
A Simplified Suspension Calculus and its
Relationship to Other Explicit Substitution Calculi

Andrew Gacek and Gopalan Nadathur

Digital Technology Center and Department of Computer Science and Engineering

University of Minnesota

This paper concerns the explicit treatment of substitutions in the lambda calculus. One of its
contributions is the simplification and rationalization of the suspension calculus that embodies
such a treatment. The earlier version of this calculus provides a cumbersome encoding of substi-
tution composition, an operation that is important to the efficient realization of reduction. This
encoding is simplified here, resulting in a treatment that is easy to use directly in applications.
The rationalization consists of the elimination of a practically inconsequential flexibility in the
unravelling of substitutions that has the inadvertent side effect of losing contextual information
in terms; the modified calculus now has a structure that naturally supports logical analyses, such
as ones related to the assignment of types, over lambda terms. The overall calculus is shown to
have pleasing theoretical properties such as a strongly terminating sub-calculus for substitution
and confluence even in the presence of term meta variables that are accorded a grafting interpre-
tation. Another contribution of the paper is the identification of a broad set of properties that are
desirable for explicit substitution calculi to support and a classification of a variety of proposed
systems based on these. The suspension calculus is used as a tool in this study. In particular,
mappings are described between it and the other calculi towards understanding the characteristics
of the latter.

Categories and Subject Descriptors: F.4.3 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Lambda calculus and related systems

General Terms: Languages, Theory

Additional Key Words and Phrases: Lambda calculus, explicit substitutions, term rewriting,
higher-order abstract syntax, metalanguages

1. INTRODUCTION

This paper concerns the explicit treatment of substitution in the lambda calculus.
It has a twofold purpose within this context. First, it simplifies and rationalizes a
particular calculus known as the suspension calculus that provides such a treatment
[Nadathur and Wilson 1998]. Second, using the resulting system as a basis, it
attempts to explicate the nuances of and differences between an array of explicit
substitution calculi that have been proposed in recent years.

The desire to treat substitution directly in the syntax and rewrite rules of the
lambda calculus has had a variety of motivations. The suspension calculus was
developed originally with the intention of supporting a higher-order view of syntax,
now commonly referred to as higher-order abstract syntax [Pfenning and Elliott

Authors’ addresses:
A. Gacek, University of Minnesota, 4-192 EE/CS Building, 200 Union Street SE, Minneapolis,
MN 55455, USA, Email: andrew.gacek@gmail.com

G. Nadathur, University of Minnesota, 4-192 EE/CS Building, 200 Union Street SE, Minneapolis,
MN 55455, USA, Email: gopalan@cs.umn.edu

2 · A. Gacek and G. Nadathur

1988] or lambda tree syntax [Miller 2000]. Success has been encountered in this
endeavour: amongst other applications, the notation has been employed in the
reasoning system called Bedwyr [Baelde et al. 2007], in the abstract machine for
λProlog [Nadathur and Mitchell 1999] and in the implementation of the FLINT
typed intermediate language [Shao et al. 1998]. Despite its use in practical sys-
tems, the original suspension calculus manifests some deficiencies. One problem
is the building in of excessive flexibility in the unravelling of substitutions that
leads inadvertently to the loss of certain kinds of context information. This added
flexibility does not really enhance the efficiency of reduction and has unpleasant
side effects such as the loss of the ability to associate a typing calculus with lambda
terms. Another problem relates to the encoding of the composition of substitutions.
Although the notation includes such a capability, its treatment is complicated and
has led to the description of a derived calculus [Nadathur 1999] that is the one
usually employed in applications. A drawback with this derived calculus is that it
does not possess the property of confluence when meta variables are added to the
syntax under the so-called grafting interpretation1. At a practical level, this has the
impact that new approaches to higher-order unification based on using graftable
meta variables [Dowek et al. 2000] cannot be exploited relative to it.

One contribution of this paper is the redressing of this situation. In particular, it
describes a modified treatment of substitution composition that is simultaneously
natural, easy to use directly in implementations and consistent with contextual
properties.

The last fifteen years has seen the description of a large number of explicit substi-
tution calculi, often without a clear enunciation of the goals underlying their design.
A consequence of this phenomenon is that it has been difficult to evaluate the differ-
ent calculi or even to understand the distinctive characteristics of each. This paper
contributes in a second way by bringing greater clarity to these matters. Specif-
ically, it identifies three properties that appear important for explicit treatments
of substitution to support. It then surveys some of the prominent calculi in this
realm through this prism. The suspension calculus that is developed in the earlier
sections serves as a tool in understanding the various other systems. Through this
process, a better grasp is also obtained of the capabilities of this specific notation.

The rest of the paper is structured as follows. In the next section we describe
the new version of the suspension calculus. Section 3 then elucidates its proper-
ties: we show here the strong normalizability and confluence of the sub-calculus for
treating substitutions and the confluence of the overall calculus even in the pres-
ence of graftable meta variables. Section 4 discusses other treatments of explicit
substitutions and contrasts these with the one developed here. Section 5 concludes
the paper.

2. THE SUSPENSION CALCULUS

The modified version of the suspension calculus of Nadathur and Wilson [1998] that
we present in this section does not sacrifice any of the computational properties of
the original calculus that are essential to its use in implementations. Rather, it em-

1Although this has not been made explicit previously, the original suspension calculus is confluent
even in the presence of graftable meta variables.

The Suspension Calculus and Other Explicit Substitution Calculi · 3

bodies a view of it that is easier to reason about and to relate to other approaches to
explicit substitutions. In the first two subsections below, we outline the intuitions
underlying the suspension calculus and then substantiate this discussion through
a precise description of its syntax and reduction rules. We then discuss the rela-
tionship of the version of the calculus we present here with the original version and
also describe variants of it arising from the introduction of meta variables under
two different interpretations.

2.1 Motivating the Encoding of Substitutions

We are interested in enhancing the syntax of the lambda calculus with a new
category of expressions that is capable of encoding terms together with substitutions
that have yet to be carried out on them. The kinds of substitutions that we wish
to treat are those that arise from beta contraction steps being applied to lambda
terms. Towards understanding what needs to be encoded in this context, we may
consider a term with the following structure:

(. . . ((λ . . . (λ . . . ((λ . . . t . . .) s1) . . .) . . .) s2) . . .)

We assume here a de Bruijn representation for lambda terms, i.e., names are not
used with abstractions and bound variable occurrences are replaced by indices that
count abstractions back up to the one binding them [Bruijn 1972]. We have elided
much of the detail in the term shown and have, in fact, focussed only on the
following aspects: there is a beta redex in it (whose “argument” part is s2) that
is embedded possibly under abstractions and that itself contains at least another
embedded beta redex. Contracting the two beta redexes shown should produce a
term of the form

(. . . (. . . (λ . . . (. . . t′ . . .) . . .) . . .) . . .)

where t′ is obtained from t by substituting s2 and (a modified form of) s1 for
appropriate variables and adjusting the indices for other bound variables to account
for the disappearance of two enclosing abstractions. Our goal is to represent t′ as
t coupled with the substitutions that are to be performed on it.

Towards developing a suitable encoding, it is useful to factor the variable refer-
ences within t into two groups: those that are bound by abstractions inside the first
beta redex that is contracted and those that are bound by abstractions enclosing
this redex. Let us refer to the number of abstractions enclosing a term in a par-
ticular context as its embedding level relative to that context. For example, if we
assume that every abstraction within the outer beta redex in the term considered
above has been explicitly shown, then the embedding level of t in this context is 3.
Rewriting a beta redex eliminates abstractions and therefore changes embedding
levels. Thus, if the two beta redexes of interest are both contracted, the embedding
level of t becomes 1. We shall call the embedding levels at a term before and after
beta contractions the old and new embedding levels respectively. Simply recording
these with a term is enough for encoding the change that needs to be made to the
indices for variables bound by the “outer” group of abstractions; in particular, these
indices must be decreased by the difference between the old and the new embedding
levels.

4 · A. Gacek and G. Nadathur

Substitutions for the other group of variable references, i.e., those bound by
abstractions within the first beta redex contracted, can be recorded explicitly in an
environment. To suggest a concrete syntax, the term t′ in the example considered
may be represented by the expression [[t, ol, nl, e]] where ol and nl are the old and
new embedding levels, respectively, and e is the environment. Note that the number
of entries in the environment must coincide with the old embedding level. It is
convenient also to maintain the environment as a list or sequence of elements whose
order is reverse that of the embedding level of the abstraction they correspond to;
amongst other things, this allowed for an easy augmentation of the environment in a
top-down traversal of the term. Now, one component of the entry for an abstraction
that is contracted should obviously be the argument part of the relevant beta redex.
For an abstraction not eliminated by a contraction, there is no new term to be
substituted, but we can still correctly record the index corresponding to the first
free variable as a pseudo substitution for it. In both these cases, we have also to
pay attention to the following fact: the term in the environment may be substituted
into a new context that has a larger number of enclosing abstractions and hence
de Bruijn indices for free variables within it may have to be modified. To encode
this renumbering, it suffices to record the (new) embedding level at the relevant
abstraction with the environment entry. The difference between this and the (new)
embedding level at the point of substitution determines the amount by which the
free variable indices inside the term being substituted have to be changed. Thus,
each environment entry has the form (t, l) where t is a term and l is a positive
number. We refer to the second component of each such entry as its index and
we observe that the indices for successive environment entries must form a non-
increasing sequence at least for the simple form of environments we are presently
considering.

Once we have permitted terms encoding substitutions into our syntax, it is pos-
sible for such terms to appear one inside another. A particular instance of this
phenomenon is when they appear in juxtaposition as in the term

[[[[t, ol1, nl1, e1]], ol2, nl2, e2]].

This term corresponds to separately performing two sets of substitutions into t. It
is useful to have a means for combining these into one set of substitutions, i.e., for
rewriting the indicated term into one of the form [[t, ol′, nl′, e′]]. In determining the
shape of the new term, it is useful to note that e1 and e2 represent substitutions for
overlapping sequences of abstractions within which t is embedded. The generation
of the original term can, in fact, be visualized as follows: First, a walk is made over
ol1 abstractions immediately enclosing t, possibly eliminating some of them via beta
contractions, recording substitutions for all of them in e1 and eventually leaving
behind nl1 enclosing abstractions. Then a similar walk is made over ol2 abstractions
immediately enclosing the term [[t1, ol1, nl1, e1]], recording substitutions for each of
them in e2 and leaving behind nl2 abstractions. Notice that the ol2 abstractions
scanned in the second walk are coextensive with some final segment of the nl1
abstractions left behind after the first walk and includes additional abstractions if
ol2 > nl1.

Based on the image just evoked, it is not difficult to see what ol′ in the term
representing the combined form for the substitutions should be: this form represents

The Suspension Calculus and Other Explicit Substitution Calculi · 5

a walk over ol1 enclosing abstractions in the case that ol2 ≤ nl1 and ol1 + (ol2 −
nl1) abstractions otherwise and ol′ should be the appropriate one of these values.
Similarly, the number of abstractions eventually left behind is nl2 or nl2+(nl1−ol2)
depending on whether or not nl1 ≤ ol2, and this determines the value of nl′. With
regard to the environment e′, this should be composed of the elements of e1 modified
by the substitutions encoded in e2 followed by a final segment of e2 in the case that
ol2 > nl1. The modification to be effected on the elements of e1 may be understood
as follows. Suppose e1 has as an element the pair (s, l). Then s is affected by only
that part of e2 that comes after the first nl1 − l entries in it. Further, the index of
the corresponding entry in the composite environment would have to be increased
from l by an amount equal to ol2 − nl1 in the case that ol2 > nl1. From these
observations, it is clear that the merged environment can be generated completely
from the components e1, nl1, ol2 and e2. We correspondingly choose to encode this
environment by the expression {{e1, nl1, ol2, e2}}.

Our focus here has been on motivating the new syntactic forms in the suspension
calculus. However, implicit in this discussion has been a “meaning” for these new
expressions in the sense of a translation into an underlying de Bruijn term. This
informal semantics will be made precise in the next section through a collection of
rewrite rules that can be used to incrementally “calculate” the intended encodings.

2.2 The Syntax of Terms and the Rewriting System

We now describe precisely the collections of expressions that constitute terms and
environments in the suspension calculus. We assume that the lambda terms to
be treated contain constant symbols drawn from a predetermined set. Letting c
represent such constants, the t and e expressions given by the following rules define
a “pre-syntax” for our terms and environments:

t ::= c | #i | (t t) | (λ t) | [[t, n, n, e]]
e ::= nil | ((t, n) :: e) | {{e, n, n, e}}

In these rules, n corresponds to the category of natural numbers and i represents
positive integers. Terms of the form (t1 t2) and (λ t) are, as usual, referred to
as applications and abstractions. A term of the form #i, known as a de Bruijn
index, represents a variable bound by the ith abstraction looking outward from the
point of its occurrence. Expressions of the form [[t, ol, nl, e]] are called suspensions;
these constitute a genuine extension to the syntax of lambda terms. The operator
:: provides the means for forming lists in environments. We use the conventions
that application is left associative, that :: is right associative and that application
binds more tightly than abstraction to often omit parentheses in the expressions
we write. We shall sometimes need to suppress the distinction between terms and
environments and at these times we shall refer to them collectively as suspension
expressions or, more simply, as expressions.

The reason we think of the rules above as defining only the pre-syntax is that we
expect suspension expressions to also satisfy certain well-formedness constraints.
In order to enunciate these constraints precisely, we need to associate the notions
of length and level with environments. We do this through the following defini-
tions. The symbol . used in these definitions denotes the subtraction operation
on natural numbers.

6 · A. Gacek and G. Nadathur

Definition 2.1. The length of an environment e is denoted by len(e) and is de-
fined by recursion on its structure as follows:

(1) len(nil) = 0
(2) len((t, l) :: e) = 1 + len(e)
(3) len({{e1, nl1, ol2, e2}}) = len(e1) + (len(e2) . nl1)

Definition 2.2. The level of an environment e, denoted by lev(e), is also given
by recursion as follows:

(1) lev(nil) = 0
(2) lev((t, l) :: e) = l

(3) lev({{e1, nl1, ol2, e2}}) = lev(e2) + (nl1
. ol2)

The legitimacy requirements that complement the syntax rules is now explicated
as follows:

Definition 2.3. A suspension expression is considered well-formed just in case
the following conditions hold of all its subexpressions:

(1) If it is of the form [[t, ol, nl, e]] then len(e) = ol and lev(e) ≤ nl.
(2) If it is of the form (t, l) :: e then l ≥ lev(e).
(3) If it is of the form {{e1, nl1, ol2, e2}} then lev(e1) ≤ nl1 and len(e2) = ol2.

We henceforth consider only well-formed suspension expressions. We shall also
sometimes restrict our attention to environments which have the structure of a list
of bindings. We identify this class of environments below.

Definition 2.4. A simple environment is one of the form

(t0, l0) :: (t1, l1) :: . . . :: (tn−1, ln−1) :: nil

where by an abuse of notation, we allow n to be 0, in which case the environment
in question is nil. For 0 ≤ i < n, we write e[i] to denote the environment element
(ti, li) and e{i} to denote (ti, li) :: . . . :: (tn−1, ln−1) :: nil, i.e., the environment
obtained from e by removing its first i elements. We extend the last notation by
letting e{i} denote nil in the case that i ≥ len(e) for any simple environment e.

The rewrite system associated with suspension expressions comprises three kinds
of rules: the beta contraction rule that generates substitutions, the reading rules
that distribute them over term structure and the merging rules that allow for the
combination of substitutions generated by different beta contractions into a com-
posite one. These three categories correspond to the rules in Figure 1 labelled (βs),
(r1)-(r6) and (m1)-(m6), respectively. The application of several of these rules de-
pends on arithmetic calculations on embedding levels and indices. We have been
careful in the formal presentation to identify such calculations through side condi-
tions on the rules. However, in the sequel, we will often assimilate such arithmetic
operations into the rewrite rule itself with the understanding that they are to be
“interpreted.” Using this approach, rule (r6) may have been written instead as

[[(λ t), ol, nl, e]] → (λ [[t, ol + 1, nl + 1, (#1, nl + 1) :: e]]).

The Suspension Calculus and Other Explicit Substitution Calculi · 7

(βs) ((λ t1) t2) → [[t1, 1, 0, (t2, 0) :: nil]].

(r1) [[c, ol, nl, e]] → c, provided c is a constant.

(r2) [[#i, 0, nl, nil]] → #j, where j = i + nl.

(r3) [[#1, ol, nl, (t, l) :: e]] → [[t, 0, nl′, nil]], where nl′ = nl− l.

(r4) [[#i, ol, nl, (t, l) :: e]] → [[#i′, ol′, nl, e]],
where i′ = i− 1 and ol′ = ol− 1, provided i > 1.

(r5) [[(t1 t2), ol, nl, e]] → ([[t1, ol, nl, e]] [[t2, ol, nl, e]]).

(r6) [[(λ t), ol, nl, e]] → (λ [[t, ol′, nl′, (#1, nl′) :: e]]),
where ol′ = ol + 1 and nl′ = nl + 1.

(m1) [[[[t, ol1, nl1, e1]], ol2, nl2, e2]] → [[t, ol′, nl′, {{e1, nl1, ol2, e2}}]],
where ol′ = ol1 + (ol2

. nl1) and nl′ = nl2 + (nl1
. ol2).

(m2) {{e1, nl1, 0, nil}} → e1.

(m3) {{nil, 0, ol2, e2}} → e2.

(m4) {{nil, nl1, ol2, (t, l) :: e2}} → {{nil, nl′1, ol′2, e2}},
where nl′1 = nl1 − 1 and ol′2 = ol2 − 1, provided nl1 ≥ 1.

(m5) {{(t, n) :: e1, nl1, ol2, (s, l) :: e2}} → {{(t, n) :: e1, nl′1, ol′2, e2}},
where nl′1 = nl1 − 1 and ol′2 = ol2 − 1, provided nl1 > n.

(m6) {{(t, n) :: e1, n, ol2, (s, l) :: e2}} → ([[t, ol2, l, (s, l) :: e2]], m) :: {{e1, n, ol2, (s, l) :: e2}},
where m = l + (n . ol2).

Fig. 1. Rewrite Rules for the Suspension Calculus

Definition 2.5. We say that a suspension expression r is related to s by a βs-
contraction step, a reading step or a merging step if it is the result of applying the
(βs) rule, one of the rules (r1)-(r6) or one of the rules (m1)-(m6), respectively, at
any relevant subexpression of s. We denote these relations by writing s�βsr, s�rr
and s�mr, respectively. The union of the relations �r and �m will be denoted by
�rm, that of �r and �βs by �rβs and, finally, that of all three relations by �rmβs .
If R corresponds to any of these relations, we shall write R∗ to denote its reflexive
and transitive closure.

The following theorem shows that these various relations are well-defined.

Theorem 2.6. The relations �βs
, �r and �m, and, hence, any combination of

them, preserve well-formedness of suspension expressions.

Proof. A somewhat stronger property can be proved for the rewriting relations
of interest: (i) they leave the length of an environment unchanged, (ii) they never
increase the level of an environment, and (iii) they preserve well-formedness. These
facts are established simultaneously by induction on the structure of suspension
expressions. The base case is verified by considering in turn each rewrite rule in
Figure 1. The argument is then completed by considering each possibility for the
structure of an expression and using the induction hypothesis. The details are
entirely straightforward and hence omitted.

We illustrate the rewrite rules by considering their use on the term

8 · A. Gacek and G. Nadathur

((λ (λ λ #1 #2 #3) t2) t3),

where t2 and t3 are arbitrary terms. We trace a �rmβs -rewrite sequence for this
term below:

((λ (λ λ #1 #2 #3) t2) t3)
�∗

βs
[[[[λ #1 #2 #3, 1, 0, (t2, 0) :: nil]], 1, 0, (t3, 0) :: nil]]

�m[[λ #1 #2 #3, 2, 0, {{(t2, 0) :: nil, 0, 1, (t3, 0) :: nil}}]]
�m[[λ #1 #2 #3, 2, 0, ([[t2, 1, 0, (t3, 0) :: nil]], 0) :: {{nil, 0, 1, (t3, 0) :: nil}}]]
�m[[λ #1 #2 #3, 2, 0, ([[t2, 1, 0, (t3, 0) :: nil]], 0) :: (t3, 0) :: nil]].

The last expression in this sequence is a term that represents, roughly, the “sus-
pended” simultaneous substitution of t2, modified by the substitution of t3 for its
first free variable, and of t3 for the first two free variables in (λ #1 #2 #3). This
suspension has been produced by contracting the two beta redexes in the original
term and then using the merging rules to combine the two separate substitutions
that are so generated. The combined environment can now be moved inside the
abstraction, distributed over the applications and partially “evaluated” using the
reading rules to yield

(λ #1 [[[[t2, 1, 0, (t3, 0) :: nil]], 0, 1, nil]]) [[t3, 0, 1, nil]])).

This term manifests a structure that may be thought of as a generalization of
head-normal forms to suspension terms. By applying reading and merging rules
in accordance with the structure of t2 and t3, we may further transform it into a
head-normal form in the conventional sense.

The terms in the de Bruijn style presentation of the lambda calculus are a subset
of the terms in the suspension calculus. In particular, they are exactly the terms in
the present notation that do not contain any suspensions. Given a rewrite relation
R, we shall say, as usual, that an expression is in R-normal form if it cannot be
further transformed by the rules defining R. It is easily seen then that a suspension
term is in de Bruijn form just in case it is in �rm-normal form. We would, of course,
be interested in knowing if any given suspension expression can be transformed into
a normal form of this kind. We answer this question in the affirmative in the next
section and subsequently relate the rewrite relations defined here with the usual
notion of beta reduction over de Bruijn terms.

2.3 Relationship to the Original Suspension Calculus

The suspension calculus as we have described it here deviates from the original pre-
sentation in [Nadathur and Wilson 1998] in a few different ways. One distinction
arises from the use in the earlier version of the calculus of a special form for the
environment item that results from percolating a substitution under an abstrac-
tion. These items are written as @n where n is a natural number. The rule (r6)
correspondingly has the form

[[(λ t), ol, nl, e]] → (λ [[t, ol + 1, nl + 1,@nl :: e]])

in that setting. This form was introduced into the syntax and treated in special
ways by the rewrite rules in anticipation of an implementation optimization. It is,
however, inessential at a theoretical level. In particular, the behaviour of a dummy

The Suspension Calculus and Other Explicit Substitution Calculi · 9

environment element of the form @n can be completely circumscribed by replacing
it with (#1, n + 1)2. We assume the impact of this observation below.

Suspension expressions in the present setting constitute a subset of the expres-
sions in the original calculus at a pre-syntax level. However, the well-formedness
condition when restricted to these expressions is different in the two contexts. The
earlier condition has a form that is identical to the one in Definition 2.3 except that
the requirement on the levels of environments is replaced by one on their indices,
a notion that is defined below.

Definition 2.7. Given a natural number i, the i-th index of an environment e is
denoted by indi(e) and is defined as follows:

(1) If e is nil then indi(e) = 0.
(2) If e is (t, k) :: e′ then indi(e) is k if i = 0 and indi−1(e′) otherwise.
(3) If e is {{e1, nl, ol, e2}}, let m = (nl . indi(e1))3 and l = len(e1). Then

indi(e) =

 indm(e2) + (nl . ol) if i < l and len(e2) > m
indi(e1) if i < l and len(e2) ≤ m
ind(i−l+nl)(e2) if i ≥ l.

The index of an environment, denoted by ind(e), is ind0(e).

Any given environment expression e is expected to be reducible to a simple one of
the form (t0, l0) :: . . . :: (tn−1, ln−1) :: nil. The i-th index of e is then precisely li
if i < n and 0 otherwise. The level of e, in contrast, only estimates the 0-th index
when e is reduced to this simple form while retaining information that is needed
for interpreting intermediate expressions in the rewriting process. Nevertheless, we
can observe the following:

Lemma 2.8. The well-formed expressions of the suspension calculus as described
in this paper are a subset of the well-formed ones of the original presentation.

Proof. We prove the following by induction on the structure of a suspension
expression that is well-formed under the criterion in this paper: (a) the expression
is also well-formed under the earlier criterion and (b) if the expression is an environ-
ment e, then lev(e) ≥ ind(e) and if i > j then indi(e) ≥ indj(e). These properties
must be shown simultaneously: the induction hypothesis pertaining to (b) is needed
for establishing (a) and we need to know that the expression is well-formed in the
earlier sense in order to establish (b). The details are straightforward once these
observations are made and hence we omit them here. The lemma is an immediate
consequence of property (a).

The final difference between the two versions of the suspension calculus is in the
treatment of the composition of two environments. In the earlier presentation, the
outer environment is distributed eagerly over the elements of the inner one. This
is done by a rule of the form

2It should be noted, though, that the parsimony of the latter form is complemented by the
introduction of more (perhaps unnecessary) possibilities for rewriting that considerably complicate
the proof of termination for the reading and merging rules.
3The . here can be replaced by − for well-formed expressions.

10 · A. Gacek and G. Nadathur

{{et :: e1, nl, ol, e2}} → 〈〈et, nl, ol, e2〉〉 :: {{e1, nl, ol, e2}},

where 〈〈et, nl, ol, e2〉〉 represents an augmentation to the syntax of environment
items for encoding the effect of transforming et by the relevant substitutions in
e2. The older version of the calculus has rules relating to expressions of the form
〈〈et, nl, ol, e2〉〉 that facilitate the pruning of e2 down to a part that really affects et
and the subsequent generation of a suspension that captures its influence on the
term component. By contrast, the present rendition of the calculus calculates the
effect of e2 on et :: e1 by first pruning e2 down to a relevant part based on et and
only later distributing the refined environment to e1.

It follows naturally from the observations made above that the rules (m2), (m5)
and (m6) do not appear in the original rendition of the suspension calculus. How-
ever, based on the discussions already in [Nadathur and Wilson 1998], it can be
seen that each of these rules is admissible to the earlier version in the sense that
their left and right hand sides can be rewritten to a common form in that setting.
We can, in fact, make the following observation, a detailed proof of which appears
in [Gacek 2006b]:

Lemma 2.9. Let x1 and x2 be suspension expressions such that x1�
∗
rmx2. As-

sume further that x2 is in �rm-normal form. Then x1 also rewrites to x2 by virtue
of the reading and merging rules in [Nadathur and Wilson 1998].

Our focus up to this point has been on arguing that the suspension calculus as
described here is a subsystem of sorts of the original presentation. It is important,
of course, to also address the issue of why such a “subsystem” is of interest. There
are several reasons for this, all arising out of the modified treatment of substitution
composition. First, this treatment is a considerably simplified one and can, as
a consequence, be used directly in practical applications. Second, it rectifies a
problem with the original calculus that prevented certain interesting logical analyses
over terms from being formulated: it is, for instance possible to describe a type
assignment system now for terms [Gacek 2006b], something that was difficult to do
with the original suspension calculus. Finally, this change is crucial to our ability
to describe formal correspondences of the suspension calculus with other explicit
substitution calculi later in this paper.

While there may be justifications for the modified suspension calculus, there is
also a question about its adequacy. It is evident that this version can still treat
substitutions explicitly and that it possesses the important capability of composing
such substitutions. In the next section we see also that properties such as confluence
and the ability to simulate the usual notion of beta reduction over lambda terms
are preserved, thus settling any concern over adequacy.

2.4 Permitting Meta Variables In Suspension Terms

The syntax of suspension expressions does not presently allow for instantiatable
variables. Such variables, also referred to as meta variables, are often used within
lambda terms in situations such as those of higher-order theorem proving and
symbolic manipulation of higher-order objects. In the former context, these vari-
ables arise naturally in attempts to prove existential statements: such proofs in-
volve choosing instantiations for existential quantifiers and meta variables provide

The Suspension Calculus and Other Explicit Substitution Calculi · 11

a means for delaying actual choices till there is enough information for determining
what they should be. In the latter context, instantiatable variables are instrumen-
tal in realizing structure recognition capabilities relative to the use of higher-order
abstract syntax based representations of constructs whose structures involve bind-
ing notions. For example, consider the first-order formula ∀x((p x) ∨ (q x)). Using
an abstraction to capture the binding content of the quantifier, this formula can
be rendered into the lambda term (all λ (or (p #1) (q #1))), where all and or are
constants chosen to encode universal quantification and disjunction in formulas.
Given such representations, the lambda term (all λ (or (P #1) (Q #1))) in which
P and Q are meta variables serves as a pattern for recognizing formulas that at the
top-level have the structure of a disjunction embedded within a universal quantifier.

An important question concerning meta variables is that of how substitutions
for them are to be treated. The logically correct interpretation of these variables
requires that such substitutions respect the notion of scope. Thus, if X is an
instantiatable variable that has an occurrence within an abstraction context, the
term that is substituted for it cannot contain a bound variable that is captured by
the enclosing abstraction. This view is one that also supports rather useful pattern
matching capabilities. To understand this, we might reconsider the “template”
we have described above for first-order formulas. Suppose that we want to refine
this so that the formulas recognized by it are such that the right subpart of the
disjunction does not depend on the top-level quantifier. If a treatment of meta
variables in accordance with logical principles is used, then the following modified
template achieves this purpose: (all λ (or (P #1) Q))). The critical facet that
ensures this behaviour is that no structure that is substituted for Q can have a
variable occurrence in it that is captured by the abstraction corresponding to the
quantifier.

An alternative possibility to the logical view of instantiatable variables is to treat
them as placeholders against which any well-formed term can be grafted. This
kind of “grafting” interpretation has been found useful in conjunction with explicit
substitution notations in, for instance, realizing a new approach to unification in
the context of lambda terms [Dowek et al. 2000]. The well-known procedure due
to Huet [1975] calculates unifiers incrementally and requires the construction of
a complicated term, the contraction of beta redexes and the calculation of their
substitution effects all for the sole purpose of percolating dependency information
to places where they can be used in later computation steps. By allowing meta
variables to be substituted for by terms with variable occurrences that can be
captured by enclosing abstractions, the dependencies can be transmitted by a much
simpler process. Of course, treating instantiatable variables in this “graftable” way
seems contradictory to their logical interpretation and also appears to fly in the face
of pattern matching applications. However, a reconciliation is possible: variables
can be interpreted initially in a logical way but then surrounded in an explicit
substitution context so that a subsequent grafting treatment does not violate the
required logical constraints. Thus, consider again the term (all λ (or (P #1) Q)).
This term may be transformed into (all λ (or ([[P ′, 0, 1, nil]] #1) [[Q′, 0, 1, nil]])). By
identifying P and Q with the terms [[P ′, 0, 1, nil]] and [[Q′, 0, 1, nil]], we insulate
substitutions for them from a dependence on the external abstraction even under

12 · A. Gacek and G. Nadathur

a grafting interpretation of P ′ and Q′.
Either of the discussed views of meta variables can be built into the suspension

notation. Towards this end, we first modify the syntax for terms to the following:

t ::= v | c | #i | (t t) | (λ t) | [[t, n, n, e]],

where v represents the category of instantiatable variables. If we interpret these
variables in the logical way, then they cannot be affected by substitutions generated
by β-contractions. To support this view, therefore, we add the following to our
reading rules:

(r7) [[v, ol, nl, e]] → v, if v is a meta variable.

If, on the other hand, the grafting interpretation is chosen, then this rule is not
acceptable and the original rewriting system, in fact, remains unchanged.

The choice of interpretation impact on the properties of the calculus in different
ways. Under the logical view, meta variables behave like constants in that they may
be replaced only by closed terms; this fact is explicitly manifest in the similarity
of rule (r7) to (r1). Thus, all the properties of the calculus that includes them are
already manifest in the subsystem described in Section 2.2. The situation is more
intricate under the grafting view. For example, consider the term ((λ ((λ X) t1)) t2)
in which X is an instantiatable variable and t1 and t2 are terms in �rm-normal form.
This term can be rewritten to

[[[[X, 1, 0, (t1, 0) :: nil]], 1, 0, (t2, 0) :: nil]]

and also to

[[[[X, 2, 1, (#1, 1) :: (t2, 0) :: nil]], 1, 0, ([[t1, 1, 0, (t2, 0) :: nil]], 0) :: nil]],

amongst other terms. It is easy to see that these terms cannot now be rewritten
to a common form using only the reading and (βs) rules. The merging rules are
essential to this ability. As we see in Section 3, these also suffice for this purpose.

We assume henceforth that the suspension calculus includes meta variables and
that these are implicitly accorded the grafting interpretation. For reasons already
mentioned, it is easy to see that the properties we establish for the resulting calculus
will hold also under the logical interpretation.

3. PROPERTIES OF THE SUSPENSION CALCULUS

We now consider the coherence of the suspension calculus. Suspensions and the
associated reading and merging rules are intended mainly to provide control and
variability over substitution relative to the lambda calculus. In keeping with the
finite nature of the substitution process, we would expect the reduction relations
defined by these rules to be always terminating. We show this to be the case in the
first subsection. There are evidently choices to be made in the application of the
reading and merging rules. Regardless of how these choices are made, it is important
that we produce the same normal form. We show that this confluence property holds
in the second subsection below. We then digress briefly to establish an interesting
structural property of the suspension calculus which relates two different methods
for encoding the renumbering of bound variables; this property is used in the next
section in relating the suspension calculus to the λσ-calculus. Finally, we prove

The Suspension Calculus and Other Explicit Substitution Calculi · 13

that confluence continues to hold when the (βs) rule is added to the collection and
that this full system is also capable of simulating beta reduction over de Bruijn
terms.

3.1 Strong Normalizability for Substitution Reductions

There are two steps to our argument that any sequence of rewritings based on
the reading and merging rules must terminate. First we identify a collection of
first-order terms over which we define a well-founded ordering using a variant of
recursive path orderings [Dershowitz 1982; Ferreira and Zantema 1995]. We then
describe a translation from suspension expressions to this collection of terms that
is such that each of the relevant rewrite rules produces a smaller term relative to
the defined order. The desired conclusion follows from these facts.

The terms that are intended to capture the essence of suspension expressions
vis-a-vis termination are constructed using the following (infinite) vocabulary: the
0-ary function symbol *, the unary function symbol lam, and the binary function
symbols app, cons and, for each positive number i, si. We denote this collection of
terms by T . We assume the following partial ordering A on the signature underlying
T : si A sj if i > j and, for every i, si A app, si A lam, si A cons and si A ∗. This
ordering is now extended to the collection of terms.

Definition 3.1. The relation � on T is inductively defined by the following prop-
erty: Let s = f(s1, . . . , sm) and t = g(t1, . . . , tn); both s and t may be *, i.e., the
number of arguments for either term may be 0. Then s � t if

(1) f = g (in which case n = m), (s1, . . . , sn) �lex (t1, . . . , tn), and, s � ti for all i
such that 1 ≤ i ≤ n, or

(2) f A g and s � ti for all i such that 1 ≤ i ≤ n, or
(3) si = t or si � t for some i such that 1 ≤ i ≤ m.

Here �lex denotes the lexicographic ordering induced by �.

In the terminology of [Ferreira and Zantema 1995], � is an instance of a recursive
path ordering based on A. It is easily seen that A is a well-founded ordering on
the signature underlying T . The results in [Ferreira and Zantema 1995] then imply
the following:

Lemma 3.2. � is a well-founded partial order on T .

We now consider the translation from suspension expressions to T . The critical
part of this mapping is the treatment of expressions of the form [[t, ol, nl, e]] and
{{e1, nl, ol, e2}}. Our translation ignores the embedding level components of these
expressions and transforms them into terms whose top-level function symbol is si

where i is a coarse measure of the remaining substitution work. In estimating this
effort in a sufficiently fine-grained way relative to an abstraction, it is necessary to
take cognizance of the following fact: rule (r6) creates a “dummy” substitution for
the bound variable that is then adjusted by generating a “renumbering” suspension
using rule (r3). To account for this additional work, we define a family of measures
that relativizes the complexity of an expression to the number of enclosing suspen-
sions. In calculating this quantity it is important to observe that the substitution

14 · A. Gacek and G. Nadathur

via rule (r3) of a term in an environment results in it being embedded in an ad-
ditional suspension. We quantify the maximum such “internal embedding” below
and then use this in estimating the substitution effort. In these definitions, max is
the function that picks the larger of its two integer arguments.

Definition 3.3. The measure µ that estimates the internal embedding potential
of a suspension expression is defined as follows:

(1) For a term t, µ(t) is 0 if t is a constant, a meta variable or a de Bruijn index,
µ(s) if t is (λ s), max (µ(s1), µ(s2)) if t is (s1 s2), and µ(s) + µ(e) + 1 if t is
[[s, ol, nl, e]].

(2) For an environment e, µ(e) is 0 if e is nil, max (µ(s), µ(e1)) if e is (s, l) :: e1 and
µ(e1) + µ(e2) + 1 if e is {{e1, nl, ol, e2}}.

Definition 3.4. The measures ηi on terms and environments for each natural
number i are defined simultaneously by recursion as follows:

(1) For a term t, ηi(t) is 1 if t is a constant, a meta variable or a de Bruijn
index, ηi(s) + 1 if t is (λ s), max (ηi(s1), ηi(s2)) + 1 if t is (s1 s2),and ηi+1(s) +
ηi+1+µ(s)(e) + 1 if t is [[s, ol, nl, e]].

(2) For an environment e, ηi(e) is 0 if e is nil, max (ηi(s), ηi(e1)) if e is (s, l) :: e1

and ηi+1(e1) + ηi+1+µ(e1)(e2) + 1 if e is {{e1, nl, ol, e2}}.

The measure η0 is meaningfully used only relative to suspensions. In this context,
it estimates, in a sense, the maximum effort along any one path in the substitution
process rather than the cumulative effort.

Definition 3.5. The translation E of suspension expressions to T is defined as
follows:

(1) For a term t, E(t) is * if t is a constant a meta variable or a de Bruijn index,
app(E(t1), E(t2)) if t is (t1 t2), lam(E(t′)) if t is (λ t′) and si(E(t′), E(e′)) where
i = η0(t) if t is [[t′, ol, nl, e′]].

(2) For an environment e, E(e) is * if e is nil, cons(E(t′), E(e′)) if e is (t′, l) :: e′

and si(E(e1), E(e2)) where i = η0(e) if e is {{e1, nl, ol, e2}}.

We are now in a position to prove the strong normalizability of the substitution
reduction relations.

Theorem 3.6. Every rewriting sequence based on the reading and merging rules
terminates.

Proof. A tedious but straightforward inspection of each of the reading and
merging rules verifies the following: If l → r is an instance of these rules, then E(l) �
E(r), µ(l) ≥ µ(r), and, for every natural number i, ηi(l) ≥ ηi(r). Definition 3.1
ensures that � is monotonic, i.e., if v results from u by the replacement of a subpart
x by y such that x � y, then u � v. Further, it is easily seen that if x and y
are both either terms or environments such that µ(x) ≥ µ(y) and ηi(x) ≥ ηi(y)
for each natural number i and if v is obtained from u by substituting y for x,
then ηi(u) ≥ ηi(v) for each natural number i. From these observations it follows
easily that if t1�rmt2 then E(t1) � E(t2). The theorem is now a consequence of
Lemma 3.2.

The Suspension Calculus and Other Explicit Substitution Calculi · 15

As an interesting side note, we observe that the termination proof presented here
has been formally verified using the Coq proof assistant [Gacek 2006a].

3.2 Confluence for the Substitution Calculus

Theorem 3.6 assures us that every suspension expression has a �rm-normal form.
From observations in Section 2 it follows therefore that every suspension term can
be reduced to a de Bruijn term and every environment can be rewritten to one in
a simple form using the reading and merging rules. We now desire to show that
these normal forms are unique for any given expression. This would immediately
be the case if we have the property of confluence, i.e., if for any s, u and v such
that s�∗

rmu and s�∗
rmv we know that there must be a t such that u�∗

rmt and v�∗
rmt.

A well-known result, proved, for instance, in [Huet 1980], is that confluence follows
from a weaker property known as local confluence for a reduction relation that is
terminating. In our context this translates to it being sufficient to show for any
suspension expression s that if s�rmu and s�rmv then there must be an expression
t such that u�∗

rmt and v�∗
rmt. The usual method for proving local confluence for

a rewrite system is to consider the different interfering ways in which pair of rules
can be applied to a given term and to show that a common term can be produced
in each of these cases. We use this approach in proving local confluence for the
reading and merging rules here. The most involved part of the argument concerns
the interference of rule (m1) with itself. We discuss this situation first and then
use our analysis in proving the main result.

3.2.1 An associativity property for environment composition. The expression
[[[[[[t, ol1, nl1, e1]], ol2, nl2, e2]], ol3, nl3, e3]] can be transformed into a form correspond-
ing to the term t under a substitution represented by a single environment in two
different ways by using rule (m1). The composite environments in the two cases
are given by the expressions

{{{{e1, nl1, ol2, e2}}, nl2 + (nl1
. ol2), ol3, e3}}

and

{{e1, nl1, ol2 + (ol3 . nl2), {{e2, nl2, ol3, e3}}}}.

Conceptually, these environments correspond to first composing e1 and e2 and then
composing the result with e3 or, alternatively, to composing e1 with the result of
composing e2 with e3. An important requirement for local confluence is that these
two environments can be made to converge to a common form, i.e., environment
composition must, in a sense, be associative. We show this to be the case here.
The argument we provide is inductive on the structures of the three environments
and has the following broad outline: Based on the specific context, we consider
the simplification of one of the two environments by relevant reading and merging
rules. We then show that the other expression can also be rewritten, possibly by
using the same rules, either to the same expression as the first or to an expression
that is amenable to the use of the induction hypothesis.

We begin by noting some properties of the reading and merging rules that are
useful in filling out the details of the proof. The first of these relates to the second
environment displayed above and has the following content: At some point in the

16 · A. Gacek and G. Nadathur

reduction of this expression, it becomes possible to apply the rules relevant to
evaluating the composition of e2 and e3. Applying these rules immediately does
not limit the normal forms that can be produced. This observation is contained in
the next two lemmas.

Lemma 3.7. Let A be the environment {{e1, nl1, ol1, {{e2, nl2, ol3, e3}}}} where e3

is a simple environment and e2 is of the form (t2, n2) :: e′2. Further, for any positive
number i such that i ≤ nl2 − n2 and i ≤ ol3, let B be the environment

{{e1, nl1, ol1, {{e2, nl2 − i, ol3 − i, e3{i}}}}}.

If A�∗
rmC for any simple environment C then also B�∗

rmC.

Proof. It suffices to verify the claim when i = 1; an easy induction on i then
extends the result to the cases where i > 1. For the case of i = 1, the argument is
by induction on the length of the reduction sequence from A to C with the essential
part being a consideration of the first rule used. The details are straightforward
and hence omitted.

Lemma 3.8. Let A be the environment {{e1, nl1, ol1, {{e2, nl2, ol3, e3}}}} where e2

and e3 are environments of the form (t2, nl2) :: e′2 and (t3, n3) :: e′3, respectively.
Further, let B be the environment

{{e1, nl1, ol1, ([[t2, ol3, n3, e3]], n3 + (nl2
. ol3)) :: {{e′2, nl2, ol3, e3}}}}.

If A�∗
rmC for any simple environment C then also B�∗

rmC.

Proof. The proof is again by induction on the length of the reduction sequence
from A to C. The first rule in this sequence either produces B, in which case
the lemma follows immediately, or it can be used on B (perhaps at more than
one place) to produce a form that is amenable to the application of the induction
hypothesis.

In evaluating the composition of e2 and e3, it may be the case that some part
of e3 is inconsequential. The last observation that we need is that this part can be
“pruned” immediately in calculating the composition of the combination of e1 and
e2 with e3. The following lemma is consequential in establishing this fact.

Lemma 3.9. Let A be the environment {{e1, nl1, ol2, e2}} where e2 is a simple
environment.

(1) If ol2 ≤ nl1− lev(e1) then A reduces to any simple environment that e1 reduces
to.

(2) For any positive number i such that i ≤ nl1− lev(e1) and i ≤ ol2, A reduces to
any simple environment that {{e1, nl1 − i, ol2 − i, e2{i}}} reduces to.

Proof. Let e1 be reducible to the simple environment e′1. Then we may trans-
form A to the form {{e′1, nl1, ol2, e2}}. Recalling that the level of an environment is
never increased by rewriting, we have that lev(e′1) ≤ lev(e1). From this it follows
that A can be rewritten to e′1 using rules (m5) and (m2) if ol2 ≤ nl1− lev(e1). This
establishes the first part of the lemma.

The second part is nontrivial only if nl1 − lev(e1) and ol2 are both nonzero.
Suppose this to be the case and let B be {{e1, nl1 − 1, ol2 − 1, e2{1}}}. The desired

The Suspension Calculus and Other Explicit Substitution Calculi · 17

result follows by an induction on i if we can show that A can be rewritten to any
simple environment that B reduces to. We do this by an induction on the length
of the reduction sequence from B to the simple environment. This sequence must
evidently be of length at least one. If a proper subpart of B is rewritten by the
first rule in this sequence, then the same rule can be applied to A as well and the
induction hypothesis easily yields the desired conclusion. If B is rewritten by one
of the rules (m3)-(m6), then it must be the case that A�rmB via either rule (m4) or
(m5) from which the claim follows immediately. Finally, if B is rewritten using rule
(m2), then ol2 ≤ nl1− lev(e1). The second part of the lemma is now a consequence
of the first part.

We now prove the associativity property for environment composition:

Lemma 3.10. Let A and B be environments of the form

{{{{e1, nl1, ol2, e2}}, nl2 + (nl1
. ol2), ol3, e3}}

and

{{e1, nl1, ol2 + (ol3 . nl2), {{e2, nl2, ol3, e3}}}},

respectively. Then there is a simple environment C such that A�∗
rmC and B�∗

rmC.

Proof. We assume that e1, e2 and e3 are simple environments; if this is not the
case at the outset, then we may rewrite them to such a form in both A and B before
commencing the proof we provide. Our argument is now based on an induction on
the structure of e3 with possibly further inductions on the structures of e2 and e1.

Base case for first induction. When e3 is nil, the lemma is seen to be true by
observing that both A and B rewrite to {{e1, nl1, ol2, e2}} by virtue of rule (m2).

Inductive step for first induction. Let e3 = (t3, n3) :: e′3. We now proceed by an
induction on the structure of e2.
Base case for second induction. When e2 is nil, it can be seen that, by virtue of rules
(m2), (m3) and either (m4) or (m5), A and B reduce to {{e1, nl1, ol3 − nl2, e3{nl2}}}
when ol3 > nl2 and to e1 otherwise. The truth of the lemma follows immediately
from this.
Inductive step for second induction. Let e2 = (t2, n2) :: e′2. We consider first the
situation where nl1 > lev(e1). Suppose further that ol3 ≤ (nl2 − n2). Using rules
(m5) and (m2), we see then that

B�∗
rm{{e1, nl1, ol2, e2}}.

We also note that ol3 ≤ (nl2 + (nl1
. ol2)) − lev({{e1, nl1, ol2, e2}}) in this case.

Lemma 3.9 assures us now that A can be rewritten to any simple environment that
{{e1, nl1, ol2, e2}} reduces to and thereby verifies the lemma in this case.

It is possible, of course, that ol3 > (nl2 − n2). Here we see that

B�∗
rm{{e1, nl1 − 1, ol2 + (ol3 . nl2)− 1,

{{e′2, n2, ol3 − (nl2 − n2), e3{nl2 − n2}}}}}.

using rules (m5) and (m6). Using rule (m5), we also have that

A�∗
rm{{{{e1, nl1 − 1, ol2 − 1, e′2}}, nl2 + (nl1

. ol2), ol3, e3}}.

18 · A. Gacek and G. Nadathur

Invoking the induction hypothesis, it follows that A and

{{e1, nl1 − 1, ol2 + (ol3 . nl2)− 1, {{e′2, nl2, ol3, e3}}}}

reduce to a common simple environment. By Lemma 3.7 it follows that B must
also reduce to this environment.

The only remaining situation to consider, then, is that when nl1 = lev(e1). For
this case we need the last induction, that on the structure of e1.
Base case for final induction. If e1 is nil, then nl1 must be 0. It follows easily that
both A and B reduce to {{e2, nl2, ol3, e3}} and that the lemma must therefore be
true.
Inductive step for final induction. Here e1 must be of the form (t1, nl1) :: e′1. We
dispense first with the situation where n2 < nl2. In this case, by rule (m5)

B�∗
rm{{e1, nl1, ol2 + (ol3 . nl2), {{e2, nl2 − 1, ol3 − 1, e′3}}}}.

By the induction hypothesis used relative to e′3, B and the expression

{{{{e1, nl1, ol2, e2}}, nl2 + (nl1
. ol2)− 1, ol3 − 1, e′3}}

must reduce to a common simple environment. By Lemma 3.9, A must also reduce
to this environment.

Thus, it only remains for us to consider the situation in which n2 = nl2. In this
case by using rule (m1) twice we may transform A to the expression Ah :: At where

Ah = ([[[[t1, ol2, n2, e2]], ol3, n3, e3]], n3 + ((nl2 + (nl1
. ol2)) . ol3))

and

At = {{{{e′1, nl1, ol2, e2}}, nl2 + (nl1
. ol2), ol3, e3}}.

Similarly, B may be rewritten to the expression Bh :: Bt where

Bh = ([[t1, ol2 + (ol3 . nl2), n3 + (nl2
. ol3),

([[t2, ol3, n3, e3]], n3 + (nl2
. ol3)) :: {{e′2, nl2, ol3, e3}}]],

n3 + (nl2
. ol3) + (nl1

. (ol2 + (ol3 . nl2))))

and

Bt = {{e′1, nl1, ol2 + (ol3 . nl2),
([[t2, ol3, n3, e3]], n3 + (nl2

. ol3)) :: {{e′2, nl2, ol3, e3}}}}.

Now, using straightforward arithmetic identities, it can be seen that the “index”
components of Ah and Bh are equal. Further, the term component of Ah can be
rewritten to a form identical to the term component of Bh by using the rules (m1)
and (m6). Finally, by virtue of the induction hypothesis, it follows that At and the
expression

{{e′1, nl1, ol2 + (ol3 . nl2), {{e2, nl2, ol3, e3}}}}

reduce to a common simple environment. Lemma 3.8 allows us to conclude that Bt

can also be rewritten to this expression. Putting all these observations together it
is seen that A and B can be reduced to a common simple environment in this case
as well.

The Suspension Calculus and Other Explicit Substitution Calculi · 19

3.2.2 Uniqueness of Substitution Normal Forms. We can now show that �rm is
a locally confluent reduction relation.

Lemma 3.11. For any expressions s, u and v such that s�rmu and s�rmv there
must be an expression t such that u�∗

rmt and v�∗
rmt.

Proof. We recall the method of proof from [Huet 1980]. An expression t con-
stitutes a nontrivial overlap of the rules R1 and R2 at a subexpression s if (a) t is
an instance of the lefthand side of R1, (b) s is an instance of the lefthand side of
R2 and also does not occur within the instantiation of a variable on the lefthand
side of R1 when this is matched with t and (c) either s is distinct from t or R1 is
distinct from R2. Let r1 be the expression that results from rewriting t using R1

and let r2 result from t by rewriting s using R2. Then the pair 〈r1, r2〉 is called the
conflict pair corresponding to the overlap in question. Relative to these notions,
the lemma can be proved by establishing the following simpler property: for every
conflict pair corresponding to the reading and merging rules, it is the case that the
two terms can be rewritten to a common form using these rules.

In completing this line of argument, the nontrivial overlaps that we have to
consider are those between (m1) and each of the rules (r1)-(r6), between (m1)
and itself and between (m2) and (m3). The last of these cases is easily dealt
with: the two expressions constituting the conflict pair are identical, both be-
ing nil. The overlap between (m1) and itself occurs over a term of the form
[[[[[[t, ol1, nl1, e1]], ol2, nl2, e2]], ol3, nl3, e3]]. By using rule (m1) once more on each
of the terms in the conflict pair, these can be rewritten to expressions of the form
[[t, ol′, nl′, e′]] and [[t, ol′′, nl′′, e′′]], respectively, whence we can see that ol′ = ol′′ and
nl′ = nl′′ by simple arithmetic reasoning and that e′ and e′′ reduce to a common
form using Lemma 3.10. The overlaps between (m1) and the reading rules are also
easily dealt with. For instance consider the case of (m1) and (r1). Using rule (r1),
the two terms in the conflict pair can be rewritten to the same constant. The other
cases are similar even if a bit more tedious.

As observed already, the main result of this subsection follows directly from
Lemma 3.11 and Theorem 3.6.

Theorem 3.12. The relation �rm is confluent.

The uniqueness of �rm-normal forms is an immediate consequence of Theo-
rem 3.12. In the sequel, a notation for referring to such forms will be useful.

Definition 3.13. The notation |t| denotes the �∗
rm-normal form of a suspension

expression t.

It is easily seen that the �rm-normal form for a term that does not contain meta
variables is a term that is devoid of suspensions, i.e., a de Bruijn term. A further
observation is that if the all the environments appearing in the original term are
simple, then just the reading rules suffice in reducing it to the de Bruijn term that
is its unique �rm-normal form.

3.3 An Equivalence Property Relating to Renumbering Substitutions

An important role for the subcalculus for substitutions is that of realizing the
renumbering of de Bruijn indices necessitated by beta contractions. One mechanism

20 · A. Gacek and G. Nadathur

t ∼ t e ∼ e

t1 ∼ t′1 t2 ∼ t′2

t1 t2 ∼ t′1 t′2

t ∼ t′ e ∼ e′

(t, n) :: e ∼ (t′, n) :: e′

t ∼ t′

λ t ∼ λ t′
e1 ∼ e′1 e2 ∼ e′2

{{e1, nl1, ol2, e2}} ∼ {{e′1, nl1, ol2, e′2}}

t ∼ t′ e ∼ e′

[[t, ol, nl, e]] ∼ [[t′, ol, nl, e′]]

t ∼ t′

(t, n) ∼ (t′, n)

t ∼ t′ r ∼ r′ e ∼ e′

([[t, ol, nl, r]], nl + k) :: e ∼ ([[t′, ol, nl′, r′]], nl′ + k) :: e′

Fig. 2. The similarity relation, ∼

for controlling such renumbering is the new embedding level in a suspension, i.e.,
the value chosen for nl in an expression of the form [[t, ol, nl, e]]. Looking at the
reading rule (r3), we see that another component that determines renumbering is
the index of an environment term, i.e., the value chosen for n in an item of the form
(t, n) in an environment. Now, these different mechanisms appear in juxtaposition
in an environment item of the form ([[t, ol, nl, e]], n). We observe here that �rm-
normal forms are invariant under a coordinated readjustment of the renumbering
burden between the two devices in such an expression.

The permitted reapportionment is expressed formally through the notion of sim-
ilarity defined below.

Definition 3.14. The similarity relation between (well-formed) terms and envi-
ronments, respectively, is denoted by ∼ and is given by the rules in Figure 2.

The property of interest is then the following:

Theorem 3.15. If t and t′ are terms such that t ∼ t′, then |t| = |t′|. If e and e′

are environments such that e ∼ e′, then they rewrite by reading and merging rules
to similar simple environments.

Proof. Only a sketch is provided here; a detailed proof may be found in [Gacek
2006b]. Using the translation function from Definition 3.5, we define the relation
� on suspension expressions as follows: u � v just in case E(u) � E(v). Obviously
� is a well-founded partial order. It is also easily seen that u � v if either v is a
sub-expression of u or u�rmv.

The argument is now an inductive one based on the ordering induced by � on
pairs of expressions. In filling out the details, when considering two expressions u
and v such that u ∼ v, the additional properties of � and the induction hypothesis
allow us to assume that any similar subparts of u and v that are terms are identical
and that are environments are simple. We then consider the different cases for the
structures of u and v and the rewriting rules that are applicable to them. The only
nontrivial case when u and v are terms arises when these are suspensions to which

The Suspension Calculus and Other Explicit Substitution Calculi · 21

rule (r3) is applicable and the environment parts of these terms are similar but not
identical. In this case we have

u = [[#1, ol, nl, ([[tr, olr, nlr, r]], nlr + k) :: e]]
�(r3) [[[[tr, olr, nlr, r]], 0, nl − (nlr + k), nil]]
�(m1) [[tr, olr, nl − (nlr + k) + nlr, {{r, nlr, 0, nil}}]]
�(m2) [[tr, olr, nl − k, r]]

v = [[#1, ol, nl, ([[tr, olr, nl′r, r
′]], nl′r + k) :: e′]]

�(r3) [[[[tr, olr, nl′r, r
′]], 0, nl − (nl′r + k), nil]]

�(m1) [[tr, olr, nl − (nl′r + k) + nl′r, {{r′, nl′r, 0, nil}}]]
�(m2) [[tr, olr, nl − k, r′]]

By assumption, r ∼ r′. Since u � [[tr, olr, nl − k, r]] and v � [[tr, olr, nl − k, r′]], the
induction hypothesis yields the desired conclusion. For environments, the nontrivial
cases arise when u and v are of a form to which the rules (m5) or (m6) apply. The
argument here is similar albeit more tedious.

Theorem 3.15 casts an interesting light on rule (m6) of the suspension calculus.
This rule has the form

{{(t, n) :: e1, n, ol2, (s, l) :: e2}} →
([[t, ol2, l, (s, l) :: e2]],m) :: {{e1, n, ol2, (s, l) :: e2}}

where m = l + (n . ol2). The righthand side of the rule has an environment item
in which both an index and a new embedding level is chosen. Observe that a value
larger than l could also be used for the new embedding level so long as the index is
correspondingly modified and it remains consistent with the context in which the
replacement is performed. Intuitively, this would correspond to eagerly relativizing
[[t, ol2, l, (s, l) :: e2]] to a context with a larger number of enclosing abstractions and
taking cognizance of this in its subsequent substitution.

3.4 Confluence for the Full Calculus

Now we turn to the confluence of the system given by the rules in Figure 1 that
includes the (βs) rule in addition to the ones for interpreting substitutions. In
establishing this property, we adopt the method used in [Curien et al. 1996] to
demonstrate that the λσ-calculus is confluent. The following lemma, proved in
[Curien et al. 1996], is a critical part of the argument.

Lemma 3.16. Let R and S be two reduction relations defined on a set X with
R being confluent and strongly normalizing and S satisfying the property that for
every t, u and v such that tS u and tS v there is an s such that uS s and v S s.
Further suppose that for every t, u and v such that tS u and tR v there is an s
such that uR∗ s and v (R∗ ∪S ∪R∗) s. Then the relation R∗ ∪S ∪R∗ is confluent.

In applying this lemma, we shall utilize the parallelization of �βs that is defined
below.

Definition 3.17. The relation �βs‖ on suspension expressions is defined by the
rules in Figure 3.

22 · A. Gacek and G. Nadathur

t → t e → e

t1 → t′1 t2 → t′2

t1 t2 → t′1 t′2

t → t′ e → e′

(t, l) :: e → (t′, l) :: e′

t → t′

λ t → λ t′
e1 → e′1 e2 → e′2

{{e1, nl1, ol2, e2}} → {{e′1, nl1, ol2, e′2}}

t → t′ e → e′

[[t, ol, nl, e]] → [[t′, ol, nl, e′]]

t1 → t′1 t2 → t′2

(λ t1) t2 → [[t′1, 1, 0, (t′2, 0) :: nil]]

Fig. 3. Rules defining �βs‖

Theorem 3.18. The relation �rmβs
is confluent.

Proof. Let R be �rm and let S be �βs‖. We observe then that

�rmβs ⊆ (R∗ ∪ S ∪R∗) ⊆ �∗
rmβs

.

Thus (R∗∪S ∪R∗)∗ = �∗
rmβs

and hence �rmβs would be confluent if (R∗∪S ∪R∗)
is.

To establish the latter we use Lemma 3.16, interpreting R and S as per the
nomenclature of the lemma. We have already seen that �rm is both confluent
and strongly normalizing. To show that if t�βs‖u and t�βs‖v then there is an s
such that u�βs‖s and v�βs‖s, we argue by induction on the structure of t and by
considering the rules by which u and v are obtained. The only non-trivial case is
that when t is the term (λ t1) t2, one of u and v is [[t′1, 1, 0, (t′2, 0) :: nil]] and the
other is (λ t′′1) t′′2 where t1�βs‖t

′
1, t1�βs‖t

′′
1 , t2�βs‖t

′
2 and t2�βs‖t

′′
2 . By the induction

hypothesis, there exists an s1 such that t′1�βs‖s1 and t′′1�βs‖s1 and an s2 such that
t′2�βs‖s2 and t′′2�βs‖s2. We then pick s as [[s1, 1, 0, (s2, 0) :: nil]]; obviously u�βs‖s
and v�βs‖s.

It only remains for us to show that for any t, u and v such that t�βs‖u and
t�rmv there is an s such that u�∗

rms and v (�∗
rm ∪�βs‖ ∪�∗

rm) s. We do this again
by induction on the structure of t. The argument is straightforward in all cases
except perhaps when t is [[(λ t1) t2, ol, nl, e]], v is [[λ t1, ol, nl, e]] [[t2, ol, nl, e]] and u
is [[[[t′1, 1, 0, (t′2, 0) :: nil]], ol, nl, e′]] where t1�βs‖t

′
1, t2�βs‖t

′
2 and e�βs‖e

′. However,
if we pick s to be

[[t′1, ol + 1, nl, ([[t′2, ol, nl, e′]], nl) :: e′]]

we can easily show that it satisfies the requirements, thus completing the argument
even in this case.

Theorem 3.18 strengthens the confluence result established for the original sus-
pension calculus in [Nadathur and Wilson 1998] in that it shows that this property

The Suspension Calculus and Other Explicit Substitution Calculi · 23

holds even when meta variables are permitted in terms. Although we have only
shown this property to hold for the refinement of the suspension calculus presented
here, our argument can be easily adapted to the original version.

3.5 Simulation of Beta Reduction

A fundamental requirement of any explicit substitution calculus is that it should
allow for the simulation of beta reduction in the usual λ-calculus. In framing this
requirement properly for the suspension calculus, it is necessary, first of all, to re-
strict attention to the situation where meta variables do not appear in terms. In
this setting, as observed already, the lambda calculus terms under the de Bruijn no-
tation are exactly those suspension terms that are devoid of suspensions. Moreover,
beta contraction, denoted by �β , is defined as follows:

Definition 3.19. Let t be a de Bruijn term and let s1, s2, s3, . . . represent an
infinite sequence of de Bruijn terms. Then the result of simultaneously substituting
si for the i-th free variable in t for i ≥ 1 is denoted by S(t; s1, s2, s3, . . .) and is
defined recursively as follows:

(1) S(c; s1, s2, s3, . . .) = c, for any constant c,

(2) S(#i; s1, s2, s3, . . .) = si for any variable reference #i,

(3) S((t1 t2); s1, s2, s3, . . .) = (S(t1; s1, s2, s3, . . .) S(t2; s1, s2, s3, . . .)), and

(4) S((λ t); s1, s2, s3, . . .) = (λ S(t;#1, s′1, s
′
2, s

′
3, . . .)) where, for i ≥ 1,

s′i = S(si;#2,#3,#4, . . .).

Using this substitution operation, the β-contraction rule is given by the following

((λ t1) t2) → S(t1; t2,#1,#2, . . .).

A de Bruijn term t is related via β-contraction to s if s results from t by the
application of this rule at an appropriate subterm. We denote this relationship by
�β . Beta reduction is the reflexive and transitive closure of �β .

One part of the relationship between the suspension and lambda calculi that may
also be viewed as the soundness of the (βs) rule is the following:

Theorem 3.20. Let t and s be suspension terms such that t�βss. Then |t|�∗
β |s|.

Proof. This theorem is proved for the original suspension calculus in [Nadathur
and Wilson 1998]. The result carries over to the version of the calculus presented
here by virtue of Lemma 2.9.

The ability of the suspension calculus to simulate beta reduction is a suitably
stated converse to the above theorem.

Theorem 3.21. Let t and s be de Bruijn terms such that t�∗
βs. Then t�∗

rmβs
s.

Proof. It has been shown in [Nadathur and Wilson 1998] for the original for-
mulation of the suspension calculus that if t�∗

βs then t�∗
rβs

s. This observation
carries over to the present version since the rules defining �rβs have essentially
been preserved. The theorem obviously follows from this.

24 · A. Gacek and G. Nadathur

4. COMPARISON WITH OTHER EXPLICIT SUBSTITUTION CALCULI

We now survey some of the other explicit treatments of substitutions that have been
proposed and contrast them with the suspension calculus. We restrict our atten-
tion in this study to calculi that utilize the de Bruijn scheme for representing bound
variables. A good approach to understanding such calculi is to characterize them
based on properties that are desired of them over and above their ability to encode
substitutions. These are three such properties in our understanding: the ability
to compose reduction substitutions, confluence in a situation where graftable meta
variables are included and the preservation of strong normalizability for terms in
the underlying lambda calculus. The first of these properties is central to combining
substitution walks in normalization. Without it, for instance, the reduction of the
term (λ λ t1) t2 t3 would require two separate traversals to be made over t1 for the
purpose of substituting t2 and t3 for the relevant bound variables in it. The sec-
ond property is important in developing algorithms that exploit the grafting view
of meta variables. For example, confluence in the presence of such variables is a
central requirement in realizing a new approach to higher-order unification [Dowek
et al. 2000]. The final property has both a theoretical and a practical significance.
At a theoretical level, it measures the coherence of the calculus. Explicit treatments
of substitution are obtained usually by adding a terminating set of rules for car-
rying out the substitutions generated by beta contractions. The non-preservation
of strong normalizability should, in this setting, be read as an undesirable interfer-
ence between different parts of the overall rewrite system. At a practical level, this
signifies that caution must be exercised in designing normalization procedures.

Of these various properties, the one that appears to be most important in prac-
tice is the ability to combine reduction substitutions: studies show that it is central
to the efficient implementation of reduction [Liang et al. 2004], and, as indicated in
Section 2, it also appears to be a natural way to realize confluence in the presence
of graftable meta variables. Unfortunately, the majority of the explicit substitution
calculi seem not to include this facility. Particular calculi sacrifice other properties
as well. The λυ-calculus [Benaissa et al. 1996] preserves strong normalizability but
does not permit graftable meta variables. The λse-calculus permits such variables
and is confluent even with this addition [Kamareddine and Ŕıos 1997] but does not
preserve strong normalizability [Guillaume 2000]. The λζ-calculus [Muñoz 1996]
possesses both properties but obtains confluence by effectively requiring beta re-
dexes to be contracted in an innermost fashion. Amongst the systems that do not
permit the combination of substitutions, the λwso-calculus alone preserves strong
normalizability and realizes confluence in the presence of graftable meta variables
without artificially limiting reduction strategies [David and Guillaume 2001].

The only systems that permit the combination of reduction substitutions are,
to our knowledge, the λσ-calculus [Abadi et al. 1991], the closely related ΛCCL
calculus [Field 1990] and the suspension calculus. The first two calculi are prac-
tically identical and, for this reason, we restrict our discussion of them to only
the λσ-calculus. The suspension and the λσ-calculus both admit graftable meta
variables without losing confluence and they are similar in many other respects as

The Suspension Calculus and Other Explicit Substitution Calculi · 25

well4. However, they have two important differences. One of these relates to the
manner in which they represent substitutions. The λσ-calculus encodes these as
independent entities that can be separated from the term that they act on. This is
a pleasant property at a formal level but it also leads to inefficiencies in the treat-
ment of the renumbering of bound variables that is necessary when a substitution
is moved under an abstraction. The second difference concerns the treatment of
bound variables. In the λσ-calculus, these are encoded as environment transform-
ing operators in contrast to their representation directly as de Bruijn indices in
the suspension calculus. The former representation is parsimonious in that rules
that serve to compose substitutions can also be used to interpret bound variables.
However, there are also disadvantages to such parsimony. It appears more difficult,
for example, to separate out rules based on purpose and, hence, to identify simpler,
yet complete, subsystems as has been done for the suspension calculus [Nadathur
1999]. The ambiguity in function also appears to play a role in the non-preservation
of strong normalizability in the λσ-calculus [Mellies 1995]: although the status of
this property for the suspension calculus is as yet undetermined, a more focussed
treatment of substitution composition disallows the known counterexample for the
λσ-calculus to be reproduced within it.

In the rest of this section we use the suspension calculus as a means for under-
standing the different treatments of explicit substitutions in more detail. We also
attempt to substantiate the qualitative comparisons that we have provided above.
Our approach to doing this is to describe translations between the suspension calcu-
lus and the other calculi that illuminate their differing characteristics. None of the
calculi that we consider treat constants in terms and, for the sake of consistency,
we assume these are missing also in suspension terms. We also do not include meta
variables initially since these are not present in all calculi, but we bring them into
consideration later as relevant. We divide our discussion of the other calculi into
two subsections depending on whether or not they possess an ability to combine
substitutions. As we shall see below, the calculi that do not have a combining
capability correspond substantially to the suspension calculus without the merging
rules.

4.1 Calculi Without Substitution Composition

We discuss three calculi under this rubric: the λυ-calculus [Benaissa et al. 1996],
the λs-calculus [Kamareddine and Rios 1995], and the λse-calculus [Kamareddine
and Ŕıos 1997]. Qualitatively, these calculi provide an increasing sequence of capa-
bilities. When the de Bruijn representation is used for lambda terms, the indices of
externally bound variables in a term have to be incremented when it is substituted
under an abstraction. The λυ-calculus requires such renumbering to be carried
out in separate walks for each abstraction that the term is substituted under. The
λs-calculus improves on this situation by permitting all the renumbering walks to
be combined into one although such a walk is still kept distinct from walks that
realize substitutions arising out of beta contractions. The λse-calculus extends the

4To be accurate in spirit as well as in detail this statement needs a qualification: as we discuss
later in the section, the original rewrite system of the λσ-calculus needs to be extended slightly
to obtain confluence in the presence of graftable meta variables.

26 · A. Gacek and G. Nadathur

(B) (λ a) b → a[b/] (VarShift) n[↑] → n + 1

(App) (a b)[s] → a[s] b[s] (FVarLift) 1[⇑(s)] → 1

(Lambda) (λ a)[s] → λ a[⇑(s)] (RVarLift) n + 1[⇑(s)] → n[s][↑]

(FVar) 1[a/] → a

(RVar) n + 1[a/] → n

Fig. 4. Rewrite rules for the λυ-calculus

λs-calculus by permitting graftable meta variables.

4.1.1 The λυ-calculus. The syntax of this calculus comprises two categories:
terms, corresponding to lambda terms possibly encoding explicit substitutions, and
substitutions.

Definition 4.1. The terms, denoted by a and b and the substitutions, denoted
by s, of the λυ-calculus are given by the following syntax rules:

a ::= n | a b | λ a | a[s]
s ::= a/ | ⇑(s) | ↑

The collection of expressions described may be understood intuitively as follows.
The expression n represents the nth de Bruijn index, analogously to #n in the
suspension calculus. The binary operator [], referred to as a closure, introduces
explicit substitutions into terms. The expression a/, created using the operator
/ called slash, represents the substitution of a for the first de Bruijn index and a
shifting down of all other de Bruijn indices. The substitution ⇑(s), which uses the
operator ⇑ called lift, provides a device for pushing substitutions underneath ab-
stractions. Finally, the expression ↑, called shift, represents the effect of increasing
the de Bruijn indices corresponding to externally bound variables by one.

The interpretations of the various syntactic devices are made explicit by the rules
in Figure 4 that define the λυ-calculus. The rule labelled (B) in this collection
emulates beta contraction by generating an explicit substitution. The rest of the
rules, that constitute the sub-calculus υ, serve to propagate such substitutions over
the structure of a lambda term and to eventually evaluate them at the bound
variable occurrences.

In relating the suspension and the λυ-calculus it is natural to identify the syn-
tactic categories of terms in the two settings and to think of environments in the
former framework as corresponding to substitutions in the latter. There is, how-
ever, an important difference in the view of the latter two entities. Substitutions in
the λυ-calculus are self-contained objects that carry all the information needed for
understanding them in context. In contrast, the interpretation of an environment
requires also an associated old and new embedding level in the suspension calculus.
This intuition underlies the following translation of λυ to suspension expressions.

Definition 4.2. The mappings T from terms in the λυ-calculus to terms in the
suspension calculus and E from substitutions in the λυ-calculus to triples consisting
of two natural numbers and a suspension environment are defined by recursion as
follows:

The Suspension Calculus and Other Explicit Substitution Calculi · 27

(1) For a term t, T (t) is #n if t is n, (T (a) T (b)) if t is (a b), λ T (a) if t is λ a, and
[[T (a), ol, nl, e]] if t is a[s] and E(s) = (ol, nl, e).

(2) For a substitution s, E(s) is (1, 0, (T (a), 0) :: nil) if s is a/, (0, 1, nil) if s is ↑,
and (ol + 1, nl + 1, (#1, nl + 1) :: e) if s is ⇑(s′) and E(s′) = (ol, nl, e).

It is easy to see that T (a) must be a well-formed suspension term for every term
a in the λυ-calculus. The difference in representation of bound variables in the
two calculi is clearly only a cosmetic one and we shall ignore it in the discussion
that follows. It is obvious then that T is a translation that preserves de Bruijn
terms. It can also be easily verified is that T and E are one-to-one mappings.
There are, however, many suspension terms that are not the images under T of any
term in the λυ-calculus: the set of substitutions that can be encoded in the latter
calculus is quite limited. There are, in fact, only two forms that substitutions can
take: ⇑(. . .⇑(a/) . . .), corresponding to preserving the first few de Bruijn indices,
substituting a (with appropriate renumbering) for the next one and decreasing the
remaining indices by one, and ⇑(. . .⇑(↑) . . .), corresponding to preserving the first
few de Bruijn indices and then incrementing the remaining ones by one. Thus, the
λυ-calculus cannot encode an expression such as [[t, 0, 2, nil]], where t is a de Bruijn
term, directly. This expression can be represented indirectly by t[↑][↑] that has
the suspension term [[[[t, 0, 1, nil]], 0, 1, nil]] as its image. This encoding highlights a
problem with the manner in which the λυ-calculus treats renumbering of de Bruijn
indices: incrementing by n has to be realized through n separate walks that each
increment by 1. A more drastic example of the limitations of the λυ-calculus is that
it possesses no simple way to encode the suspension term [[t, 1, 2, (s, 2) :: nil]] that
corresponds to substituting s for the first de Bruijn index in t and incrementing
all the remaining indices by two. Finally, we note that only simple environments
appear in terms that are in the image of T . This is, of course, to be expected since
the the λυ-calculus does not support the ability to compose substitutions.

At the level of rewriting, we would expect the λυ-calculus to translate into the
subcalculus of the suspension calculus that excludes the merging rules. This is true
for the most part: it is easily seen that if l → r is an instance of any rule in Figure 4
other than (FVar) and (RVarLift), then T (l) → T (r) is an instance of either the
(βs) rule or one of the reading rules in Figure 1. For the (FVar) rule, we observe
first that the [[t, 0, 0, nil]] → t is an admissible rule in the suspension calculus in the
absence of graftable meta variables. Now, this fact can be used to build a special
case of (r3) into the rewrite system:

(r3’) [[#1, ol, 0, (t, 0) :: e]] → t

The (FVar) rule corresponds directly to (r3’) under the translation we have de-
scribed.

The situation for the (RVarLift) rule is more involved. Any term that matches
its lefthand side translates into a suspension term of the form

[[#(n + 1), ol + 1, nl + 1, (#1, nl + 1) :: e]]

where either e is nil, in which case ol is 0 and nl is 1, or e has a first element of the
form (t, nl). In the suspension calculus, rule (r4) allows this term to be rewritten
to the form

28 · A. Gacek and G. Nadathur

[[#n, ol, nl + 1, e]].

In the case that e is nil, this suspension corresponds to incrementing the indices for
externally bound variables in a de Bruijn term, constituted here by #n, by 2. If e is
of the form (t, nl) :: e′ on the other hand, then the suspension represents a situation
in which one or more terms are to be substituted into a context that includes more
enclosing abstractions than were present in the context of their origin. The λυ-
calculus is capable of representing neither situation directly but can encode both
indirectly via a term that translates to

[[[[#n, ol, nl, e]], 0, 1, nil]].

This is, in fact, the translation of the righthand side of the (RVarLift) rule. This
term can be reduced to [[#n, ol, nl + 1, e]] by using the merging rules but represents
the introduction of an extra renumbering walk in the absence of these rules.

The above discussion casts light on the efficiency with which beta reduction can
be realized using the two calculi considered here. Normal forms for suspension
expressions involving only simple environments are identical whether or not the
merging rules are utilized. From this it follows easily that the normal forms pro-
duced by the two systems must be identical.

4.1.2 The λs-calculus. The λs-calculus also distinguishes between beta contrac-
tion and renumbering substitutions. However, it differs from the λυ-calculus in that
it possesses a more general mechanism for renumbering de Bruijn indices and also
has a more concise way of recording which de Bruijn indices are actually affected
by beta contraction and renumbering substitutions. These devices are manifest in
the syntax of terms.

Definition 4.3. The terms of the λs-calculus, denoted by a and b, are given by
the rules

a ::= n | a b | λ a | a σi b | ϕi
k a

where n and i range over positive integers and k ranges over non-negative integers.

Towards understanding this syntax, we observe first that de Bruijn terms are rep-
resented in the λs-calculus exactly as they are in the suspension calculus with the
cosmetic difference that the nth de Bruijn index is denoted directly by n rather
than #n. Beyond this, there are two additional kinds of expressions that serve to
make substitutions explicit. A term of the form a σi b, called a closure and intended
to capture a beta contraction substitution, represents the substitution of a suitably
renumbered version of b for the ith de Bruijn index in a and a shifting down by one
of all de Bruijn indices greater than i in a. A term of the form ϕi

k a, called an update
and included to treat renumbering, represents an increase by i− 1 of all de Bruijn
indices greater than k. The purpose of these new kinds of expressions becomes clear
from the rewriting rules for the λs-calculus that are presented in Figure 5. The
σ-generation rule is the counterpart of beta contraction in this collection. The re-
maining rules, referred to collectively as the s rules, serve to calculate substitutions
introduced into terms by applications of the σ-generation rule.

Closures and updates can be understood as special forms of suspensions. This
relationship is made precise by the following definition.

The Suspension Calculus and Other Explicit Substitution Calculi · 29

σ-generation (λ a) b → a σ1 b

σ-λ-transition (λ a) σi b → λ (a σi+1 b)

σ-app-transition (a1 a2) σi b → (a1 σi b) (a2 σi b)

σ-destruction n σi b →

8><>:
n− 1 if n > i

ϕi
0 b if n = i

n if n < i

ϕ-λ-transition ϕi
k(λ a) → λ (ϕi

k+1 a)

ϕ-app-transition ϕi
k(a1 a2) → (ϕi

k a1) (ϕi
k a2)

ϕ-destruction ϕi
k n →

(
n + i− 1 if n > k

n if n ≤ k

Fig. 5. Rewrite rules for the λs-calculus

Definition 4.4. The translation T of terms in the λs-calculus to suspension terms
is defined by recursion as follows:

T (t) =

#n if t is n

T (a) T (b) if t = (a b)
λ T (a) if t = λ a

[[T (a), i, i− 1, (#1, i− 1) ::
(#1, i− 2) :: . . . :: (#1, 1) :: (T (b), 0) :: nil]] if t = a σi b and

[[T (a), k, k + i− 1, (#1, k + i− 1) ::
(#1, k + i− 2) :: . . . :: (#1, i) :: nil]] if t = ϕi

k a.

The image of the translation function T is, once again, evidently a subset of the
well-formed suspension terms. At a rewriting level, the λs-calculus is, in a sense,
contained within that fragment of the suspension calculus that excludes the merging
rules. Towards making this comment precise, we observe first that the following
is a derived rule of this fragment of the suspension calculus, assuming that e is a
simple environment:

[[#n, ol, nl, e]] =

#(n− ol + nl) if n > ol,
#(nl − l + 1) if n ≤ ol and e[n] = (#1, l), and
[[t, 0, nl − l, nil]] otherwise, assuming e[n] = (t, l).

In particular, this rule embodies a sequence of applications of the rules (r2)-(r4)
from Figure 1. Now, if we augment the reading rules to also include this rule, then
the following theorem is easily proved:

Theorem 4.5. If a and b are terms of the λs-calculus such that a rewrites to b
in one step using the rules in Figure 5, then then T (a)�rβsT (b).

Noting that de Bruijn terms are preserved under the translation, we see then that
any normalization sequence in the λs-calculus can be mimicked in a one-to-one
fashion within this fragment of the suspension calculus.

The comments above indicate a correspondence at a theoretical level but they
gloss over issues relevant to the practical implementation of reduction. First, as

30 · A. Gacek and G. Nadathur

σ-σ-transition (a σi b) σj c → (a σj+1 c) σi(b σj−i+1 c) if i ≤ j

σ-ϕ-transition 1 (ϕi
k a) σj b → ϕi−1

k a if k < j < k + i

σ-ϕ-transition 2 (ϕi
k a) σj b → ϕi

k(a σj−i+1 b) if k + i ≤ j

ϕ-σ-transition ϕi
k(a σj b) → (ϕi

k+1 a) σj(ϕi
k+1−j b) if j ≤ k + 1

ϕ-ϕ-transition 1 ϕi
k(ϕj

l a) → ϕj
l (ϕ

i
k+1−j a) if l + j ≤ k

ϕ-ϕ-transition 2 ϕi
k(ϕj

l a) → ϕj+i−1
l a if l ≤ k < l + j

Fig. 6. Additional rewrite rules for the λse-calculus

the translation function indicates, the λs-calculus provides a rather succinct en-
coding for the substitutions that arise when only the reading and the βs rules are
used. Second, the s rules utilize this representation to realize substitution rather
efficiently in this context; observe, in this regard, that the derived reading rule actu-
ally embodies a possibly costly “look-up” operation that is necessary relative to the
more elaborate encoding of substitutions used in the suspension calculus. However,
this efficiency has an associated cost: closures in the λs-calculus represent exactly
one beta contraction substitution and, consequently, multiple such substitutions
must be effected in separate walks. By contrast, even simple environments in the
suspension calculus have the flexibility for encoding multiple beta contraction and
arbitrary renumbering substitutions. Moreover, the merging rules are not needed
in their full generality to exploit this capability: simple to implement derived rules
can be described for this purpose [Nadathur 1999]. It has been observed that the
ability to combine substitutions that is supported by the more general encoding for
them leads to significantly greater efficiency in realizing reduction in practice than
does the concise encoding facilitated by treating restricted forms of substitutions
[Liang et al. 2004].

4.1.3 The λse-calculus and permutations of substitutions. The λs-calculus and
the λυ-calculus lack confluence in the presence of graftable meta variables. In
the absence of substitution composition, the only way to regain confluence is to
permit permutations of substitutions5. In the context of the λs-calculus, such
permutability should apply to both the closure and the update forms of explicit
substitutions. The λse-calculus adds the rules in Figure 6 to those already present
in the λs-calculus in support of such permutability. There must, of course, be
some kind of directionality to the permitted substitution reorderings to ensure
termination and the side conditions on the new rules are intended to realize this.
To understand the use of these rules and also the restrictions on permutations, we
may consider the term ((λ ((λ X) t1)) t2). Mimicking in the λse-calculus the two
reduction paths seen for this term in Section 2.4, we get the terms (X σ1 t1) σ1 t2
and (X σ2 t2) σ1(t1 σ1 t2). Notice now that the σ-σ-transition rule is applicable
only to the first of these terms. Thus, intuitively, this rule permits the permutation
only of substitutions arising from the contraction of outer beta redexes over those
arising from contracting inner ones. The effect of carrying out this rearrangement

5We note here that permutation and composition of substitutions are distinct notions although
they seem sometimes to have been confused in the literature, e.g., see [Cosmo et al. 2003].

The Suspension Calculus and Other Explicit Substitution Calculi · 31

is to make the substitutions have the same form in both terms, as is desired.
The λse-calculus has been shown to have an adequate mix of permutation rules to

ensure confluence in the presence of meta variables [Kamareddine and Ŕıos 1997].
From the discussion of the σ-σ-transition rule it might appear that it also restricts
these rules sufficiently to preserve strong normalizability. Unfortunately, this is not
the case: it has been shown that interactions between closures and updatings can
give rise to nontermination even when the starting point is a lambda term that
can be simply typed [Guillaume 2000]. The λws-calculus [David and Guillaume
2001] provides a remedy to this situation by extending the syntax of de Bruijn
terms (and hence the normal forms produced by reduction) to include terms with
numeric labels that represent yet-to-be-computed renumbering substitutions.

4.2 Calculi with Substitution Composition

As we have noted, the main exemplars of this variety of treatment of explicit sub-
stitutions are the λσ- and the suspension calculi. We discuss their relationship
below. In contrast to the earlier situations, it is now relevant to consider mappings
between these calculi in both directions.

4.2.1 The λσ-calculus. The λσ-calculus, like the λυ-calculus that is derived
from it, treats substitutions as independent entities that can be meaningfully sep-
arated from the terms they act upon. Thus, its syntax is determined by terms and
substitutions.

Definition 4.6. The following syntax rules in which a and b denote terms and s
and t denote substitutions define the syntax of the λσ-calculus:

a ::= 1 | a b | λ a | a[s]
s ::= id | a · s | s ◦ t | ↑

A term of the form a[s] is called a closure and represents the term a with the
substitution s to be applied to it. The substitution id is the identity substitution.
The substitution a · s is called cons and represents a term a to be substituted for
the first de Bruijn index along with a substitution s for the remaining indices.
The substitution s ◦ t represents the composition of the substitution s with the
substitution t. Finally, the substitution ↑ is called shift and is intended to capture
the increasing by 1 of all the de Bruijn indices corresponding to the externally
bound variables in the term it is applied to. A form of substitution that has
special significance is ↑ ◦ (↑ ◦ · · · (↑ ◦ ↑) · · ·). Assuming n occurrences of ↑ in
the expression, such a substitution represents an n-fold increment to the de Bruijn
indices of the externally bound variables in the term it operates on. The shorthand
↑n is used for such an expression and the notation is further extended by allowing
↑0 to denote id.

The reference to de Bruijn indices in the previous paragraph is accurate in spirit
but not in detail. The λσ-calculus represents abstracted variables as environment
transforming operators rather than as indices. Specifically, only the first abstracted
variable is represented directly by the index 1: for n > 1, the n-th such variable is
represented by 1[↑n−1]. When such a term is subjected to a substitution, the shift
operators will play a role in determining the appropriate term to replace it with, as
the rules of the calculus will elucidate. It will become clear then that composition

32 · A. Gacek and G. Nadathur

(Beta) (λa) b → a[b · id]

(App) (a b)[s] → a[s] b[s] (Map) (a · s) ◦ t → a[t] · (s ◦ t)

(Abs) (λa)[s] → λa[1 · (s ◦ ↑)] (Ass) (s ◦ t) ◦ u → s ◦ (t ◦ u)

(VarId) 1[id] → 1 (IdL) id ◦ s → s

(VarCons) 1[a · s] → a (ShiftId) ↑ ◦ id → ↑
(Clos) a[s][t] → a[s ◦ t] (ShiftCons) ↑ ◦ (a · s) → s

Fig. 7. Rewrite rules for the λσ-calculus

of substitutions is essential in this calculus even to the proper interpretation of
variables bound by abstractions.

The rules that define the λσ-calculus are presented in Figure 7. In this collection,
the (Beta) rule serves to simulate beta contraction. The remaining rules, that define
the subsystem σ, are meant to propagate substitutions generated by the (Beta)
rule. The σ rules in the left column compute the effect of substitutions on terms.
The (Clos) rule may generate a composition of substitutions in this process that
the rules in the right column are useful in unravelling. Given two terms or two
substitutions u and v , we write u �λσ v or u �σ v to denote the fact that v results
by replacing an appropriate subpart of u using any of these rules or only one of the
σ rules, respectively. The reflexive and transitive closure of these relations is, as
usual, denoted by �∗

λσ and �∗
σ .

It is useful to understand the manner in which the rules of the λσ-calculus
function in the task of normalizing terms as a prelude to contrasting it with
the suspension calculus. Towards this end, consider the lambda term given by
(λ λ ((λ λ λ #3) #2)) in the suspension calculus. This term is encoded by

(λ λ ((λ λ λ 1[↑2]) 1[↑]))
in the λσ-calculus. Applying the (Beta) rule to the only redex in this term we get

(λ λ ((λ λ 1[↑2])[1[↑] · id])).

The substitution generated by beta contraction can now be moved inside the two
abstractions using the (Abs) rule to get the term

(λ λ λ λ (1[↑2][1 · (1 · ((1[↑] · id) ◦ ↑) ◦ ↑)]).
The substitution (1 · ((1[↑] · id) ◦ ↑) ◦ ↑) that appears in this expression depicts
the iterated adjustment of substitutions as they are pushed under abstractions in
λσ-calculus; by contrast, the suspension calculus captures the needed renumbering
simply by a global adjustment to the new embedding level. The next conceptual
step in the reduction is that of “looking up” the binding for the variable represented
by 1[↑2] in the substitution. This step requires the possible use of (ShiftCons) to
prune off an initial portion of the substitution and an eventual use of (VarId) to
select the desired term. However, the encoding of abstracted variables necessitates
the use of the rules (Clos), (Ass) and (Map) to prepare the situation for applying
these rules. The term that results at the end of this process is (λ λ λ λ 1[(↑ ◦ ↑) ◦ ↑]).
The (Ass) rule can now be used to transform the term under all the abstractions
into the form 1[↑ ◦ (↑ ◦ ↑)] that is recognizable as the encoding of a de Bruijn index.

The Suspension Calculus and Other Explicit Substitution Calculi · 33

4.2.2 Translating suspension expressions into λσ-expressions. The non-trivial
part of this mapping concerns the treatment of environments in the suspension
calculus. Intuitively, these must correspond to substitutions in the λσ-calculus.
However, environments obtain a meaning only relative to the new embedding level of
the suspension terms they appear in. Moreover, to be well-formed, this embedding
level must be at least as large as the level of the environment itself. Once this
constraint is satisfied, the example just considered suggests the right translation to
a “standalone” substitution.

Definition 4.7. The mappings S from suspension terms to λσ-terms and R from
pairs constituted by a suspension environment e and a natural number i such that
lev(e) ≤ i to λσ-substitutions are defined simultaneously by recursion as follows:

(1) S(#1) = 1, S(#(n+1)) = 1[↑n] if n > 0, S(a b) = (S(a) S(b)), S(λ a) = λ S(a)
and S([[t, ol, nl, e]]) = S(t)[R(e, nl)].

(2) R(e, i) =

(. . . ((id

i occurrences of ↑︷ ︸︸ ︷
◦ ↑) ◦ ↑) · · ·) ◦ ↑ if e = nil

(. . . (((S(t) ·R(e′, n))

i−n occurrences of ↑︷ ︸︸ ︷
◦ ↑) ◦ ↑) · · ·) ◦ ↑ if e = (t, n) :: e′ and

R(e1, nl1) ◦R(e2, i− (nl1
. ol2)) if e = {{e1, nl1, ol2, e2}}.

The constraint on the pairs that R applies to raises a question concerning the well-
definedness of R, and hence also of S. However, the well-formedness requirement
on suspension expressions in Definition 2.3 ensures that these must be well-defined.
Another fact that is easy to verify is that these mappings are both one-to-one; the
critical observation in this regard is that Definition 4.7 is constructed so that R(e, i)
is not equal to ↑j for any e, i and j. Finally, we observe a correspondence also at
the level of the rewriting:

Theorem 4.8. Let u and v be suspension expressions such that u�rmv (u �

rmβsv). If u and v are terms, then there exists a λσ-term w such that S(u)�∗
σ w and

S(v) �∗
σ w (respectively, S(u) �∗

λσ w and S(v) �∗
λσ w). If u and v are environments,

then for any i such that lev(u) ≤ i, there is a λσ-substitution w such that R(u, i)�∗
σ

w and R(v, i) �∗
σ w (respectively R(u, i) �∗

λσ w and R(v, i) �∗
λσ w).

Proof. Applications of the rules (βs), (r5), (r6), (m1) and (m3) on suspension
expressions map directly onto applications of (Beta), (App), (Abs), (Clos) and
(IdL), respectively, on their translations. Rule (r2) that corresponds to renumbering
a de Bruijn index translates into a sequence of uses of the (Map) and (Ass) rules
in accordance with the representation of abstracted variables in the λσ-calculus.
Rule (r3) is similar to the rule (VarCons). However, the translation of the lefthand
side must be “prepared” for the use of (VarCons) by a sequence of applications of
(Map) and a peculiarity of the translation of the righthand side may require (IdL)
to be used on it to produce a common form. In a similar sense, the rules (r4), (m4)
and (m5) correspond to a “compiled form” of (ShiftCons) and (m6) corresponds
to a compiled form of (Map). Finally, rule (m2) is similar to the use of (Ass) in
producing a normal form.

34 · A. Gacek and G. Nadathur

4.2.3 Translating λσ-expressions into suspension expressions. Going in the re-
verse direction needs a decision on the range of the mapping for λσ-substitutions.
Considering a term of the form a[s] indicates what this might be. Such a term
should translate into a suspension of the form [[t, ol, nl, e]] where the triple (ol, nl, e)
is obtained by “interpreting” s. In the case when every composition in s has a shift
as its right operand, this triple can be arrived at in a natural way: e should reflect
the substitution terms in s, ol should be the number of such terms and nl, which
counts the number of enclosing abstractions, should correspond to the length of
the longest sequence of compositions with shifts at the top level in s. The intu-
ition underlying the encoding of general substitution composition in the suspension
calculus now allows this translation to be extended to arbitrary λσ-substitutions.

Definition 4.9. The mapping T from λσ-terms to suspension terms and the map-
ping E from λσ-substitutions to triples of an old embedding level, a new embedding
level, and a suspension environment are defined simultaneously by recursion as fol-
lows:

(1) T (1) = #1, T (a b) = (T (a) T (b)), T (λ a) = λ T (a) and T (a[s]) is #(n + 1)
if a is 1 and s is ↑n for n ≥ 0 and is [[T (a), ol, nl, e]] where E(s) = (ol, nl, e)
otherwise.

(2) E(id) = (0, 0, nil), E(↑) = (0, 1, nil), E(a · s) = (ol + 1, nl, (T (a), nl) :: e)
where E(s) = (ol, nl, e), and E(s1 ◦ s2) is (ol1, nl1 + 1, e1) if s2 is ↑ and is
(ol1 + (ol2 . nl1), nl2 + (nl1

. ol2), {{e1, nl1, ol2, e2}}) otherwise, assuming that
E(s1) = (ol1, nl1, e1) and E(s2) = (ol2, nl2, e2).

It is easily seen that, for any term a of the λσ-calculus, T (a) is a well-formed
suspension term. The translation treats a term of the form 1[↑n] as a special
case, reflecting its interpretation as the encoding of an abstracted variable. If this
case were not singled out, the translation would produce the term [[#1, 0, nl, nil]]
instead. This term can be rewritten to #(n + 1) by the rule (r2). A similar
observation applies to the translation of s ◦ ↑. This case is treated as a special one
to account for the manner in which a substitution is moved under an abstraction in
the λσ-calculus. If this issue were to be ignored, this substitution would translate to
(ol, nl + 1, {{e, nl, 0, nil}}) instead of (ol, nl + 1, e), assuming that E(s) = (ol, nl, e).
The environment component of the former triple rewrites to that of the latter by
the rule (m2).

The following theorem, whose proof is trivial, is evidence of the naturalness of
our translations:

Theorem 4.10. For every suspension term t, T (S(t)) = t.

In order to state a correspondence between the rewrite systems, we need to extend
the reduction relations on suspension expressions to triples of the form (ol, nl, e)
that are the targets of the mapping E. We do this in the obvious way: a triple
(ol, nl, e) is related to (ol, nl, e′) by a rewriting relation just in case e is related to
e′ by that relation.

Theorem 4.11. If a and b are λσ-terms such that a�σ b (a�λσ b), then there is a
suspension-term u such that T (a)�∗

rmu (T (a)�∗
rmβs

u) and T (b)�∗
rmu (T (b)�∗

rmβs
u).

If s and t are λσ-substitutions such that s�σ t (s�λσ t) then there exist environments

The Suspension Calculus and Other Explicit Substitution Calculi · 35

e1 and e2 such that E(s)�∗
rm(ol, nl, e1) (E(s) �∗

rmβs
(ol, nl, e1)), E(t)�∗

rm(ol, nl, e2)
(E(t)�∗

rm(ol, nl, e2)) and e1 ∼ e2.

Proof. The argument is by induction on the structure of λσ-expressions. The-
orem 3.15 permits us to focus on the situation where rewriting takes place at the
root of the expression. Also, the observations about the “redundancy” of the special
cases in the definitions of T and E allow us to ignore them in the proof.

Now, we can observe a relationship between several of the rules in the λσ-calculus
and rules in the suspension calculus: (Beta) corresponds to (βs), (App) to (r5),
(Abs) to (r6), (VarId) to (a special case of) (r2), (VarCons) to (r3), (Clos) to
(m1), (IdL) to (m3), (ShiftId) to (m2) and (ShiftCons) to (m4). In some cases
the correspondence is precise in that the translation of the lefthand side rewrites
exactly to the translation of the righthand side by the indicated rule. However, in
most cases, some “adjustments” using other reading and merging rules are needed
before or after the specific rule application to account for the peculiarities of the
different calculi.

The two rules that remain are (Map) and (Ass). The former corresponds to (m6)
but the correspondence is not quite the same as with the other rules. Suppose
(a · s1) ◦ s2 rewrites to a[s2] · (s1 ◦ s2) by this rule. Let T (a) = t, E(s1) =
(ol1, nl1, e1), and E(s2) = (ol2, nl2, e2). The index components of E((a·s1)◦s2) and
E(a[s2] ·(s1◦s2)) are quickly seen to be identical. The environment components are
{{(t, nl1) :: e1, nl1, ol2, e2}} and ([[t, ol2, nl2, e2]], nl2 + (nl1

. ol2)) :: {{e1, nl1, ol2, e2}},
respectively. These are like the left and right sides of rule (m6) with two differences.
First, e2 might not have the form (s, l) :: e′2 that is needed by rule (m6). This can
be “fixed” by rewriting e2 at the outset to such a form6. The second difference
is that the index of the first environment term on the right side uses nl2 where
rule (m6) uses l. However, this is not a problem because the two environments are
claimed only to be similar, not identical.

Finally, turning to (Ass), we see that there is no rule in the suspension calculus
that “simulates” it. Rather, this rule corresponds to a meta property of the calculus
that was proved in Lemma 3.10.

4.2.4 Meta Variables and Preservation of Strong Normalizability. Our presen-
tation of the λσ-calculus is true to its original description in [Abadi et al. 1991].
This rewrite system is not confluent when the syntax of terms is extended to in-
clude graftable meta variables. However, straightforward additions to the rule set
suffice to regain this property [Curien et al. 1996]; see also [Dowek et al. 2000] for
a system closer in form to the one discussed in this paper.

The λσ-calculus does not preserve strong normalizability as we have already
noted, although the substitution subsystem σ is strongly normalizing. The crux
of the problem is that the (Beta) rule and the substitution rules can interact with
each other to get a substitution to scope over its own subcomponents. To see how
this might happen, consider the following reduction sequence adapted from [Mellies
1995]:

((λ a′) b′)[((λ a) b) · id]

6For completeness, the case where e2 reduces to nil must also be discussed. (Map) in this case is
related to (r2) and the argument is easier.

36 · A. Gacek and G. Nadathur

�∗
σ (λ (a′[1 · ((((λ a) b) · id) ◦ ↑)])) b′[((λ a) b) · id]

�Beta a′[1 · ((((λ a) b) · id) ◦ ↑)][b′[((λ a) b) · id] · id]
�∗

σ a′[b′[((λ a) b) · id] · ((((λ a) b) · id) ◦ (↑ ◦ (b′[((λ a) b) · id] · id)))]

The substitution (↑ ◦ (b′[((λ a) b) · id] · id)) that appears as a subexpression of the
last term in this sequence would be rewritten to id in a sensible progression to a
normal form. However, it can also perversely be distributed over the preceding
substitution using (Map) to produce the substitution subexpression

((λ a) b)[↑ ◦ (b′[((λ a) b) · id] · id)] · (id ◦ (↑ ◦ (b′[((λ a) b) · id] · id))).

Observe here that [((λ a) b) · id] has become a subpart of a substitution that stands
over the term ((λ a) b) that originates from itself.

The preservation of strong normalizability is still an unsettled question with re-
gard to the suspension calculus. However, Mellies’ counterexample does not apply
to this calculus because the kind of problem situation depicted above cannot be
created within it. In particular, rule (m6) that corresponds to (Map) in the sus-
pension calculus ensures that only relevant portions of an external environment are
distributed over substitution terms.

5. CONCLUSION

This paper has presented a simplified and rationalized version of the suspension
calculus. The new notation has several pleasing theoretical and practical properties
some of which have been manifest here. This version also differs from the original
presentation in that it preserves contextual information. This characteristic has
been central to our ability to describe translations to the λσ-calculus and has also
been exploited elsewhere in defining a system for type assignment [Gacek 2006b].
This paper has also surveyed the world of explicit substitution calculi. It has
attempted to do this in a top-down fashion, first elucidating properties that are
important for such calculi to possess and then using these to categorize and to
explain the motivations for the different proposed systems. In the process we have
also distilled a better understanding of the capabilities of the suspension calculus.

This work can be extended in several ways. We mention two that we think are
especially important. First, like the λσ-calculus, the notation we have described
here provides the basis for incorporating new treatments of higher-order unification
that exploit graftable meta variables into practical systems. It is of interest to
actually explicate such a treatment and to evaluate its benefits empirically. Second,
the question of preservation of strong normalizability is still an open one for this
calculus. This issue appears to be a non-trivial one to settle and an answer to it is
likely to provide significant insights into the structure of the suspension calculus.

ACKNOWLEDGMENTS

This work began while the second author was on a sabbatical visit to the Protheo
group at LORIA and INRIA, Nancy and the Comete and Parsifal groups at École
Polytechnique and INRIA, Saclay. Support for this work has been provided by the
NSF through the grant numbered CCR-0429572; however, any opinions, findings,
and conclusions or recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the National Science Foundation. Gacek

The Suspension Calculus and Other Explicit Substitution Calculi · 37

has also been supported by a grant from Boston Scientific during the concluding
stages of this research.

REFERENCES

Abadi, M., Cardelli, L., Curien, P.-L., and Lévy, J.-J. 1991. Explicit substitutions. Journal
of Functional Programming 1, 4, 375–416.

Baelde, D., Gacek, A., Miller, D., Nadathur, G., and Tiu, A. 2007. The Bedwyr system for
model checking over syntactic expressions. Available from the Computing Research Repository
at http://arxiv.org/abs/cs.LO/0702116.

Benaissa, Z., Briaud, D., Lescanne, P., and Rouyer-Degli, J. 1996. λυ, a calculus of explicit
substitutions which preserves strong normalization. Journal of Functional Programming 6, 5,
699–722.

Bruijn, N. 1972. Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser Theorem. Indag. Math. 34, 5, 381–392.

Cosmo, R. D., Kesner, D., and Polonovski, E. 2003. Proof nets and explicit substitutions.
Mathematical Structures in Computer Science 13, 3, 409–450.

Curien, P.-L., Hardin, T., and Lévy, J.-J. 1996. Confluence properties of weak and strong
calculi of explicit substitutions. Journal of the ACM 43, 2, 362–397.

David, R. and Guillaume, B. 2001. A λ-calculus with explicit weakening and explicit substitu-
tion. Mathematical Structures for Computer Science 11, 1, 169–206.

Dershowitz, N. 1982. Orderings for term-rewriting systems. Theoretical Computer Science 17, 3,
279–301.

Dowek, G., Hardin, T., and Kirchner, C. 2000. Higher-order unification via explicit substitu-
tions. Information and Computation 157, 183–235.

Ferreira, M. and Zantema, H. 1995. Well-foundedness of term orderings. In Fourth Interna-
tional Workshop on Conditional Term Rewriting Systems, N. Dershowitz, Ed. Lecture Notes
in Computer Science, vol. 968. Springer, 106–123.

Field, J. 1990. On laziness and optimality in lambda interpreters: Tools for specification and
analysis. In Seventeenth Annual ACM Symposium on Principles of Programming Languages.
ACM Press, 1–15.

Gacek, A. 2006a. A Coq proof of the termination of the reading and merging rules in the suspen-
sion calculus. http://www-users.cs.umn.edu/~agacek/pubs/gacek-masters/Termination/.

Gacek, A. 2006b. The suspension calculus and its relationship to other explicit treatments of
subsubstitution in lambda calculi. M.S. thesis, University of Minnesota.

Guillaume, B. 2000. The λse-calculus does not preserve strong normalisation. Journal of Func-
tional Programming 10, 4, 321–325.

Huet, G. 1975. A unification algorithm for typed λ-calculus. Theoretical Computer Science 1,
27–57.

Huet, G. 1980. Confluent reductions: Abstract properties and applications to term rewriting
systems. Journal of the ACM 27, 4, 797–821.

Kamareddine, F. and Rios, A. 1995. A lambda-calculus ‘a la de bruijn with explicit substi-
tutions. In Seventh International Conference on Programming Languages: Implementations,
Logics and Programs (PLILP). Lecture Notes in Computer Science, vol. 982. Springer, 45–62.

Kamareddine, F. and Ŕıos, A. 1997. Extending the λ-calculus with explicit substitution which
preserves strong normalization into a confluent calculus on open terms. Journal of Functional
Programming 7, 4, 395–420.

Liang, C., Nadathur, G., and Qi, X. 2004. Choices in representation and reduction strategies
for lambda terms in intensional contexts. J. Autom. Reasoning 33, 2, 89–132.

Mellies, P.-A. 1995. Typed λ-calculi with explicit substitutions may not terminate. In Second
International Conference on Typed Lambda Calculi and Applications, M. Dezani-Ciancaglini
and G. Plotkin, Eds. Lecture Notes in Computer Science, vol. 902. Springer, 328–334.

38 · A. Gacek and G. Nadathur

Miller, D. 2000. Abstract syntax for variable binders: An overview. In Proceedings of the First
International Conference on Computational Logic, J. Lloyd, Ed. Lecture Notes in Artificial
Intelligence, vol. 1861. Springer, 239–253.

Muñoz, C. 1996. Confluence and preservation of strong normalization in an explicit substitution
calculus. In Eleventh Annual IEEE Symposium on Logic in Computer Science. IEEE Computer
Society Press, 440–447.

Nadathur, G. 1999. A fine-grained notation for lambda terms and its use in intensional opera-
tions. Journal of Functional and Logic Programming 1999, 2 (March).

Nadathur, G. and Mitchell, D. J. 1999. System description: Teyjus—a compiler and abstract
machine based implementation of λProlog. In Automated Deduction–CADE-16, H. Ganzinger,
Ed. Lecture Notes in Artificial Intelligence, vol. 1632. Springer, 287–291.

Nadathur, G. and Wilson, D. 1998. A notation for lambda terms: A generalization of environ-
ments. Theoretical Computer Science 198, 1-2, 49–98.

Pfenning, F. and Elliott, C. 1988. Higher-order abstract syntax. In Proceedings of the ACM-
SIGPLAN Conference on Programming Language Design and Implementation. ACM Press,
199–208.

Shao, Z., League, C., and Monnier, S. 1998. Implementing typed intermediate languages. In
Proc. 1998 ACM SIGPLAN International Conference on Functional Programming (ICFP’98).
ACM Press, 313–323.

