
Non-stationary Policy Learning in 2-player Zero Sum Games

Content Areas: machine learning, Markov decision processes, reinforcement learning

Abstract

A key challenge in multiagent environments is the con-
struction of agents that are able to learn while acting
in the presence of other agents that are simultaneously
learning and adapting. These domains require on-line
learning methods without the benefit of repeated train-
ing examples, as well as the ability to adapt to the
evolving behavior of other agents in the environment.
The difficulty is further exacerbated when the agents
are in an adversarial relationship, demanding that a
robust (i.e. winning) non-stationary policy be rapidly
learned and adapted.

We propose an on-line sequence learning algorithm,
ELPH, based on a entropy pruning technique that is
able to rapidly learn and adapt non-stationary poli-
cies. We demonstrate the performance of this method
in a non-stationary learning environment of adversarial
zero-sum matrix games.

Introduction

A significant challenge in multiagent environments is
to learn and adapt in the presence of other agents that
are simultaneously learning and adapting. This prob-
lem is even more acute when the agents are competing
in some task. In competitive environments, each agent
is trying to optimize its return at the expense of the
other agents, therefore any single agent’s success de-
pends on the actions of the other agents. Optimal be-
havior in this context is defined relative to the actions
of the other agents in the environment on a moment
to moment basis. An agent’s policy must continuously
change as the other agents learn and adapt. Assuming
the other agents have similar goals (i.e. to win), this
results in the need to learn non-stationary policies over
the space of stochastic actions.

Many previous machine learning approaches apply to
single agent domains in which the environments may be
stochastic, but the learned policies are stationary. (Sut-
ton & Barto 1998; Agrawal & Srikant 1995) However,
approaches that learn only stationary policies are in-
sufficient for multiagent, non-stationary environments.
We present ELPH, a novel on-line learning method that
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learns quickly and is highly adaptive to non-stationary
environments. We demonstrate these abilities in the
non-stationary policy learning context of the two-player
zero sum game Rock-Paper-Scissors, employing compe-
tition against both synthetically generated agents and
human opponents.

Zero sum matrix games

Matrix games (Owen 1995) are two player games in
which each player selects simultaneously from some set
of actions, ai ∈ A. Each player’s payout or reward can
be represented by an n × n matrix, Rij in which the
rows i represent the player’s action and the columns
j represent the opponent’s action. A zero sum matrix
game is one in which each player’s reward matrix is
the negative of the other (R1 = −R2). In the game
of Rock-Paper-Scissors each player selects from ai ∈
{rock, paper, scissors} with reward as follows:

R1 =

[

0 −1 1
1 0 −1

−1 1 0

]

, R2 =

[

0 1 −1
−1 0 1

1 −1 0

]

Here, paper beats rock, scissors beats paper, and pa-
per beats rock. Nobody receives a payout for ties (Fu-
denberg & Levine 1999).

In each of these cases, there is no optimal policy for
either player that is independent of the other. For ex-
ample, if player1 employs a policy of playing all rock,
then the optimal policy for player2 is to play all paper.
Assuming each player is playing rationally and adapting
his strategy, a game-theoretic result for 2-player zero
sum games is that each player converges to a unique
Nash equilibrium. In this case, the equilibrium policy
is to play randomly.

Bowling (Bowling & Veloso 2002) has shown that
the WoLF (Win or Learn Fast) principle applied to an
incremental gradient ascent over the space of possible
policies will converge to the optimal policy. However,
using incremental gradient ascent is problematic when
faced with an on-line adversarial learning environment
in which the policy space gradient is non-stationary and
the current operating policy must be adapted quickly
(within a few plays).



The ability for gradient ascent to “learn fast” de-
pends entirely on the selection of the learning rate
applied to the policy update. If the learning rate is
small, adapting to the opponent’s strategy will be slow.
If the learning rate value is large, facilitating more
rapid learning, convergence might be compromised. Al-
though incremental gradient ascent can be proven to
converge to an optimal policy in the long run, the abil-
ity for an opponent to change policies more quickly can
render this method ineffective.

ELPH: Sequence learning with an

Entropy Learning Pruned Hypothesis

space

In situations where an opponent agent is likely to
change policies frequently and without warning, it is
essential that an agent (1) learn on-line, (2) learn as
rapidly as possible and (3) adapt quickly to changing
opponent strategies.

We propose a novel on-line learning algorithm, that
observes and learns temporal sequences over a short-
term observation history using an entropy measure
to discard all but highly predictive sequences. This
method is called ELPH (Entropy Learning Pruned Hy-
pothesis space). The method exhibits an ability to both
rapidly learn predictive sequences (using as little as a
single example) and quickly adapt to non-stationarity
in the underlying process statistics. In a very general
sense, the strategy is to intentionally overfit the obser-
vations and subsequently discard non-predictive and/or
inconsistent hypotheses in real-time.

Unlike order-n Markov chain methods, in which
learning occurs over a space of uniform n-grams, ELPH
learns over a space of hypotheses (HSpace).

Given a short temporal history of the n most re-
cent observations, an individual hypothesis consists of a
unique subset of the ordered contents of the observation
history together with the set of events that have, in the
past, immediately followed the pattern contained in the
observation subset.

Consider some event et, occurring at time t, which is
immediately preceded by a finite series of temporally or-
dered observations (ot−n, . . . , ot−1). If some subset of
those observations consistently precedes the event et,
then it can be subsequently used to predict future oc-
currences of et. In general, if the observed system takes
the form of a Markov chain of order 1, then the single
observation ot−1 can be used to predict the probability
of the event et. However, given an arbitrary series of
observations, it is not necessarily true that the sequence
results from a Markov process of order 1. For example,
it may be that a single observation like ot−4 or a com-
bination of two specific observations like {ot−6, ot−4}
might suffice to accurately predict the observed event.

At each time step, ELPH attempts to learn which
of the possible subsets of the observation history are
consistently good at predicting the current event et. It
does this by adding a hypothesis to the HSpace for each

possible subset of the observation history correspond-
ing to the currently observed event, et. Without loss
of generality, assuming an observed history length of 7
there are 27 = 128 such hypotheses:

{ot−1} ⇒ et

{ot−2} ⇒ et

...
{ot−6, ot−4} ⇒ et

...
{ot−7, ot−6, . . . , ot−1} ⇒ et

Each of the individual hypotheses are inserted into
the HSpace subject to the following rules:

1. If the hypothesis pattern is not in the HSpace, it is
added with an associated prediction-set containing
only the event et with its event frequency set to 1.

2. If the hypothesis already resides in the HSpace, then
et is compared with the stored predictions in the as-
sociated prediction-set. If found, the proposed hy-
pothesis is consistent with past observations and the
event frequency corresponding to et is incremented.

3. If the hypothesis already resides in the HSpace but
the observed event et is not found in the associated
prediction-set, the novel prediction is added to the
prediction-set with an event frequency of 1.

The combinatorial explosion in the growth of the
HSpace is controlled through a process of active prun-
ing. Since we are only interested in those hypotheses
that provide high-quality prediction, inconsistent hy-
potheses or those lacking predictive quality can be re-
moved. For any given hypothesis, the prediction-set
represents a histogram of the probability distribution
over those events that have followed the specified pat-
tern of observations. The entropy of this distribution
is a measure of the prediction uncertainty and can be
considered an inverse qualitative measure of the pre-
diction. Using the individual event frequencies, fei

, the
entropy of the prediction set can be computed as,

H = −
∑

ei

fei

fetot

log2

(

fei

fetot

)

where fetot
=

∑

ei
fei

is the sum of all the individual
event frequencies. If a specific hypothesis is associated
with a single, consistent prediction, the entropy mea-
sure for that prediction-set will be zero. If a specific
hypothesis is associated with a number of conflicting
predictions, then the associated entropy will be high. In
this sense, the “quality” of the prediction represented
by the specific hypothesis is inversely related to the en-
tropy measure.

Those hypotheses that fail to provide consistent pre-
diction accuracy are pruned. If the entropy of a specific
hypothesis exceeds a predetermined threshold, Hthresh,
it fails the “predict with high probability” test and is no
longer considered a reliable predictor of future events,
so it is removed from the HSpace. Over time, only those



hypotheses deemed accurate predictors with high prob-
ability are retained. Entropy threshold pruning also
facilitates rapid adaptation in non-stationary environ-
ments. When the underlying process statistics change,
the resultant increase in prediction-set entropy causes
existing hypotheses to be removed and replaced by low-
entropy hypotheses learned following the change.

Using entropy as a qualitative prediction measure
also provides a mechanism to infer future events from
the current observation history. To make a prediction
given a sequence of observations, we locate the hy-
potheses in the HSpace which are consistent with the
current contents of the observation history and rank
them. For ranking predictions, a simple entropy com-
putation is not sufficient because it is biased toward
selecting those hypotheses with a small number of oc-
currences. For example, a hypothesis that has only oc-
curred once will have a single prediction-set element,
producing a computed entropy value of zero. Instead
we use a more reliable entropy measure, obtained by re-
computing the prediction-set entropy with the addition
of a single, hypothetical false-positive element repre-
senting an implicit prediction of ”something else”. This
reliable entropy automatically discounts infrequently
occurring hypotheses.

Given an observation history of length n, the max-
imum number of matching hypotheses is 2n − 1. The
most frequently occurring prediction (maximum likeli-
hood) from the single hypothesis with the lowest reli-
able entropy is the best prediction that can be made
from the current observations.

Statistical structure in the observation space leads to
efficient pruning: If the temporal stream of observations
is truly random, resulting in the inability to predict fu-
ture events, then ELPH will continually prune and add
new hypotheses (i.e. thrash). However, most interest-
ing domains possess regularities our algorithm should
efficiently exploit.

Using the ELPH algorithm to observe the actions of
another agent, we can learn the predictive elements of
that agent’s policy. In the case of game playing, this ca-
pability can be used to exploit the learned policy of the
opponent to select superior plays in those cases where
the opponent is acting predictably. The overall strategy
is to ascertain predictability bias in the opponent’s play,
predict what the opponent is most likely to do next, and
choose a play that is superior to that predicted for the
opponent. If the opponent exhibits predictable behav-
ior, the policy learning agent can exploit that bias and
achieve a statistical edge.

Methods and Experimental Results

We pitted the ELPH algorithm against a collection of
both synthetically generated agents and human play-
ers in the game of Rock-Paper-Scissors. The synthetic
agents produced a series of 1,000 plays according to
a stochastic policy or a non-stationary series of ei-
ther pure (deterministic) or mixed (stochastic) policies.

ELPH was used to learn the non-stationary policy of
the agents, and play accordingly.

Synthetic stochastic agents

The simplest agent class is one in which all plays are
purely random. In this case, we simply generated a se-
ries of 1,000 plays from a uniformly random transition
matrix U . This agent is playing a stationary policy
at the Nash equilibrium. In this case, the best pol-
icy that ELPH can employ is also random. The num-
ber of wins/losses as well as ties should be roughly
equal for both ELPH and the synthetic agent. Fig-
ure 1 shows that ELPH and the opponent approxi-
mately break even, each winning 1/3 of the trials in
this case.
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Figure 1: ELPH accumulated wins over time against a
purely stochastic synthetic agent. Results are for 100
trials of 1000 plays. We show the mean and plus/minus
twice the standard deviation.

Synthetic non-stationary deterministic
agents

This synthetic agent class generated a series of 1,000
plays from a non-stationary collection of randomly cho-
sen deterministic policies. A specific policy was chosen
at random and used to generate n consecutive plays,
where n was also chosen randomly from a Poisson dis-
tribution with µ = 20. After generating the n plays, a
new policy and new n were chosen. This process was
repeated until a total of 1,000 plays were generated.

Each specific policy was constructed by filling a 3×3
matrix with exactly one “1” in each row, where the
column position of each “1” was chosen at random uni-
formly from the set {1, 2, 3} corresponding to the states
{rock, paper, scissors}. All the remaining matrix en-
tries were set to 0.

The resulting transition matrices, though determin-
istic, are not ergodic. They may be cyclic and/or re-
ducible. They could produce degenerate cases such as
a fixed play (i.e. rock, rock, rock . . . ).
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Figure 2: ELPH accumulated wins over time against
a synthetic agent playing from a non-stationary set of
randomly selected deterministic policies. Results are
for 100 trials of 1000 plays. Each policy was played for
a randomly selected time determined from a Poisson
distribution with µ = 20.

When ELPH was matched against the non-stationary
deterministic synthetic opponent, it was able to both
quickly learn the opponent’s active policy and rapidly
adapt to the individual policy changes. The procedure
used to generate the synthetic agent’s play results in
a uniform distribution of actions from an overall fre-
quency point of view, but due to the deterministic na-
ture of each individual policy, there is significant smaller
scale structure. ELPH exploits this structure by rapidly
adapting to the policy changes and quickly learning the
new policy. This behavior is detailed in Figure 2, where
ELPH wins nearly 90% of the plays, even though the
agent is changing policies approximately every 20 plays.

Synthetic non-stationary stochastic agents

This synthetic agent was constructed like the preceding
one, but using stochastic policies, as follows.

Randomly select a purely deterministic transition
matrix D according the same procedure as before. De-
fine U to be the uniformly random transition matrix
(all entries equal to 1/3). Construct T as the convex
sum of D and U :

T = λ(D) + (1 − λ)(U), (1)

where λ is a pseudo-random number chosen uniformly
from the interval (0, 1].

The matrix T will always be ergodic even though, for
λ near 1, the matrix will be highly deterministic.

For this agent, we experimented with different ways
of switching between the stochastic and deterministic
processes.

Figure 3 details results for play against a non-
stationary agent that is randomly selecting mixed poli-
cies at the same rate as in Fig. 2. Here the performance
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Figure 3: ELPH accumulated wins over time against a
synthetic agent that plays from a non-stationary set of
stochastic policies of the form (1). Results shown for
100 trials of 1000 plays. Each policy was played for a
randomly selected time chosen from a Poisson distribu-
tion with µ = 20.

is degraded, but ELPH is still able to exploit the times
when the λ value is high. ELPH is still able to win
more plays than the opponent in every case.
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Figure 4: ELPH accumulated wins over time as in
Fig. 3, but with λ = 0, 1 chosen randomly, each with
probability 1/2. Each policy was played for a randomly
selected time chosen from a Poisson distribution with µ
= 20.

Figure 4 shows the results when λ is restricted to take
on extreme values 0 and 1. Figure 5 illustrates how the
ELPH performance decreases when opponent’s policy
changes more often, but ELPH still outperforms the
opponent.
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Figure 5: Same as Figure 4 except that each policy
was played for a randomly selected time chosen from a
Poisson distribution with µ = 3.

Human opponents

Play against human opponents involved an interactive
version of Rock-Paper-Scissors. The game was set to
end when either player’s accumulated reward exceeded
100. If a human opponent plays rationally, according
to the Nash equilibrium, he/she should ultimately play
randomly to maximize return. However, humans have
great difficulty acting randomly. The observed behav-
ior appears to rather be one of constantly trying “dif-
ferent” approaches in an effort to “fool” the opponent.
The working hypothesis in this case is that humans will
exhibit biased play which can be exploited by an agent
that is able to quickly learn and adjust to the non-
stationarity of the overall policy.

A multiple context ELPH approach was used to learn
two separate temporal observation streams in parallel.
The first stream consisted of the consecutive plays of
the opponent and was used to predict the opponent’s
subsequent play. The second stream was used to pre-
dict the opponent’s next play based on the sequence
of ELPH’s plays. In this way, if the opponent exhibits
biased patterns related to his/her own play, the first
stream provides predictors, whereas if the opponent at-
tempts to exploit perceived patterns related to the ma-
chine’s play, that bias will be detected and exploited.
The approach is simple. Observe, make two predictions
of the opponent’s next play based on the separate input
streams, and select the play that has the lowest reliable
entropy measure.

The results against human opponents are less pro-
nounced, but demonstrate ELPH performance when
confronted by a non-stationary policy in which the time
scale and selection process is completely unknown. In
this case ELPH is able to exploit predictive bias in the
human opponent’s play. Figure 6 details one represen-
tative match. As shown in this example, an advantage
was gained following approximately 35 − 40 plays. It

adapts to the changing play of the opponent and quickly
exploits predictive patterns of play.
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Figure 6: ELPH accumulated wins over time against a
human opponent. Results shown for a single match.

Discussion

Statistical estimation methods such as WoLF-PHC act
according to their best estimate of the optimal policy
and then they modify that estimate based on the ob-
served outcome. In multiagent environments, that out-
come (reward) is a function of the opponent’s policy,
and is assumed to change over time. Owing to this de-
pendency, these learning methods are, in effect, form-
ing an indirect estimate of the opponent’s policy over
time. The indirect estimate of the opponent’s policy
is learned through an exploratory or “probative” pro-
cess of trying some action and observing the opposing
agent’s response. In a non-stationary domain, this pro-
cess may never fully arrive at an adequate estimate of
the opponent’s (instantaneous) policy. These methods
also require some stated prior estimate on the policy
space. In most cases, the initial estimate of the opti-
mal policy is assumed to be a uniform distribution over
actions. If infinitesimal gradient ascent is employed, it
usually takes an unacceptably long time to converge to
the optimal policy.

ELPH, on the other hand attempts to learn the op-
ponent’s policy directly, without exploration. It learns
over a space of observed behavior hypotheses. This is
a decidedly distinct way of approaching the problem.
Assuming the opponent is playing according to some
policy (rational or otherwise), ELPH generates a col-
lection of hypothetical states from the observed action
sequence and selects those that prove consistent with
the estimate of the opponent’s policy. ELPH requires
no notion of “winning” or “losing”. It simply adapts by
abandoning inconsistent predictions and acquiring new
ones based on the shift in policy space.

For WoLF-PHC, convergence to an optimal policy is
guaranteed in the long term. For two-player zero sum



games, it will ultimately converge to the Nash equilib-
rium and play randomly. In the domain presented here,
WoLF-PHC was unable to gain any advantage when
playing against same synthetic opponents as ELPH due
to the fact that the sequence of plays was too short.

The ELPH hypothesis pruning mechanism can keep
up with the changes in the opponent. This yields sub-
stantial advantages in the non-stationary domains pre-
sented here. When the opponent plays his/her optimal
strategy (random play), ELPH will respond by play-
ing randomly. But ELPH will quickly pick up on some
non-random structure in the opponent’s play.

Related work

The ELPH algorithm can be viewed as a method to
learn a sparse representation of an order-n Markov pro-
cess via pruning and parameter tying. Because sub-
patterns occur more frequently than the whole, the re-
liable entropy measure preferentially prunes larger pat-
terns. Because prediction is then performed via the best
sub-pattern, this effectively ties probability estimates of
all the pruned patterns to their dominant sub-pattern.

Previous approaches to learning sparse representa-
tions of Markov processes include variable memory
length Markov models (VLMMs) (Guyon & Pereira
1995; Ron, Singer, & Tishby 1996; Singer 1997; Ben-
gio et al. 1998) and mixture models that approximate
n-gram probabilities with sums of lower order proba-
bilities (Saul & Jordan 1998). VLMMs are most simi-
lar to our approach in that they use a variable length
segment of the previous input stream to make predic-
tions. However, VLMMs differ in that they use a tree-
structure on the inputs, predictions are made via mix-
tures of trees, and learning is based on agglomeration
rather than pruning. In the mixture approach, n-gram
probabilities p(ot|ot−1 . . . ot−n) are formed via additive
combinations of 2-gram components. Learning in mix-
ture models requires the iterative EM method to solve
a credit assignment problem between the 2-gram prob-
abilities and the mixture parameters. ELPH does not
require any iterative algorithm at each step.

Rock-paper-scissors is one of the stochastic games
used by Bowling and Veloso (Bowling & Veloso 2002)
as a demonstration of their WoLF algorithm. WoLF
(Win Or Learn Fast) applies a variable learning rate
to gradient ascent over the space of policies, adapting
the learning rate depending on when a specific policy
is winning or losing. The WoLF principle is to learn
quickly when losing and more cautiously when winning.
In contrast to this work, ELPH completely ignores the
reward or whether it is winning or losing. ELPH sim-
ply makes predictions based on past observations and
discards past knowledge if it fails to predict future play.
ELPH makes no assumption on the rationality of the
opponent’s policy. If the opponent exhibits any pre-
dictability in play, ELPH will exploit it and choose an
action that will better the opponent with a frequency
matching the statistical bias. If the opponent plays

purely randomly, then ELPH is capable of playing to
a draw.

Conclusions and Future Work

We have described an approach for learning to predict
temporal sequences that is robust to non-stationary
generative processes, and demonstrated a simple ap-
plication of the approach in playing 2-player zero-sum
matrix games. ELPH is shown to exhibit both rapid
learning and rapid adaptation to non-stationary poli-
cies, even when the policy and the time period are cho-
sen randomly.

Future work on ELPH is focused on extension to
more complex domains and on learning higher-order
sequences that repeat in time periods greater than 7
events.
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