiple local latent space
models, does not estimate global factors for all users. Also, the local
models are created di�erently; theirs are based on anchor points,
while in our approaches they capture behaviors of user subsets.
Also, their method does not allow varying ranks of local models or
user subsets to be updated.

Finally, Christakopoulou and Karypis [6] propose a method
called GLSLIM, which estimates a personalized combination of
global and multiple local item-item models, allowing for the user
subsets to be updated. GLSLIM is an item-item approach, while
the method proposed in this paper is a latent space approach, thus
the underlying user model di�ers. Also, in this work, we explore
both changing user subsets and varying ranks among the local
models to allow the best low-rank representation for every user to
be estimated.

4 GLOBAL AND LOCAL LATENT MODELS
4.1 Motivation
Latent space approaches assume that every user’s behavior can
be described by a set of aspects, which are shared by all the users.
However, consider the following scenario. When deciding on which
restaurant to go to, people generally tend to agree on a set of aspects
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Algorithm 1 rGLSVD
1: Assign �u = 0.5 for every user u.
2: Compute the initial assignment of users to subsets.
3: while (users whose �u changed more than 0.01) > 1% of the

total users do
4: Construct R� and Rc , 8c 2 {1, . . . ,k }, as discussed in Section

4.3.
5: Compute a truncated SVD of rank f

� on R� .
6: for all user subset c do
7: Compute a truncated SVD of rank f

c on Rc .
8: end for
9: for all user u do
10: Compute his user-speci�c weight �u with Equation (3).
11: end for
12: end while

that are important: how clean the restaurant is, how delicious the
food is. However, there can be other factors which are important
to only a subset of users, such as if vegan options are available and
if live music exists. Users of a di�erent subset might be interested
in other factors, such as what is the average waiting time, and how
big the portions are. We postulate that a user model that assumes
that users’ preferences can be described by some aspects which are
common to all but also some additional user subset speci�c aspects,
can better capture user behavior such as the one described above.

As the available data is generally sparse, estimating the global
and user subset speci�c factors from a global low-rank model could
be di�cult. Thus, we propose to impose such a structure explicitly,
by estimating a global latent space model, and multiple user subset
speci�c latent space models.

4.2 Overview
In order to explicitly model this type of user model described above,
we present two approaches: Global and Local Singular Value Decom-
position with varying ranks (rGLSVD) and Global and Local Sin-
gular Value Decomposition with varying subsets (sGLSVD), which
estimate a personalized combination of the global and local low-
rank models. Both approaches utilize PureSVD as the underlying
model, as it has been shown to have good top-N recommendation
performance, while being scalable [8, 16].

The rGLSVD approach assigns the users into di�erent subsets
based on their rating patterns, which remain �xed, and then esti-
mates a global model and multiple user subset speci�c local models
whose number of latent dimensions can vary. The sGLSVD model
estimates a global model andmultiple user subset speci�c local mod-
els by keeping the number of latent dimensions the same among
the di�erent local models, but optimizes the grouping of the users
in order to achieve the best approximation.

The reason why we do not combine the two methods is because
if we allowed in the joint optimization problem we solve for both
local models to have varying ranks and user subsets to be updated,
we would face over�tting issues. Over�tting would occur because
the vast majority of users would always be assigned to the subset
with the highest corresponding number of local dimensions, which
would result in the smallest training error.

Algorithm 2 sGLSVD
1: Assign �u = 0.5 for every user u.
2: Compute the initial assignment of users to subsets.
3: while number of users switching subsets > 1% of the total

users do
4: Construct R� and Rc , 8c 2 {1, . . . ,k }, as discussed in Section

4.3.
5: Compute a truncated SVD of rank f

� on R� .
6: for all user subset c do
7: Compute a truncated SVD of the same rank f

c on Rc .
8: end for
9: for all user u do
10: for all user subset c do
11: Project user u on user subset c with Equation 4.
12: Compute his user-speci�c weight �u for user subset c

with Equation 3
13: Compute the training error.
14: end for
15: Assignu to the user subset c with the corresponding small-

est training error and update his user-speci�c weight �u
to the corresponding one for user subset c .

16: end for
17: end while

4.3 Estimating the rGLSVD model
A high-level overview of rGLSVD is shown in Algorithm 1. It fol-
lows an alternating optimization approach whose steps consist of
estimating the global and user subset speci�c latent factors, and
then estimating the user-speci�c weights, and repeating these steps
until convergence.

We �rst initialize the user-speci�c weights �u with the value
0.5 for all users, so that the global and local components will be
of equal contribution (Line 1). The user-speci�c weights can take
values from 0 to 1, where 0 shows that only local models are utilized,
and 1 that only a global model is used.

We separate the users into k subsets with a clustering algorithm
(Line 2). We use CLUTO by Karypis [15]. Every user can belong to
one subset.

In line 4 of the Algorithm 1, we construct the global n ⇥ m

training matrix R� by stacking the vectors �u rTu , for all users. For
every subset c 2 {1, . . . ,k }, we construct the corresponding local
training matrix Rc by stacking the vectors (1 � �u )rTu , for all users
u belonging to subset c . Every matrix Rc has m columns and as
many rows as the number of users belonging to subset c , which we
note as nc .

We then compute a truncated singular value decomposition on
the global matrix R� of rank f

� (line 5), which allows us to estimate
the global user factors, in the following way:

R̃� = P�f �QT , (1)

where P is an n ⇥ f
� orthonormal matrix showing the global user

factors,Q is anm⇥ f � orthonormal matrix showing the global item
factors, and �f � is an f

� ⇥ f
� diagonal matrix containing the f

�

largest singular values.
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For every subset c , we compute a truncated singular value de-
composition on Rc of rank f

c (line 7):

R̃c = Pc�f cQcT , (2)

where Pc is a nc ⇥ f c matrix containing the local user factors which
are speci�c to subset c , and Qc is am ⇥ f

c matrix containing the
local item factors of subset c . Note that the ranks f c can be di�erent
for each local subset c .

Overall, we estimate a global user latent factor matrix P, a global
item latent factor matrix Q, k user subset speci�c user latent factor
matrices Pc and k user subset speci�c item latent factor matricesQc .
After estimating the latent factor matrices, we proceed to updating
the user-speci�c weights.

We compute the user-speci�c weights�u (line 10), by minimizing
the squared error for every user u over all items (both rated and
unrated ones). After setting the derivative of the squared error to 0,
we get:

�u =

Pm
i=1 (a � b) (rui � b)Pm

i=1 (a � b)2
, (3)

where a = 1
�u p

T
u �f �qi and b = 1

1��u p
cT
u �f c qci .

The user-speci�c weights of the users for rGLSVD can be esti-
mated independently in parallel.

The latent factor estimation and the update of the user-speci�c
weights are repeated until convergence. We consider that the algo-
rithm is converged, when the number of users who have modi�ed
personalized weights with respect to the previous iteration is less
than or equal to 1% of the total number of users (line 3).

4.4 Estimating the sGLSVD model
A high-level overview of sGLSVD is shown in Algorithm 2. Like
rGLSVD, it also follows an alternating optimization approach, with
a lot of similar steps. The key di�erences are that the ranks f c are
the same across the local subsets c (line 5) and that the user subsets
can be updated (lines 7-13). The sGLSVD approach is an iterative
approach that is reminiscent of k-means-style cluster re�nement.

We evaluate the change in the training error resulting by moving
each user to each one of the clusters, while computing the weight
�u that the user would have if assigned to that user subset, with
Equation (3). If there is a move that will lead to an improvement,
then we assign the user to the subset that produced the smallest
training error. In order to compute the training error for useru, who
is trying to be assigned to a new subset c he/she did not belong to
before, we need to project him/her to the new subset c , by learning
his/her projected user latent factor:

pcTu = rTuQ
c�f c

�1. (4)

The user-speci�c weights and user assignments for sGLSVD can be
estimated independently in parallel.

4.5 Prediction and Recommendation
The predicted rating of user u, who belongs to subset c , for item i is
a combination of the global model and the local model of subset c:

r̃ui = pTu �f �qi + p
cT
u �f c qci , (5)

where pTu is the uth row of P corresponding to user u, qi is the ith
column of QT corresponding to item i , pcTu is the uth row of Pc and

Table 1: Dataset Characteristics.

Name #Users #Items #Transactions Density
groceries 63,034 15,846 2,060,719 0.21%
ml10m 69,878 10,677 10,000,054 1.34%
jester 57,732 150 1,760,039 20.32%
�ixster 29,828 10,085 7,356,146 2.45%
net�ix 274,036 17,770 31,756,784 0.65%

The columns corresponding to #users, #items and
#transactions show the number of users, num-
ber of items and number of transactions, respec-
tively, in each dataset. The column corresponding
to density shows the density of each dataset (i.e.,
density=#transactions/(#users⇥#items)).

qci is the ith column of QcT . Note that the user-speci�c weights �u
and 1 � �u are enclosed inside the user latent factors pTu and pcTu
correspondingly.

In order to compute the top-N recommendation list for user u,
we estimate the predicted rating r̃ui with Equation (5) for all his
unrated items i , we sort their values in a descending order, and we
recommend the N items with the highest corresponding values.

5 EXPERIMENTAL EVALUATION
5.1 Datasets
We use multiple real-world datasets that span di�erent domains to
evaluate the methods in this paper. Table 1 shows their characteris-
tics.

The groceries dataset corresponds to transactions of a local gro-
cery store. Each user corresponds to a customer and the items
correspond to the distinct products purchased over a period of
one year. The ml10m dataset corresponds to the MovieLens 10M
dataset [13], and contains ratings that users gave on various movies.
The jester dataset [11] corresponds to an online joke recommender
system and contains ratings that users gave on jokes. The �ixster
dataset is a subset of the original Flixster dataset [1], which consists
of movie ratings taken from the corresponding social movie site.
We created this subset, by keeping the users who have rated more
than thirty items and the items that have been rated by at least
twenty-�ve users. The net�ix dataset is a subset of the original
Net�ix dataset [3], which contains anonymous movie ratings. We
created this subset by keeping the users who have rated between
thirty and �ve hundred items.

Note that some of the datasets originally have ratings, but we
converted them to implicit feedback, by transforming the rated
entries to ones and the missing entries to zeros. The existence of a
rating (1) indicates that the user purchased/rated the item and its
absence (0) that he/she did not.

5.2 Evaluation Methodology
We employ leave-one-out cross-validation [27] to evaluate the per-
formance of the developed and competing methods. We randomly
select an item rated by each user, and we place it in the test set. The
rest of the data comprise the training set.
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Algorithm 3 rLSVD
1: Compute the initial assignment of users to subsets.
2: for all user subset c do
3: Construct Rc , as discussed in Section 5.4.
4: Compute a truncated SVD of rank f

c on Rc .
5: end for

Algorithm 4 sLSVD
1: Compute the initial assignment of users to subsets.
2: while number of users switching subsets > 1% of the total

users do
3: for all user subset c do
4: Construct Rc , as discussed in Section 5.4.
5: Compute a truncated SVD of the same rank f

c on Rc .
6: end for
7: for all user u do
8: for all user subset c do
9: Project user u on user subset c with Equation 4.
10: Compute the training error.
11: end for
12: Assignu to the user subset c with the corresponding small-

est training error.
13: end for
14: end while

5.3 Performance Metrics
We measure the performance by computing the number of times
the single left-out item is in the top-N recommended items for this
user and its position in that list. The quality measures used are the
hit-rate (HR) and average-reciprocal hit rank (ARHR).

HR is de�ned as

HR =
#hits
#users

, (6)

and ARHR is de�ned as

ARHR =
1

#users

#hitsX

i=1

1
pi
, (7)

where “#users” is the total number of users (n), p is the position of
the item in the list, where p = 1 speci�es the top of the list, and
“#hits” is the number of users whose item in the test set is present in
the size-N recommendation list. The ARHR is a weighted version
of HR, where the position of the test item in the top-N list is taken
into account. Both measures have a range from 0 to 1, with 1 being
the ideal.

5.4 Proposed Methods
As rGLSVD and sGLSVD estimate multiple components, we pro-

pose di�erent variants, to investigate the e�ect of each component
on the top-N recommendation quality:
• LSVD, which stands for Local Singular Value Decomposition:
We estimate multiple local latent space models of constant
rank f

c . The user subsets remain �xed.
• GLSVD, which stands for Global and Local Singular Value
Decomposition: We estimate a global latent space model

along with multiple local latent space models of constant
rank f

c . The user subsets are �xed.
• rLSVD, which stands for Local Singular Value Decomposi-
tion with varying ranks: We estimate multiple latent space
models of varying ranks. There is no global model, and the
users remain in their original prede�ned subsets. We com-
pute the predicted rating of user u, who belongs to subset c ,
for item i as:

r̃ui = pcTu �f c qci . (8)
After separating the users into k subsets, we construct the
corresponding local training matrices Rc 8c 2 {1, . . . ,k } by
stacking the vectors rTu , for all users u belonging to subset c .
We then perform truncated singular value decompositions of
varying ranks f c on each matrix Rc . An overview of rLSVD
can be found in Algorithm 3.
• sLSVD, which stands for Local Singular Value Decomposi-
tion with varying subsets: We estimate multiple latent space
models of the same rank; however every user can switch to
the subset c , which provides the low-rank representation of
u with the smallest training error. There is no global model.
We also compute the predicted ratings with Equation (8). An
overview of sLSVD can be found in Algorithm 4.

5.5 Comparison Algorithms
We compare our proposed methods against other competing mod-
ern top-N recommendation approaches, that span both the item-
item-based approaches: SLIM [21], GLSLIM [6], and the latent space
approaches: pureSVD [8], BPRMF [24] and LLORMA [19]. The de-
tails behind these methods are described in Section 3.

For SLIM, we used the SLIM package.1 For GLSLIM, we used
the GLSLIM package.2 For PureSVD, we used the SVDLIBC pack-
age,3 which is based on the SVDPACKC library [4]. For BPRMF,we
used the LibRec package [12] and for LLORMA we used the PREA
toolkit [20].

As LLORMAwas developed for rating prediction, but we wanted
to use it for top-N recommendation with the evaluation methodol-
ogy described in Section 5.2, we needed to also utilize the unrated
items feedback beyond the rated items. It is of very high complex-
ity to introduce in LLORMA all of the unrated items, making it
computationally infeasible. Thus, in this paper, we sampled the
unrated items for LLORMA. After experimentation, we concluded
that sampling for every user ten times as many unrated items as
the items he/she has rated gives overall a good approximation of
treating all missing ratings as zeros.

5.6 Model Selection
We performed an extensive search over the parameter space of the
various methods, in order to �nd the set of parameters that gives
us the best performance for all the methods. We only report the
performance corresponding to the parameters that lead to the best
results.

For SLIM and GLSLIM, we chose the l1 and l2 regularization
parameters from the set of values: {0.1, 1, 3, 5, 7, 10}. The larger the
1www-users.cs.umn.edu/~xning/slim/html
2https://www-users.cs.umn.edu/~chri2951/code.html
3https://tedlab.mit.edu/~dr/SVDLIBC/
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regularization parameters are, the stronger the regularization is.
For GLSLIM, the number of user subsets examined took on the
values: {2, 3, 5, 10, 15, . . . , 90, 95, 100}.

For PureSVD, the number of singular values f tried lie in the
interval: {10, 15, 20, . . . , 95, 100, 150, 200, . . . , 1000}.

For BPRMF, the number of factors used in order to get the best
results lie in the interval [1, 10000]. The values of the learning
rate that we tried are: {0.0001, 0.001, 0.01, 0.1}. The values of the
regularization we tried are: {0.0001, 0.001, 0.01, 0.1}.

For LLORMA, we followed the parameter methodology of the
original paper [19] and we kept �xed the number of iterations
T = 100, the convergence threshold to � = 0.0001, the number of
anchor points to q = 50, and used the Epanechnikov kernel with
h1 = h2 = 0.8. We tried for the regularization values �U = �V the
values: {0.001, 0.01, 0.1}. We also tried for the rank of the models
the values: {1, 2, 3, 5, 7, 10, 15, 20, 25, 30, 35, 40, 45, 50}.

For our proposed approaches rGLSVD, sGLSVD and their vari-
ants, the number of user subsets examined took on the values:
{2, 3, 5, 10, 15, . . . , 95, 100}. We varied the rank of the local models
f
c among the values: {1, 2, 3, 5, 10, 15, . . . , 90, 95, 100}. We did not

conduct parameter search on the rank of the global model f � , in-
stead we �xed it to the value f shown to provide the best results in
PureSVD.

The size of the recommendation list N is �xed to the value 10,
unless explicitly stated otherwise.

6 EXPERIMENTAL RESULTS
6.1 Performance of rGLSVD and sGLSVD
Table 2 shows the performance of rGLSVD, sGLSVD, and their
various simpli�ed variants in terms of HR (Equation (6)) and ARHR
(Equation (7)), respectively for every dataset, along with the set of
parameters for which this performance was achieved.

We can see that the overall best performing methods are the pro-
posed methods: rGLSVD and sGLSVD. We can also see that the best
low-rank representation is achieved in some datasets by varying
the rank of local models (rGLSVD), and in others by allowing the
user subsets to be updated, while having local models of �xed rank
(sGLSVD). We can reach the same conclusion from the pairwise
comparison of sLSVD and rLSVD. This shows the merit of both
ways to reach the best local low-rank representation.

We can also observe that the global component improves the
recommendation quality, by performing a pairwise comparison of
LSVD with GLSVD, sLSVD with sGLSVD, and rLSVD with rGLSVD.
After performing paired t-tests, the di�erence in their performance
was shown to be statistically signi�cant, with 95% con�dence.

Finally, we can see that rLSVD and sLSVD outperform LSVD,
both in terms of HR and ARHR, as LSVD is a simpler method than
rLSVD and sLSVD: rLSVD with constant rank f

c results in LSVD
and sLSVD with �xed user subsets results in LSVD. Also, rGLSVD
and sGLSVD outperform GLSVD, which is also expected as GLSVD
results from sGLSVD with �xed user subsets, or rGLSVD with
constant ranks f c .

We do not show the ranks of each local model f c that leads to
the best performance of rLSVD and rGLSVD in Table 2 for space
reasons. More details can be found in [2].
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Figure 1: The performance of the proposed methods: LSVD,
sLSVD, rLSVD, GLSVD, sGLSVD, and rGLSVD when vary-
ing the number of user subsets, in terms of ARHR, for the
ml10m dataset.
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Figure 2: The performance of sGLSVD in terms of HR for
di�erent sizes N of the recommendation list.

6.1.1 Sensitivity on the number of user subsets. Figure 1 shows
the performance of the proposedmethodswhen varying the number
of user subsets, in terms of ARHR for the ml10m dataset.

We can see for a wide range of user subsets, and not for just
a speci�c choice, that: (i) rGLSVD and sGLSVD outperform the
rest of the approaches, (ii) estimating a global model beyond local
models helps the performance, and (iii) allowing update of the user
subsets or estimating multiple local models with varying ranks
allows for estimation of better low-rank representations than the
ones estimated with constant local ranks and �xed user subsets.

The trends are similar for HR and for the rest of the datasets.

6.1.2 Varying the size N of the recommendation list. Figure 2
shows the performance of sGLSVD for di�erent sizes of recommen-
dation list, namely N = {5, 10, 15, 20}, in terms of HR.

We can see that as the size of the recommendation list increases,
the performance of sGLSVD is improved, as a bigger list means that
it is more probable for the test item to appear in the recommended
list. The same trends hold for ARHR, and for the rest of the proposed
approaches.
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Table 2: Comparison between our proposed approaches.

Comparison in terms of HR
LSVD sLSVD rLSVD GLSVD sGLSVD rGLSVD

Dataset Cls f
c HR Cls f

c HR Cls HR Cls f
�

f
c HR Cls f

�
f
c HR Cls f

� HR
groceries 100 20 0.192 100 25 0.271 100 0.210 100 25 25 0.204 100 25 25 0.283 90 30 0.216
ml10m 25 20 0.300 50 15 0.311 15 0.317 75 65 10 0.311 85 55 10 0.320 30 65 0.321
jester 5 3 0.816 2 3 0.816 5 0.895 2 25 2 0.863 2 25 2 0.865 10 15 0.910
�ixster 5 40 0.202 15 30 0.207 10 0.207 3 80 40 0.214 25 80 30 0.218 5 80 0.217
net�ix 90 20 0.211 65 20 0.215 90 0.216 65 50 25 0.219 100 50 20 0.225 70 50 0.223

Comparison in terms of ARHR
LSVD sLSVD rLSVD GLSVD sGLSVD rGLSVD

Dataset Cls f
c ARHR Cls f

c ARHR Cls ARHR Cls f
�

f
c ARHR Cls f

�
f
c ARHR Cls f

� ARHR
groceries 100 15 0.091 100 15 0.130 100 0.105 100 20 20 0.100 100 20 20 0.136 90 30 0.105
ml10m 25 20 0.142 55 15 0.146 20 0.150 35 65 15 0.149 45 55 15 0.152 40 65 0.154
jester 5 1 0.693 3 2 0.697 5 0.772 3 15 1 0.746 5 15 1 0.746 3 15 0.783
�ixster 5 50 0.091 15 30 0.096 10 0.095 3 80 40 0.099 25 80 35 0.102 10 80 0.101
net�ix 90 20 0.097 95 20 0.100 90 0.099 65 50 20 0.101 100 50 20 0.105 85 50 0.104

For each method, the columns correspond to the best HR and ARHR and the parameters for which they are achieved. The parameters
are the number of user subsets (Cls), the rank of the global model f � , and the rank of the local models f c . Note that the vector of
varying local ranks f c for rGLSVD and rLSVD is not shown, for space reasons. The bold numbers show the best HR/ARHR achieved
per dataset.

6.2 Performance against Competing
Approaches

6.2.1 Comparison against competing latent space methods. Ta-
ble 3 compares the performance of our proposed methods rGLSVD
and sGLSVD against competitive modern latent space top-N rec-
ommendation approaches: LLORMA, PureSVD and BPRMF for all
datasets, in terms of HR and ARHR, respectively.

We can see that rGLSVD and sGLSVD outperform the competing
latent space top-N approaches, both in terms of HR and in terms
of ARHR. We performed paired t-tests of rGLSVD/sGLSVD against
the best competing latent space baseline, which was either BPRMF
or PureSVD, and the performance di�erence was shown to be sta-
tistically signi�cant. The results of LLORMA being lower in top-N
quality than PureSVD surprised us; we believe that the reason is
that the original use of LLORMA was for datasets with explicit
feedback and for the rating prediction task, thus not necessarily
resulting in as good of recommendation quality for performing
top-N recommendation on implicit feedback.

From comparing Table 3 with Table 2, we can also see that rLSVD
and sLSVD tend to outperform the best competing baseline as well.

6.2.2 Global & local Approaches against standard global ap-
proaches. Table 4 compares the use of global and local approaches,
against standard global models both in terms of item-based models
(SLIM vs GLSLIM) and latent space models (PureSVD vs proposed
method sGLSVD). The comparison is shown both in terms of HR
and ARHR.

We can see from the pairwise comparison of SLIM with GLSLIM
and of PureSVD with sGLSVD that the global and local approaches
outperform the standard global models. The paired t-tests we ran
showed that the performance di�erent is signi�cant. This showcases
their value.

We can also see that GLSLIM performs better than the rest of
the approaches. We believe that the reason GLSLIM outperforms
sGLSVD is that its underlying model, which is SLIM outperforms
PureSVD. Also, even though rGLSVD/sGLSVD does not outper-
form GLSLIM, we can see that in di�erent cases, its percentage of
improvement beyond the underlying global model PureSVD can
be higher than the corresponding percentage of improvement of
GLSLIM beyond SLIM.

Finally, Table 5 shows the training time needed for GLSLIM
versus sGLSVD, for theml10m dataset with 5 user subsets. GLSLIM-
warm corresponds to an optimized runtime for GLSLIM, where the
estimatedmodel is initializedwith a previousmodel learned, instead
of starting from scratch. For SLIM and GLSLIM, the times shown
correspond to �� = �l = 10 and �� = �l = 1. For sGLSVD, the times
correspond to f

� = 55 and f
c = 10. Similar timewise comparisons

hold for other parameter choices and for the rest of the datasets.
The times shown correspond to one node of the supercomputer
Mesabi 4, which is equipped with 62 GB RAM and 24 cores. We
can see that the time needed to train sGLSVD is only a fraction of
the time needed to train GLSLIM. Speci�cally, sGLSVD is 5 � 10
times faster than GLSLIM, which can be of use in cases when faster
training is needed, with good top-N recommendation results.

7 CONCLUSION AND FUTUREWORK
In this paper, we propose the following user model: the behavior of
a user can be described by a combination of a set of aspects shared
by all users, and of a set of aspects which are speci�c to the subset
the user belongs to. This user model is an extension of the model
usually employed by the latent space approaches, which assumes

4https://www.msi.umn.edu/content/mesabi
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Table 3: Comparison with competing latent space approaches.

Comparison in terms of HR
LLORMA PureSVD BPRMF sGLSVD rGLSVD

Dataset � rank HR f HR factors lrnrate reg HR Cls f
�

f
c HR Cls f

� HR
groceries 0.01 20 0.096 738 0.134 3000 0.01 0.001 0.214 100 25 25 0.283 90 30 0.216
ml10m 0.01 35 0.194 64 0.295 5000 0.01 0.01 0.240 85 55 10 0.320 30 65 0.321
jester 0.01 30 0.812 25 0.860 300 0.01 0.01 0.903 2 25 2 0.865 10 15 0.910
�ixster 0.001 35 0.148 90 0.194 4000 0.01 0.001 0.200 25 80 30 0.218 5 80 0.217
net�ix 0.01 7 0.108 50 0.204 5000 0.01 0.01 0.210 100 50 20 0.225 70 50 0.223

Comparison in terms of ARHR
LLORMA PureSVD BPRMF sGLSVD rGLSVD

Dataset � rank ARHR f ARHR factors lrnrate reg ARHR Cls f
�

f
c ARHR Cls f

� ARHR
groceries 0.01 20 0.046 700 0.059 3100 0.01 0.001 0.099 100 20 20 0.136 90 30 0.105
ml10m 0.01 25 0.080 56 0.139 7000 0.01 0.01 0.105 45 55 15 0.152 40 65 0.154
jester 0.01 7 0.673 15 0.740 100 0.01 0.01 0.766 5 15 1 0.746 3 15 0.783
�ixster 0.001 35 0.058 80 0.086 4000 0.01 0.001 0.089 25 80 35 0.102 10 80 0.101
net�ix 0.01 7 0.043 50 0.091 5000 0.01 0.01 0.100 100 50 20 0.105 85 50 0.104

For each method, columns corresponding to the best HR and ARHR and the set of parameters for which they are achieved are
shown. For LLORMA, the parameters are the regularization (�) and the rank of the models (rank). For PureSVD, the parameter is
the rank of the model (f ). For BPRMF, the parameters are: the number of factors (factors), the learning rate (lrnrate) and the
regularization (reg). For sGLSVD and rGLSVD, the parameters are: the number of user subsets (Cls), the rank of the global model
(f � ) and the rank of the local models (f c ). Bold numbers indicate the best HR and ARHR across the di�erent algorithms, for
every dataset.

Table 4: Comparison of global approaches with global & local approaches.

Comparison in terms of HR.
SLIM models PureSVD models

Dataset SLIM GLSLIM Imp. PureSVD sGLSVD Imp.
� � HR Cls �� �l �� �l HR % f HR Cls f

�
f
c HR %

groceries 5 0.1 0.259 100 5 5 1 1 0.304 17.37 750 0.134 100 25 25 0.283 111.19
ml10m 7 5 0.312 10 10 7 1 1 0.345 10.58 65 0.295 85 55 10 0.320 8.47
jester 3 0.1 0.878 10 10 10 10 0.1 0.940 7.06 25 0.860 2 25 2 0.865 0.58
�ixster 0.1 2 0.242 3 1 1 1 5 0.255 5.37 90 0.194 25 80 30 0.218 12.37
net�ix 0.1 5 0.231 5 1 1 5 5 0.245 6.06 50 0.204 100 50 20 0.225 10.29

Comparison in terms of ARHR
SLIM models PureSVD models

Dataset SLIM GLSLIM Imp. PureSVD sGLSVD Imp.
� � ARHR Cls �� �l �� �l ARHR % f ARHR Cls f

�
f
c ARHR %

groceries 3 0.1 0.130 100 5 5 1 1 0.155 19.23 700 0.059 100 20 20 0.136 130.51
ml10m 5 2 0.151 10 10 7 1 1 0.170 12.58 56 0.139 45 55 15 0.152 9.35
jester 7 0.1 0.755 100 1 1 1 1 0.835 10.60 15 0.740 5 15 1 0.746 0.81
�ixster 0.1 2 0.116 3 1 1 1 5 0.126 8.62 80 0.086 25 80 35 0.102 18.60
net�ix 5 5 0.107 5 1 1 5 5 0.116 8.41 50 0.091 100 50 20 0.105 15.38

The performance of the standard global approaches: SLIM and PureSVD is compared with the performance of the global and
local approaches: GLSLIM and sGLSVD. For each method, columns corresponding to the best HR and ARHR and the set of
parameters for which they are achieved are shown. The last column of each class of models (Imp.) shows the percentage of
improvement of the global and local approach beyond the standard global approach. For SLIM, the parameters are the l2 and l1
regularization parameters � and �. For PureSVD, the parameter is the rank of the model (f ). For GLSLIM, the parameters are:
the number of user subsets (Cls), the global regularization parameters �� and �� and the local regularization parameters: �l
and �l . For sGLSVD, the parameters are: the number of user subsets (Cls), the rank of the global model (f � ) and the rank of the
local models (f c ).
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Table 5: The training time forml10m dataset with 5 user sub-
sets.

Method mins
sGLSVD 9.3
GLSLIM 199.2
GLSLIM-warm 53.7

that the behavior of a user can be described by a set of aspects
shared by all.

Learning the user model we proposed with a global latent space
approach can be di�cult, because we often have sparse data. Thus,
we propose two methods: rGLSVD and sGLSVD, which explicitly
encode this structure, by estimating both a set of global factors and
sets of user subset speci�c latent factors.

The experimental evaluation shows that the proposed approaches
estimate better latent representations for the users, outperforming
competing latent space top-N recommendation approaches signi�-
cantly, thus showing the merits of the proposed user model. The
performance improvement is on average 13% and up to 37%.

In the future, we plan to combine the two proposed approaches,
creating a ‘rsGLSVD’ approach, using a regularized latent space
model as the basis model (such as regularized SVD), so that users
would not always switch to the subset of higher dimensions, as this
would be penalized. Another potential future direction could be
to estimate item-subsets, instead of user subsets, so that the latent
factor representation of the items could be also improved. Finally,
the proposed approaches can be extended to many levels of local
models, instead of one as shown in this paper, thus resulting in a
hierarchical model.
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