
Plan B Project – Rankyung Hong

1 / 16

Master’s Plan B Project Report

Topic: Exploring Distributed Deep Learning in LAN and WAN environments

Rankyung Hong

hongx293@umn.edu

Contents

1. Introduction … page 2

 1.1. Distributed Deep Learning (DL)

 1.2. Centralized and Decentralized DL

 1.3. Synchronous and Asynchronous DL

2. Motivation … page 5

3. Problem Definition … page 6

4. Related Work … page 6

 4.1. TensorFlow: A Distributed DL Framework

 4.2. Gaia: Centralized DL with Important Weight Sharing

 4.2. Ako: Decentralized DL with Partial Gradient Exchange

5. System Design for Ako Implementation in TensorFlow … page 8

6. Beyond Ako in LAN and WAN environments … page 10

7. Experiment settings … page 10

8. Evaluation and Analysis … page 12

9. Conclusion … page 16

10. References … page 16

Plan B Project – Rankyung Hong

2 / 16

1. Introduction

The advent of Deep Neural Networks (DNNs) has renewed the inference or prediction records
conducted by machine learning techniques in many areas and applications such as image or
video classification, speech or text recognition, image-to-text generation. The key to the
success is a large amount of data and hidden non-linear multilayers. In the previous machine
learning, algorithms called perceptron using single-layer linear classifiers were the main
stream to make a classification decision based on the value of a linear combination of the
characteristics of objects. In DNNs, however, the paradigm has been changed. Algorithms
themselves figure out the characteristics of objects by using the multiple non-linear layers
while being fed with the huge volume of data. Lower layers of DNNs closed to the input detect
primitive characteristics such as lines of various slopes, colors, whereas higher layers closed
to the output perceive high-level characteristics such as shape of objects.

Figure 1. Deep Learning (DL)

Deep Learning (DL) is a learning process to detect the low- and high- level features
of object using a DNN and data so as to achieve applications’ goal. In figure 1, a DNN model
is composed of input layer (vertices in red), hidden layers (vertices in yellow), output layer
(vertices in blue), and weights (edges connecting the vertices). The weights (W) are the only
trainable variables. Their initial values are small random numbers and final values affect the
performance (accuracy) of the model. Input can be any data such as pixels of images, words
of documents, sound wave of voice. Output can differ from the purpose of application such as
prediction of an unseen images, generation of description given an image. Through forward
propagation, output is calculated by a series of multiplications of input and the weights.
Gradients are modification to the values of the weights, the partial derivatives of an objective
function given the difference between the output of the model and the ground-truth given by
application users. Through backward propagation, gradients are applied to weights by a series
of backward multiplication with the weights trained so far to update the previous weights.

DL has two phases – training and inference phases. Training phase is to find the best
values of weights in all layers to obtain the highest accuracy in object classification through
forward and backward propagations. Inference phase is to get predictions to unseen data in
training based on the weights trained. The predictions are the output through forward
propagation.

Plan B Project – Rankyung Hong

3 / 16

There are two common statements in deep learning area. First, the larger the amount
of training data is, the higher the prediction accuracy of the trained model can have. Seconds,
the larger DL model is required to handle the larger data. For example, a DL model can learn
invariant characteristics of cars when given a large variety of images of cars such as various
colors, types of cars, different backgrounds, angles of pictures, etc. Along with it, the number
of weights of the model should become larger in order to learn numerous features of the object.
As a result, when any unseen images of cars are fed to the trained model, it can result in highly
accurate prediction to the images whether they are cars or not. However, it raises a pain point
in training phase when a single machine is used to process the large volume of data. Moreover,
it may be impossible to store the data in a machine as the data size is growing. Consequently,
distributed deep learning is inevitable to handle a large size of data and/or the DL model for
better accuracy.

1.1. Distributed Deep Learning (DL)

Multiple machines are used to train a DL model given a large size of data in distributed deep
learning. There are three kinds of parallelisms – Data, Model, and Hybrid parallelism. For data
parallelism, the input data is partitioned and distributed to multiple machines which each
machine has an identical whole DL model. For model parallelism, the model is partitioned and
distributed to multiple machines while each machine processes the same whole data. For
hybrid parallelism, both the model and data are partitioned and distributed to machines. Since
the size of data is relatively much larger than the one of DL models, and it is the main cause
of the lack of storage resource, the data parallelism is most frequently used in current deep
learning.

 1.2. Centralized and Decentralized DL

There are two different ways to update weights of DL models in training phase – Centralized
and Decentralized deep learning. Figure 2 illustrates the centralized DL and figure 3
demonstrates the decentralized DL.

Figure 2. Centralized Deep Learning: Parameter Servers and Workers

Plan B Project – Rankyung Hong

4 / 16

In the centralized DL, there are central components called parameter servers (PS) to
store and update weights. The number of parameter servers can be one to many, which depends
on the size of weights of a DL model or policies of the application. Each worker pulls the latest
values of the weights from the parameter servers, calculating gradients with the weight values
and their data, and then pushing the gradients to the parameter servers. The parameter servers
update the weights by applying the gradients collected from all the workers through back
propagation.

Figure 3. Decentralized Deep Learning: Workers without Parameter Servers

In the decentralized DL, there are no central components, parameter servers. Every
worker maintains the latest values of the weights by themselves. They do not exchange any
weight values from others, yet they update their own weights through gradients of others. The
final weights of the workers can differ from each other as training goes since they do not
synchronize the weights in any phases in the decentralized DL. Therefore, their accuracies are
more susceptible to different initial values of weights and different training speed of individual
workers than the ones in the centralized DL. In the other hand, workers sharing parameter
servers can have relatively similar weights at the end since they start gradient calculation every
step with the same weight values.

 1.3. Synchronous and Asynchronous DL

Total training dataset is divided into multiple mini-batches, which are a bundle of
data samples shown in figure 4. A mini-batch is the data processing unit to calculate gradients
of the weights in a single iteration. A single round of whole mini-batches processing is called
an epoch. The most popular optimization method used in recent deep learning is stochastic
gradient descent (SGD), also known as incremental gradient descent. The goal in the training
phase is to minimize the loss value of object function. During such an optimization process,
DL keeps modifying the weights by a series of gradients derived from a mini-batch and the
weights in previous iteration.

Plan B Project – Rankyung Hong

5 / 16

Figure 4. Mini-batch: a data unit for a single gradient calculation

Workers can proceed the weight update iterations either synchronously or
asynchronously. In synchronous DL, the workers should wait until everybody finishes previous
iteration consisting of a cycle of forward and backward propagations. Discrepancies in data
processing speed among workers or the presence of stragglers cause longer training time. On
the other hand, the asynchronous DL are free from the issue since each worker proceed their
own iterations no matter of others’ progress. However, the larger the progress difference is
among workers, the lower the final accuracy of DL model has. Because workers cannot get all
gradients from others before starting the next iteration, weight modification information
contained in gradients sent by the slower processing workers are unable to apply to the iteration.
In worst case, DL models can even be diverged. That is, the loss value of the object function
is getting larger and lager as iteration goes. Therefore, recent researches employ bounded
synchronous DL, allowing workers to advance their iterations within a limit of iteration
difference between the slowest worker so as to gain advantages from both sides – higher
accuracy from pure synchronous DL and fast training time from pure asynchronous DL.

2. Motivation

Distributed deep learning enables to effectively train DL models with a large dataset. However,
their performance is bounded by the network capacity of machines as the number of workers
increase.

 Figure 5: Network bottleneck issues both in distributed centralized and decentralized DL

Plan B Project – Rankyung Hong

6 / 16

For example, moderate machines have 1Gbps (125MBps) network capacity these
days. In the circumstance, most DL models tend to become larger for higher accuracy. The
winners of the most famous image recognition challenge (ILSVRC) used large size DL modes
such as AlexNet (244MB), GoogLeNet (28MB), VGG16 (536MB). That size of gradients and
weight values should be exchanged with either parameter servers in centralized DL or workers
in decentralized DL shown in figure 5. It directly affects the performance of the distributed DL
requiring hundreds of millions of iterations until the convergence of the model given large
dataset in training phase.

3. Problem Definition

The goal of the most recent researches in distributed deep learning area to train a DL model
with large-size training data using multiple machine much faster while maintaining the similar
level of accuracy with the one of single-machine DL or synchronous DL model. For such a
goal, the key problem to address is to reduce data size exchanging among machines every
iteration without harming the model convergence.

4. Related Work

 4.1. TensorFlow: A Distributed DL Framework

TensorFlow is an open source software library for efficient machine learning algorithms
especially for deep learning. It was originally developed by researchers and engineers from
the Google Brain team. It has flexible architecture allowing easy deployment of various
machine learning and deep learning models across a variety of platform such as CPUs, GPUs,
or TPUs from desktops to cluster of servers to mobile devices. It also provides different levels
of APIs and various client languages so that application developers can easily make their own
model and train it upon TensorFlow. It uses a dataflow graph to represent a DL model in terms
of the dependencies between individual operations, and a session to run all or parts of the graph
across a set of local and remote machines.

Figure 6. TensorFlow architecture and major components in a distributed setting

Distributed TensorFlow cluster comprises a one or more jobs. For centralized DL,
there are parameter server job and worker job. Each job has one or more tasks serving the same
job. All TensorFlow servers have both master process and worker process shown in figure 6.

Plan B Project – Rankyung Hong

7 / 16

Master process takes the role of an RPC service providing remote access to a set of distributed
machines, acting as a session target, and coordinating work across one or more worker services.
Worker process provides an RPC service executing parts of Tensorflow graph using its local
machine. TensorFlow provides various APIs for centralized DL. However, it currently does
not have appropriate APIs for decentralized DL.

 4.2. Gaia: Centralized DL with Important Weights Sharing

Gaia is a paper (Geo-distributed machine learning approaching LAN speeds) published to
NSDI 2017 by researchers from Carnegie Mellon University and ETH Zurich. The authors
claims the necessity of geo-distributed machine learning spanning multiple data centers
because it is impossible to move large-scale data generated rapidly all over the world into one
location for training. They propose a new synchronization model called ASP (Approximate
Synchronous Parallel) used among parameter server across multiple data centers. In data
centers, typical centralized DL is used as shown in the figure 7.

Figure 7. Gaia system overview

Figure 8. Gaia ASP (approximate synchronous parallel) techniques

The key idea of Gaia’s ASP is to share significant updates out of all weights when
exchanging the values across data centers in order to reduce the network traffic in WANs. In
addition, they also suggested additional techniques illustrated in figure 8. When the WAN B/W
is not enough to send the significant weights to other regions, the system sets ASP selective
barrier by sending only the indexes of the weights to other servers in different regions so that
they can pose next iteration until the actual values of the significant weights are sent over the
WAN. It also provides a concept of mirror clock to avoid model divergence or severe accuracy
degradation like the bounded synchronous DL. They show that Gaia provides 1.8 – 53.5 x
speedup when running models across 11 amazon global regions.

Plan B Project – Rankyung Hong

8 / 16

 4.2. Ako: Decentralized DL with Partial Gradient Exchange

Ako a paper (Decentralized deep learning with partial gradient exchange) published to SOCC
2016 by researchers from Imperial College London and MIT. It addresses the same network
bottleneck issue in distributed deep learning covered in section 2 and 3 by using the
decentralized DL shown in figure 3 with a new technique, partial gradient exchange.

 The key idea of Ako’s partial gradient exchange is to partition gradients and sent out
a partition of the gradients every iteration. Since every workers eventually can receive all
gradients of other workers within as many iterations as the number of partitions, the technique
does not affect the model convergence. The rest of gradients not sent yet are accumulated with
newly generated gradients in local machine during those iterations until being sent. More
specifically, each worker sends a partition of accumulated gradients to other workers every
iteration.

Equation 1. An Ako parameter P: the number of partitions of gradients

They introduce an equation shown in equation 1 to find the right number of partitions
of gradients where P is the number of partition, m is the size of a DL model, n is the number
of workers, and B is the outgoing network bandwidth. They show that the decentralized Ako
system can make a DL model converged faster than deployments with parameter servers using
64-node cluster.

5. System Design for Ako Implementation in TensorFlow

I design a decentralized DL system and implement Ako idea in TensorFlow in this plan B
project. Figure 9 demonstrates the architecture of Ako worker and figure 10 illustrate my
system design for the decentralized DL in TensorFlow.

Figure 9. Architecture of Ako worker

Plan B Project – Rankyung Hong

9 / 16

Each worker computes gradients with a mini-batch training data and the weight
values of the local model maintained in each machine in step 1 of the figure 9. The gradients
just generated apply to the local model immediately. In step 2, the gradients are accumulated
to the previously generated gradients for a certain iteration period in order to make sure every
update information can be shared to other worker eventually. In step 3, the accumulated
gradients are divided into multiple partitions. In step 4, one of the partition is sent to other
workers. In step 5, other workers’ gradient partitions are received asynchronously. Since it is
a non-blocking operation, multiple threads receive the partitions from others, and apply them
to the local model immediately. These steps repeat every iteration until the model is converged.

Figure 10. My system design for the decentralized DL in TensorFlow

I have designed the decentralized DL as shown in the figure 10. Every workers have
their own message queues in order to share gradients each other for the steps 4 and 5 of figure
9. They also have a synchronization channel to ensure everybody go together every iteration
for the synchronous DL. I have utilized Redis, an open source library for in-memory data
structure store. Redis has several features – key-value storage, publish/subscribe messaging
system as well as various memory optimization, caching policies, mass insertion of data,
partitioning of data, and distributed locks. The key-value storage is used for the synchronize
channel and pub/sub messaging system is used for the message queues for workers.

Current version of TensorFlow does not provide appropriate APIs for deployments of
the decentralized DL like Ako. I initially implemented the message queues and
synchronization channel by utilizing a TensorFlow API, ft.FIFOQueue. However, when
training a DL model with the API, the size of Tensorflow graph was growing as iteration goes.
TensorFlow keeps appending new nodes to the graph whenever the ft.FIFOQueue operation is
called since the operation is used when a session is running, which is supposed to be called
only in graph building. Therefore, I replaced it with Redis.

Plan B Project – Rankyung Hong

10 / 16

6. Beyond Ako in LAN and WAN environments

Ako has two assumptions. First, DL models are running in a cluster in a data center unlike
Gaia. That is, AKO considers only LAN-speed network bandwidth between workers. Second,
the authors also assume uniform network bandwidth among workers having similar level of
bandwidth. Even though they mentioned a factor of B described in equation 1, the actual value
of B becomes identical under the second assumption, and the other factors m and n are same
in all workers. As a result, every worker has the same value of parameter P.

I wondered if the decentralized DL can have the same performance and accuracy
when being applied in WAN environments. Furthermore, it was curious that how the
performance and accuracy would change under the heterogenous LAN and WAN settings.
Therefore, I planned to conduct the following experiments for comparison between a
decentralized DL (my AKO implementation in TensorFlow) and a centralized DL (a
deployment with parameter servers utilizing only TensorFlow operators) in various LAN and
WAN environments.

 In uniform LAN

 Synchronous vs Asynchronous Centralized DL

 Synchronous vs Asynchronous Decentralized DL

 Centralized DL vs Decentralized DL with fixed iterations

 Centralized DL vs Decentralized DL with fixed learning time

 In heterogenous LAN, uniform WAN, heterogenous WAN

 Centralized DL vs Decentralized DL with fixed learning time

7. Experiment settings

 7.1. Testbed

Experiments are carried out on 5 local servers with 6 CPU cores (Intel Xeon CPU E5-2620 v3
@ 2.4GHz), approximately 45G available memory, and 1Gbps ethernet capacity per server.
Cluster size varies as per experiment settings.

 7.2. Dataset

The dataset is CIFAR10 consisting of 60,000 32 by 32 color images, with 6000 images per
class. There are 50,000 training images and 10,000 test images. There are 10 classes in the
dataset such as airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

 7.3. My DL model

As shown in the figure 11, there are an input layer, an output layer, and 3 hidden layers, which
includes 2 convolutional layers and 2 fully-connected layers. Weights are initialized with
normal distribution with zero mean and 0.1 standard deviation, and bias are initialized to 0.0.
Relu (rectified linear unit) as an activation function is applied to every layer except for the last
output layer. Drop-out is applied to the first fully-connected layer for regularization. For the

Plan B Project – Rankyung Hong

11 / 16

second fully-connected layer, softmax is applied for multiclass classification. Loss function is
cross-entropy function and optimization is stochastic gradient decent (SGD). The model has
4M number of weights and its size is 17 MB. A mini-batch contains 104 samples.

Figure 11. My DL model used for all experiments

 7.3. Metrics

 The following two metrics are used in all experiments

 Training time (= execution time): the elapsed time in seconds from training start to
training stop

 Accuracy: the percentage of the number of test images correctly predicted over
10,000 test images

 7.4. LAN and WAN emulation

For uniform LAN experiments, every link among workers has 800 Mbps network bandwidth.
For heterogeneous LAN experiments, 800/400/200 Mbps network bandwidth are assigned to
links. For uniform WAN experiments, 40 Mbps is used. For heterogenous WAN environments,
40/20/10 Mbps are set up.

TC commands are used to manipulate network traffic in the Linux kernel. Whenever
the kernel needs to send a packet to an interface such as eth0, it is enqueued to a qdisc
(queueing discipline). By adding a class option with different network bandwith condition to
a qdisc, the qdisc may control the traffic as registered. A filter option is used to determine in
which class a packet will be enqueued.

Plan B Project – Rankyung Hong

12 / 16

8. Evaluation and Analysis

All the numbers in the evaluation are calculated based on the average of three trails. The error
bars indicate 95% confidence interval. N workers are used in both centralized and
decentralized DL for N-worker experiments. One additional parameter server is used for the
centralized DL settings. P = X indicates that the number of partition of gradients is X in all
workers of decentralized DL. In the centralized DL, workers always share whole gradients to
the parameter server, so it implies P = 1. When workers have their own number of partition, I
mark it as P = various.

 8.1. Centralized DL (TensorFlow)

The figure 12 shows that the difference in execution time and accuracy between synchronous
and asynchronous centralized DL. The models are trained with 2400 iterations in uniform LAN
environment. As the number of workers increases, the execution time decreases in both
synchronous and asynchronous DLs since the amount of data processed in a worker reduced.
At the same time, the accuracy also decreases since every iteration each worker calculates their
gradients in the absence of larger portion of modification information handled by other
workers. The biggest difference in training time reduction of 42% appears in 4-worker setting
because 4-worker synchronous DL should wait all four workers are done to start next iteration.
The accuracies of the two DLs remain same in 2-worker setting, whereas 8% discrepancy
happens in 4-worker setting because there is no restriction to workers being ahead of the
slowest worker in asynchronous DL.

Figure 12. Execution time and accuracy difference

between Synchronous and Asynchronous Centralized DL in uniform LAN

 8.2. Decentralized DL (Ako)

The figure 13 shows that the difference in execution time and accuracy between synchronous
and asynchronous decentralized DL. The models are trained with 2400 iterations in uniform
LAN environment. Like the case of centralized DL in the figure 12, it shows the similar
patterns. As the number workers increase, training time decreases in all partition cases. We can
directly compare P = 1 cases of N-worker settings in decentralized DL with the one of
centralized DL. The 4-worker P = 1 setting has the largest difference of 27% in the training
time between synchronous and asynchronous decentralized DLs. The difference diminishes to
17% as the number of gradient partitions increases to P = 4 because the amount of data

Plan B Project – Rankyung Hong

13 / 16

exchanged every iteration in P =4 case is smaller than the one of P = 1 case and the processing
time is reduced accordingly.

The decreasing accuracy as the number of workers increase follows the same pattern
of centralized DL due to the same reasons with the centralized DL. However, decentralized
DL has no difference in accuracy between synchronous and asynchronous DLs unlike the
centralized DL having 8% of discrepancy between them. The network resource is equally
dominated by the same amount of gradients data in all workers since the P values are the same
and it is trained in uniform LAN network. It may prevent some workers from being far ahead
of others, which results in similar accuracy between the two DLs.

Figure 13. Execution time and accuracy difference

between Synchronous and Asynchronous Decentralized DL in uniform LAN

 8.3. Centralized vs Decentralized DLs with fixed learning iterations

Figure 14 shows the difference between best cases of centralized and decentralized
DLs. The experiments are conducted in uniform LAN environment with 2400 iterations.
As the number of workers increase, the training time difference between the two DLs increase
in both synchronous and asynchronous settings. On the other hand, the accuracy difference
increases only in synchronous setting from 4% to 10%, whereas the difference in asynchronous
setting is consistent as 4%. The reason of the increasing difference in execution time is
obviously because of the effect of gradient partitioning of the decentralized DL, which can
reduce the date exchanged among workers.

Plan B Project – Rankyung Hong

14 / 16

The 4% accuracy difference between the two DLs is caused by the absence of
parameter servers in decentralized DL. This is because each worker in decentralized DL has
no change to synchronize their weights each other, and solely depends on the gradient sharing.
This tendency is more pronounced in synchronous setting because all workers get
synchronized every iteration through parameter servers. Therefore, the accuracy difference in
4-worker setting becomes larger from 4% to 10%.

Figure 14. Centralized vs Decentralized DLs trained 2400 iterations in Uniform LAN

 8.4. Centralized vs Decentralized DLs with fixed learning time

In this section, all cases are trained for 300 seconds. Figure 15 shows the results trained in
uniform and heterogenous LANs and figure 16 shows the results trained in uniform and
heterogenous WANs. Decentral (P = various) case indicates the accuracy obtained using
different P values for each worker.

The key findings across from all LAN and WAN settings shown in the figure 15 and 16 are
the followings:

 Decentralized DL outperforms centralized DL when network resource is scares.

 More partitions (larger P values) leads fast learning given fixed execution time.

 Decentralized DL (P = various) can get the best or similar accuracy in most cases.

Figure 15. Centralized vs Decentralized DLs trained for 300 seconds

in Uniform and Heterogenous LANs

Plan B Project – Rankyung Hong

15 / 16

Figure 16. Centralized vs Decentralized DLs trained for 300 seconds

in Uniform and Heterogenous WANs

 8.5. LAN vs WAN

Figure 17 shows the required iteration for given accuracy goal (40%) and the accuracy change
of a worker as time goes. Decentralized DL requires extra iterations for the same accuracy in
uniform LAN setting shown in the upper left graph in figure 17 because gradients are
partitioned, and addition iterations are needed until the gradients are fully delivered to all
workers. However, in the lower left graphs shows the opposite in which the centralized DL
requires more iterations than the decentralized DL. With too few parameter servers or scarce
network bandwidth, the efficiency of the parameter servers approach declines.

Figure 17. Centralized vs Decentralized DLs trained 300 seconds in Uniform LAN and WAN

The accuracy fluctuation over time of the centralized DL in both LAN and WAN is
greater than the one of the decentralized DL shown in the two graphs in the right of figure 17.
It is because of side effect of using parameter servers. When applying new weights pulled from

Plan B Project – Rankyung Hong

16 / 16

the parameter server at the beginning of every iteration, it temporarily harms on the accuracy
of the worker. However, it eventually helps the model converged faster when network
bandwidth is enough because it widens the opportunity to explore gradient space.

It is obvious that the execution time of decentralized DL is much less than the one of
centralized DL when the network bandwidth is scarce because the small size of data exchanged
every iteration as shown in the right bottom graph in figure 17. The behavior of the centralized
DL becomes like decentralized DL with P = 1 in WAN setting.

9. Conclusion

I have explored a variety of characteristics of distributed deep learning in both LANs and
WANs. In uniform LAN environments, centralized DL and decentralized DL has similar
performance in asynchronous setting in training time and prediction accuracy, whereas
decentralized DL has much better performance in training time, but lower accuracy in
synchronous settings. In other network environments – heterogenous LAN, uniform WAN,
and heterogenous WAN, decentralized DL outperforms centralized DL when it is trained with
more partitions of gradients. The reduced amount of data exchanged every iteration influence
both training time and accuracy in a positive way. In addition, the decentralized DL with
different P values can get the best or similar accuracies in most cases. The experiments also
show that scares network bandwidth in WANs deteriorates the efficiency of centralized DL.

10. References

Abadi, Martín, et al. "Tensorflow: Large-scale machine learning on heterogeneous distributed systems."
arXiv preprint arXiv:1603.04467 (2016).

Abadi, Martín, et al. "TensorFlow: A System for Large-Scale Machine Learning." OSDI. Vol. 16. 2016.

Hsieh, Kevin, et al. "Gaia: Geo-Distributed Machine Learning Approaching LAN Speeds." NSDI. 2017.

Watcharapichat, Pijika, et al. "Ako: Decentralised deep learning with partial gradient exchange."
Proceedings of the Seventh ACM Symposium on Cloud Computing. ACM, 2016.

Krizhevsky, Alex, and Geoffrey Hinton. "Learning multiple layers of features from tiny images." (2009).

https://www.tensorflow.org

