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Abstract

In this paper, we formulate the problem of summariza-
tion of a dataset of transactions with categorical attributes
as an optimization problem involving two objective func-
tions - compaction gain and information loss. We propose
metrics to characterize the output of any summarization al-
gorithm. We investigate two approaches to address this
problem. The first approach is an adaptation of cluster-
ing and the second approach makes use of frequent itemsets
from the association analysis domain. We illustrate one
application of summarization in the field of network data
where we show how our technique can be effectively used
to summarize network traffic into a compact but meaningful
representation. Specifically, we evaluate our proposed al-
gorithms on the 1998 DARPA Off-line Intrusion Detection
Evaluation data and network data generated by SKAION
Corp for the ARDA information assurance program.

1 Introduction

Summarization is a key data mining concept which in-
volves techniques for finding a compact description of a
dataset. Simple summarization methods such as tabulat-
ing the mean and standard deviations are often applied for
exploratory data analysis, data visualization and automated
report generation. Clustering [12, 21] is another data min-
ing technique that is often used to summarize large datasets.
For example, centroids of document clusters derived for a
collection of text documents can provide a good indication
of the topics being covered in the collection. The cluster-
ing based approach is effective in domains like text summa-
rization, where the features are asymmetric binary [21, 9],
and hence cluster centroids are a meaningful description of
the clusters. However, if the data has categorical attributes,
then the standard methods for computing a cluster centroid
are not applicable and hence clustering cannot directly be

applied for summarization1. One such application is in the
analysis of netflow data to detect cyber attacks.

Feature Type Possible Values
Source IP Categorical 2

32

Source Port Categorical 2
16

Destination IP Categorical 2
32

Destination Port Categorical 2
16

Protocol Categorical ≤ 10
Number of Packets Continuous 1 -∞
Number of Bytes Continuous 1 -∞

TCP Flags Categorical ≤ 10

Table 1. Different features for netflow data

Netflow data is a set of records that describe network
traffic, where each record has different features such as the
IPs and ports involved, packets and bytes transferred (see
Table 1). An important characteristic of netflow data is that
it has a mix of categorical and continuous features. The vol-
ume of netflow data which a network analyst has to monitor
is huge. For example, on a typical day at the University
of Minnesota, more than one million flows are collected in
every 10 minute window. Manual monitoring of this data
is impossible and motivates the need for data mining tech-
niques. Anomaly detection systems [8, 16, 4, 20] can be
used to score these flows, and the analyst typically looks at
only the most anomalous flows to identify attacks or other
undesirable behavior. Table 2 shows 17 flows which were
ranked as most suspicious by the MINDS Anomaly Detec-
tion Module [8] for the network traffic analyzed on January
26, 2003 (48 hours after theSlammer Wormhit the Inter-
net). These flows are involved in three anomalous activities
- slammer wormrelated traffic on port 1434, flows asso-

1Traditionally, a centroid is defined as the average of the value of each
attribute over all transactions. If a categorical attribute has different values
(say red, blue, green) for three different transactions in the cluster, then it
does not make sense to take an average of the values. Although it is pos-
sible to replace a categorical attribute with an asymmetric binary attribute
for each value taken by the attribute, such methods do not workwell when
the attribute can take a large number of values, as in the netflow data – see
Table 1.



Score srcIP sPort dstIP dPort prot pkts bytes

T1 37675 63.150.X.253 1161 128.101.X.29 1434 udp [0,2) [0,1829)
T2 26677 63.150.X.253 1161 160.94.X.134 1434 udp [0,2) [0,1829)
T3 24324 63.150.X.253 1161 128.101.X.185 1434 udp [0,2) [0,1829)
T4 21169 63.150.X.253 1161 160.94.X.71 1434 udp [0,2) [0,1829)
T5 19525 63.150.X.253 1161 160.94.X.19 1434 udp [0,2) [0,1829)
T6 19235 63.150.X.253 1161 160.94.X.80 1434 udp [0,2) [0,1829)
T7 17679 63.150.X.253 1161 160.94.X.220 1434 udp [0,2) [0,1829)
T8 8184 63.150.X.253 1161 128.101.X.108 1434 udp [0,2) [0,1829)
T9 7143 63.150.X.253 1161 128.101.X.223 1434 udp [0,2) [0,1829)

T10 5139 63.150.X.253 1161 128.101.X.142 1434 udp [0,2) [0,1829)
T11 4048 142.150.Y.101 0 128.101.X.142 2048 icmp [2,4) [0,1829)
T12 4008 200.250.Z.20 27016 128.101.X.116 4629 udp [2,4) [0,1829)
T13 3657 202.175.Z.237 27016 128.101.X.116 4148 udp [2,4) [0,1829)
T14 3451 63.150.X.253 1161 128.101.X.62 1434 udp [0,2) [0,1829)
T15 3328 63.150.X.253 1161 160.94.X.223 1434 udp [0,2) [0,1829)
T16 2796 63.150.X.253 1161 128.101.X.241 1434 udp [0,2) [0,1829)
T17 2694 142.150.Y.101 0 128.101.X.168 2048 icmp [2,4) [0,1829)

Table 2. Top 17 anomalous flows as scored by the
anomaly detection scheme of the MINDS system for the
network data collected on January 26, 2003 at the Univer-
sity of Minnesota (48 hours after theSlammer Wormhit the
Internet). The third octet of IPs is anonymized for privacy
preservation.

Size Score srcIP sPort dstIP dPort prot pkts

S1 13 15102 63.150.X.253 1161 *** 1434 udp [0,2)
S2 2 3833 *** 27016 128.101.X.116 *** udp [2,4)
S3 2 3371 142.150.Y.101 0 *** 2048 icmp [2,4)

Table 3. Summarization output for the dataset in Table 2.
The last column has been removed since all the transactions
contained the same value for it in the original dataset.

ciated with ahalf-life game server on port 27016 andping
scansof the inside network by an external host on port 2048.
In a typical window of data being analyzed, there are often
several hundreds or thousands of highly ranked flows that
require the analyst’s attention. But due to the limited time
available, analysts look at only the first few pages of results
that cover the top few dozen most anomalous flows. If many
of these most anomalous flows can be summarized into a
small representation, then the analyst can analyze a much
larger set of anomalies than is otherwise possible. For ex-
ample, if the dataset shown in Table 2 can be automatically
summarized into the form shown in Table 3 (the last col-
umn has been removed since all the transactions contained
the same value for it in Table 2), then the analyst can look at
only 3 lines to get a sense of what is happening in 17 flows.
Table 3 shows the output summary for this dataset generated
by an application of our proposed scheme. We see that ev-
ery flow is represented in the summary. The first summary
S1 represents flows{T1-T10,T14-T16} which correspond to
theslammer wormtraffic coming from a single external host
and targeting several internal hosts. The second summary
S2 represents flows{T12,T13} which are the connections
made tohalf-life game servers made by an internal host.
The third summary,S3 represents flows{T11,T17} which
correspond to aping scanby the external host. In general,
such summarization has the potential to reduce the size of
the data by several orders of magnitude.

In this paper, we address the problem of summarization

of data sets that have categorical features. We handle con-
tinuous features by discretizing them using equal-width bin-
ning and then treating the resulting features as categorical.
We view summarization as a transformation from a given
dataset to a smaller set of individual summaries with an ob-
jective of retaining the maximum information content. A
fundamental requirement is thatevery data item should be
represented in the summary.

1.1 Contributions

Our contributions in this paper are as follows –

• We formulate the problem of summarization of trans-
actions that contain categorical data, as a dual-
optimization problem and characterize a good sum-
mary using two metrics –compaction gainand infor-
mation loss. Compaction gain signifies the amount of
reduction done in the transformation from the actual
data to a summary. Information loss is defined as the
total amount of information missing over all original
data transactions in the summary.

• We investigate two approaches to address this problem.
The first approach is an adaptation of clustering and the
second approach makes use of frequent itemsets from
the association analysis domain [3].

• We illustrate one application of summarization in the
field of network data where we show how our tech-
nique can be effectively used to summarize network
traffic into a compact but meaningful representation.
Specifically, we evaluate our proposed algorithms on
the 1998 DARPA Off-line Intrusion Detection Evalua-
tion data [14] and network data generated by SKAION
Corp for the ARDA information assurance program
[1].

2 Related Work

Many researchers have addressed the issue of finding a
compact representation of frequent itemsets [2, 19, 10, 18,
6]. However, their final objective is to approximate a col-
lection of frequent itemsets with a smaller subset, which
is different from the problem addressed in this paper, in
which we try to represent a collection of transactions with
a smaller summary. Text summarization [17] is a widely-
researched topic in the research community, and has been
addressed mostly as a natural language processing problem
which involves semantic knowledge and is different from
the problem of summarization of transaction data addressed
in this paper. Another form of summarization is addressed
in [11] and [15], where the authors aim at organizing and
summarizing individual rules for better visualization while
not addressing the issue of compacting the data.



src IP sPort dst IP dPort pro flags packets bytes

T1 12.190.84.122 32178 100.10.20.4 80 tcp —APRS- [2,20] [504,1200]
T2 88.34.224.2 51989 100.10.20.4 80 tcp —APRS- [2,20] [220,500]
T3 12.190.19.23 2234 100.10.20.4 80 tcp —APRS- [2,20] [220,500]
T4 98.198.66.23 27643 100.10.20.4 80 tcp —APRS- [2,20] [42,200]
T5 192.168.22.4 5002 100.10.20.3 21 tcp —A-RSF [2,20] [42,200]
T6 192.168.22.4 5001 100.10.20.3 21 tcp —A-RS- [40,68] [220,500]
T7 67.118.25.23 44532 100.10.20.3 21 tcp —A-RSF [40,68] [42,200]
T8 192.168.22.4 2765 100.10.20.4 113 tcp —APRS- [2,20] [504,1200]

Table 4. A synthetic dataset of network flows.

src IP sPort dst IP dPort pro flags packets bytes

S1 *.*.*.* *** 100.10.20.4 *** tcp —APRS- [2,20] ***
S2 *.*.*.* *** 100.10.20.3 21 tcp *** *** ***
S3 192.168.22.4 2765 100.10.20.4 113 tcp —APRS- [2,20] [504,1200]

Table 5. A possible summary for the dataset shown above.

3 Characterizing a Summary

Summarization can be viewed as compressing a given set
of transactions into a smaller set of patterns while retain-
ing the maximum possible information. A trivial summary
for a set of transactions would be itself. The information
loss here is zero but there is no compaction. Another trivial
summary would be the empty setε, which represents all the
transactions. In this case the gain in compaction is maxi-
mum but the summary has no information content. A good
summary is one which is small but still retains enough in-
formation about the data as a whole and also for each trans-
action.

We are given a set ofn categorical featuresF =
{F1, F2, . . . , Fn} and an associated weight vectorW such
that eachWi ∈ W represents the weight of the featureFi ∈
F . A set of transactionsT , such that|T | = m, is defined
using these features, and eachTi ∈ T has a specific value
for each of then features. Formally, a summary of a set of
transactions can be defined as follows:

DEFINITION 1. (Summary) A summary S of a set of
transactionsT , is a set of individual summaries{S1, S2, . . . , Sl}

such that (i) eachSj represents a subset ofT and (ii) every
transactionTi ∈ T is represented by at least oneSj ∈ S.

Each individual summarySj essentially a covers a set of
transactions. In the summaryS, these transactions are re-
placed by the individual summary that covers them. As we
mentioned before, computing the centroid for data with cat-
egorical attributes is not possible. For such data, a feature-
wise intersection of all transactions is a more appropriate
description of an individual summary. Hence, from now on,
an individual summary will be treated as a feature-wise in-
tersection of all transactions covered by it, i.e., ifSj covers
{T1, T2, . . . , Tk}, thenSj =

⋂k

i=1
Ti. For the sake of il-

lustration let us consider the sample netflow data given in
Table 4. The dataset shown is a set of 8 transactions that are
described by 6 categorical features and 2 continuous fea-
tures (see Table 1). Let all the features have equal weight
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Figure 1. ICC Curve for summarization algorithms

of 1

8
. One summary for this dataset is shown in Table 5 as

a set of 3 individual summaries. The individual summary
S1 covers transactions{T1,T2,T3,T4,T8}, S2 covers trans-
actions{T5,T6,T7} andS3 covers only one transaction,T8.

To assess the quality of a summaryS of a set of
transactionsT , we define following metrics -

DEFINITION 2. (Compaction Gain for a Summary)
Compaction Gain =m

l
. (Recall thatm = |T | andl = |S|.)

For the dataset in Table 4 and the summary in Table 5,
Compaction Gain forS = 8

3
.

DEFINITION 3. (Information Loss for a transaction
represented by an individual summary) For a given transaction
Ti ∈ T and an individual summarySj ∈ S that coversTi, lossij

=
∑n

q=1
Wq ∗ bq, where,bq = 1 if Tiq 6∈ Sj and 0 otherwise.

The loss incurred if a transaction is represented by
an individual summary will be the weighted sum of all
features that are absent in the individual summary.

DEFINITION 4. (Best Individual Summary for a trans-
action) For a given transactionTi ∈ T , a best individual summary
Sj ∈ S is the one for whichlossij is minimum.

The total information loss for a summary is the aggregate
of the information lost for every transaction with respect to
its best individual summary.

For the dataset in Table 4 and its summary shown in
Table 5, transactionsT1-T4 are best covered by individ-
ual summaryS1 and each has an information loss of4

8
.

TransactionsT5-T7 are best covered by individual summary
S2 and each has an information loss of5

8
. T8 is repre-

sented byS1 andS3. For T8 andS1, information loss =
4 × 1

8
= 1

2
, since there are4 features absent inS1. For

T8 andS3, information loss =0 since there are no features
absent inS3. Hence the best individual summary forT8

will be S3. Thus, we get thatInformation Loss forS =
4

8
× 4 + 5

8
× 3 + 0 = 31

8
= 3.875.



src IP sPort dst IP dPort protocol flags packets bytes

C1 *.*.*.* *** 100.10.20.4 *** tcp —APRS- [2,20] ***
C2 *.*.*.* *** 100.10.20.3 21 tcp *** *** ***

Table 6. A summary obtained for the dataset in Table 4
using the clustering based algorithm

It is to be noted that the characteristics,compaction gain
and information loss, follow an optimality tradeoff curve
as shown in Figure 1 such that increasing the compaction
results in increase of information loss. We denote this curve
as ICC (Information-loss Compression-gain Characteristic)
curve.

The ICC curve is a good indicator of the performance
of a summarization algorithm. The beginning and the end
of the curve are fixed by the two trivial solutions discussed
earlier. For any summarization algorithm, it is desirable that
the area under its ICC curve be minimal. It can be observed
that getting an optimal curve as shown in Figure 1 involves
searching for a solution in exponential space and hence not
feasible. But a good algorithm should be close enough to
the optimal curve like 1 and not like 2 in the figure shown.

As the ICC curve indicates, there is no global maxima
for this dual-optimization problem since it involves two or-
thogonal objective functions. So a typical objective of a
summarization algorithm would be -for a given level of
compaction find a summary with the lowest possible infor-
mation loss.

4 Summarization Using Clustering

In this section, we present a direct application of cluster-
ing to obtain a summary for a given set of transactions with
categorical attributes. This simple algorithm involves clus-
tering of the data using any standard clustering algorithm
and then replacing each cluster with a representation as de-
scribed earlier using feature-wise intersection of all trans-
actions in that cluster. The weightsW are used to calcu-
late the distance between two data transactions in the clus-
tering algorithm. Thus, ifC̄ is a set of clusters obtained
from a set of transactionsT by clustering, then each clus-
ter produces an individual summary which is essentially the
set of feature-value pairs which are present in all transac-
tions in that cluster. The number of clusters here determine
the compaction gain for the summary. For illustration con-
sider again the sample dataset of8 transactions in Table 4.
Let clustering generate two clusters for this dataset –C1 =
{T1,T2,T3,T4,T8} andC2 = {T5,T6,T7}. Table 6 shows a
summary obtained using the clustering based algorithm.

The clustering based approach works well in represent-
ing the frequent modes of behavior in the data because
they are captured well by the clusters. However, this
approach performs poorly when the data has outliers and
less frequent patterns. This happens because the outlying

transactions are forced to belong to some cluster. If a
cluster has even a single transaction which is different from
other cluster members, it degrades the description of the
cluster in the summary. For instance consider the clusters
in Table 6. Let us assume that there is another transaction
T9 in the dataset shown in Table 4 and clustering assigns it
to clusterC1. Let the different features ofT9 be

srcip = 12.190.84.122, srcport = 32178, dstip = 100.10.20.10,
dstport = 53, protocol = udp, flags =none, packets = [25,60],
bytes = [2200,5000]

On addingT9 to C1, the summary generated fromC1

will be empty. The presence of this outlying transaction
makes the summary description very lossy in terms of in-
formation content. Thus this approach represents outliers
very poorly, which is not desirable in applications such as
network intrusion detection and fraud detection where such
outliers are of special interest.

5 A Two-step Approach to Summarization
using Frequent Sets

In this section we propose a two-step methodology to
address the problem of summarization. The basic idea is
to start with a set of candidate summaries that are frequent
sets derived from association pattern analysis, in addition
to individual transactions. Each of these candidates rep-
resent one or more transactions. Thus a summary for the
entire transaction dataset would be a subset of these candi-
dates such that, for every transaction inT , there is at least
one candidate in this subset that covers the transaction. In
this context, the summarization problem can be viewed as
- Given a set of candidates,C and a desired compaction
level, find a summaryS ⊆ C for the transaction datasetT
with the least information loss.

This problem is solved in two steps. The first is the
choice of a candidate set and the second is how to select
a subset of these candidates as the summary such that we
optimize the information loss for a given compaction level.

One possible choice of candidate set is all frequent item-
sets with a support threshold of2 transactions, as well as
individual transactions. This ensures that all possible ways
of summarizing the transactions can be considered. But this
can lead to too many candidates, which increases the com-
putational complexity of the second step. Higher values of
the support threshold can be used to constrain the number
of possible candidates, but this can impact the quality of the
summaries obtained. The second step of this approach is to
select an appropriate subset ofC. This can be done in sev-
eral ways. We first observe that the brute-force algorithm
for selecting an optimal subset ofC is not feasible since it
requires searching in exponential space with respect to|C|.



We have explored the realm of greedy algorithms to obtain
approximatelyoptimal solutions.

The general idea is that, starting with a set of transactions
T and a set of candidatesC, we want to obtain a set,S ⊆ C,
such that every transaction inT is covered by some member
of S.

One greedy way to approach this problem is to allow ev-
ery transaction to select a best candidate for itself and addit
to the summary (top-down). Similar transactions will tend
to select the same candidate and hence it would result in
compaction gain. Another approach is to incrementally in-
crease the compaction of a summary by adding a best can-
didate from the candidate set at every step (bottom-up). We
have investigated both approaches in our research [7], but
in this paper we discuss only the bottom-up algorithm due
to space limitations.

5.1 BUS - A Bottom-up Summarization Algo-
rithm

In this section we present an incremental bottom-up al-
gorithm - BUS. The main idea behind this algorithm is to
incrementally select best candidates from the candidate set
such that at each step, for a certain gain in compaction, min-
imum information loss is incurred. The inputs to this algo-
rithm are - the set of transactions,T , the set of candidates,
C, the initial valuekinit

s of the tradeoff parameterks and
the incrementδk for ks.

Before describing the algorithm we first define the scor-
ing function which we use to determine the best candidate.

DEFINITION 5. (Score of a Candidate Summary) For a
given candidate summaryCi ∈ C, its score is given by

scorei = ks × sizeCi − lossCi

sizeCi refers to the compaction, andlossCi refers to the infor-
mation loss caused by addingCi to the summary.

ks is a trade-off parameter which determines which
entity to favor – higher compaction gain or lower informa-
tion loss. A low value ofks favors very specific candidate
summaries which result in lower information loss, while
a higher value forks favors more general candidate sum-
maries which cause a higher compaction gain.

DEFINITION 6. (Size of a Candidate) Size of a candi-
date,Ci ∈ C, is defined as,sizeCi = # individual summaries in
Sc, the current summary, which are covered2 by Ci.

Let the individual summaries inSc covered byCi be
{S1, S2, . . . , SsizeCi

}. Note that each of these individual
summaries can be either transactions or candidates.

2An individual summary is covered byCi if it is more specific thanCi

DEFINITION 7. (Loss for a Candidate) Loss for candi-
date Ci is defined as,lossCi =

∑sizeCi
j=1

(lCi − lSj ), where

lCandidate =
∑f

k=1
Wk ∗bk, such thatbk = 1 if Fk /∈ Candidate

and 0 otherwise.

The algorithm starts by considering the initial summary
as the set of transactionsT , which has no information loss
but no compaction gain. Definitions 6 and 7 are used to
compute the score for each candidate inC using Defini-
tion 5. The candidate with the highest score is selected and
added to the current summary,Sc, replacing all summaries
that are covered by it. If the candidate with maximum score
has already been added to the summary, the value ofks is
incremented byδk. The size of each of the candidates is
revised equal to the number of individual summaries inSc

covered by that candidate.
From the ICC curve perspective, the algorithm moves

from no compaction gain to higher compaction gain in small
steps determined by the valueks. The initial value forks

is chosen as 0. This ensures that initially, candidates with
minimum information loss are selected. These will tend to
be very specific and hence the overall compaction gain will
be low. After all such candidates are chosen, the value ofks

is incremented byδk so that more general candidates with
larger sizes are selected.

The selection criterion of this algorithm ensures that the
increment in the compaction of the global summary at any
step incurs the minimum possible information loss. Thus
this algorithm ensures that we attain a locally optimal solu-
tion at any step. Starting with a very low value ofks and
incrementing it in very small amounts ensures that the sum-
mary obtained at any step is also very close to the globally
optimal solution for that particular compaction.

The first step of BUS involves generation of frequent
itemsets from the data using any association rule mining
algorithm. The categorical attributes are binarized before
applying the algorithm. The computational complexity of
this step depends on the size and nature of the data. It can
be controlled using the support threshold. At the University
of Minnesota, the summarization module of MINDS takes
less than 10 seconds to generate frequent itemsets for the
top 5000 anomalous connections with a support threshold of
8 transactions. By usingclosedfrequent itemsets [18], the
number of frequent itemsets can be pruned considerably. In
the second step of BUS, in each iteration, the algorithm se-
lects the best candidate to be added to the current summary.
The size of the current summary cannot be more than the to-
tal number of transactions. Thus, if the transaction dataset
is of of sizem, the candidate set is of sizel and the algo-
rithm runs fork iterations, the computational complexity of
the second step will beO(mlk). In our experiments (as dis-
cussed in Section 6), we ran BUS to generate summaries of
sizes ranging from the size of the data itself down to 5. The



time taken for a dataset of size 8459 was under 5 minutes
and for a dataset of size 2903, it was under 2 minutes, with
a support threshold of 2 transactions.

6 Experimental Evaluation And Results

In this section we present the performance of our pro-
posed algorithms on network data. We compare the perfor-
mance of BUS with the clustering based approach to show
that it performs better in terms of achieving lower infor-
mation loss for a given degree of compaction. We also il-
lustrate the summaries obtained for different algorithms to
make a qualitative comparison between them. The algo-
rithms were implemented in GNU-C++ and were run on the
Linux platform on a 4-processorintel-i686 machine.

6.1 Input Data

We ran our experiments on two different artificial
datasets generated by DARPA [14] and SKAION corpora-
tion [1] for the evaluation of intrusion detection systems.
The DARPA dataset is publicly available and has been used
extensively in the data mining community as it was used
in KDD Cup 1999. The SKAION data was developed as
a part of the ARDA funded program on information assur-
ance and is available only to the investigators involved in the
program. Both these datasets have a mixture of normal and
attack traffic. The SKAION dataset had 8459 flows. The
DARPA dataset was a subset of the week 4, Friday, train-
ing data containing only attack related traffic corresponding
to the following attacks -warezclient, rootkit, ffb, ipsweep,
loadmoduleandmultihop. The size of this dataset was 2903
flows.

Both these datasets exhibit different characteristics in
terms of data distribution. Figure 2(a) gives the distribution
of the lof (local outlier factor) score (see [5]) for the trans-
actions in the SKAION dataset. Thelof score reflects the
outlierness of a transaction with respect to its nearest neigh-
bors. The transactions which belong to tight clusters tend
to have lowlof scores while outliers have highlof scores.
For the SKAION dataset we observe that there are a lot of
transactions which have high outlier scores. Thelof dis-
tribution for the DARPA dataset in Figure 2(e) shows that
most of the transactions belong to tight clusters , and only a
few transactions are outliers.

6.2 Comparison of ICC curves for the clustering-
based algorithm and BUS

We ran the clustering based algorithm by first generat-
ing clusters of different sizes using theCLUTO hierarchi-
cal clustering package [13]. For finding the similarity be-
tween transactions, the features were weighted as per the

feature name weight

Source IP 3.5
Source Port 0

Destination IP 3.5
Destination Port 2

Protocol 0.1
Time to Live(ttl) 0.1

TCP Flags 0.1
Number of Packets 0.3
Number of Bytes 0.3

Window Size 0.1

Table 7. Different features and their weights used for ex-
periments.

scheme used for evaluating the information loss incurred by
a summary. We then summarized the clusters as explained
in Section 4. For BUS, we present the results using frequent
itemsets generated by theapriori algorithm with a support
threshold of 2 as the candidates. The BUS algorithm was
executed with initial value ofks = 0 and the increment,
δk = 0.1. The different features in the data and the weights
used are given in Table 7. These weights reflect the typical
relative importance given to the different features by net-
work analysts. The continuous attributes in the data were
discretized usingequal depth binningtechnique with a fixed
number of intervals (= 75).

Figures 2(b) and 2(f) show the ICC curves for the
clustering-based algorithm and BUS on the DARPA and
SKAION data sets respectively. From the two graphs we
can see that BUS performs better than the clustering-based
approach. We also observe that the difference in the curves
for each case reflects thelof score distribution for each
dataset. In the SKAION dataset there are a lot of outliers
which are represented poorly by the clustering-based ap-
proach while BUS handles them better. Hence the differ-
ence in the information loss is very high. In the DARPA
dataset, most of the transactions belong to well-defined
clusters which are represented equally well by both the al-
gorithms. Thus, the difference in information loss for the
two algorithms is not very high in this case.

To further strengthen our argument that clustering tends
to ignore the infrequent patterns and outliers in the data, we
plot the information loss for transactions which have lost
a lot of information in the summary. Figure 2(c) shows
the difference in the ICC curves for the transactions in the
DARPA dataset which have lost more than 70% informa-
tion. The graph shows that for BUS, none of the trans-
actions lose more than 70% information till a compaction
gain of about 220, while for the clustering based approach,
there are considerable number of transactions which are
very poorly represented even for a compaction gain of 50. A
similar result for the SKAION dataset in Figure 2(g) shows
that BUS generates summaries in which very few transac-
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Figure 2. Figures (a) – (d) present results for the DARPA dataset, Figures (e) –(h) present results for SKAION dataset. (a,e)
Distribution of lof scores. (b,f) ICC Curve for the clustering based algorithms and BUS.(c,g) Sum of the Information Loss for
transactions that have lost more than 70 % of information. (d,h) Sum of the Information Loss for transactions that have lost less than
70 % information.

tions have a high loss, which is not true in the case of the
clustering based approach.

Figure 2(d) shows the difference in the ICC curves for
each algorithm for the transactions which have lost less than
70% of information for the DARPA dataset. This plot il-
lustrates the difference in behavior of the two algorithms
in terms of summarizing the transactions which belong to
some frequent pattern in the data. The clustering based
approach represents these transactions better than BUS. A
similar result can be seen for the SKAION dataset in Figure
2(h).

6.3 Qualitative Analysis of Summaries

In this section we illustrate the summaries obtained by
running the clustering based algorithm (see Table 8), and
BUS using frequent itemsets (see Table 9) on the DARPA
dataset described above. This dataset is comprised of dif-
ferent attacks launched on the internal network by several
external machines. The tables do not contain all the fea-
tures due to the lack of space. However, the information
loss was computed using all the features shown in Table 7.

In the summary obtained from the clustering based ap-
proach, we observe thatS1 andS3 correspond to theicmp
andudp traffic in the data. SummariesS2, S4 andS6 rep-
resent theftp traffic on port 20, corresponding to thewarez-

client, laodmoduleandffb attacks which involve illegalftp
transfers.S5 represents traffic on port 23 which correspond
to the rootkit and multihop attacks. The rest of the sum-
maries,S7-S10, do not have enough information as most of
the features are missing. These cover most of the infrequent
patterns and the outliers which were ignored by the cluster-
ing algorithm. Thus we see that the clustering based algo-
rithm manages to bring out only the frequent patterns in the
data. The summary obtained from BUS gives a much bet-

size src IP sPort dst IP dPort proto packets bytes

S1 513 *** 0 *** 0 icmp [1,1] [28,28]
S2 51 172.16.112.50 20 *** *** tcp *** ***
S3 119 *** *** *** *** udp *** ***
S4 362 197.218.177.69 20 *** *** tcp [5,5] ***
S5 141 *** *** *** 23 tcp *** ***
S6 603 172.16.114.148 20 *** *** tcp *** ***
S7 507 *** *** *** *** tcp *** ***
S8 176 *** *** *** *** tcp *** ***
S9 249 *** *** *** *** tcp *** ***

S10 182 *** *** *** *** tcp *** ***

Table 8. A size 10 summary obtained for DARPA
dataset using the clustering based algorithm. Information
Loss=23070.5

ter representation of the data. Almost all the summaries in
this case contain one of the IPs (which have high weights),
which is not true for the output of the clustering-based algo-
rithm. SummariesS1 andS2 represent theffb andloadmod-
ule attacks since they are launched by the same source IP.
Thewarezclientattack on port 21 is represented byS3. The



size src IP sPort dst IP dPort proto packets bytes

S1 279 *** *** 135.13.216.191 *** *** *** ***
S2 364 135.13.216.191 *** *** *** *** *** ***
S3 138 *** *** *** 21 tcp *** ***
S4 76 172.16.112.50 *** *** *** *** *** ***
S5 249 *** *** 197.218.177.69 *** *** *** ***
S6 1333 197.218.177.69 *** *** *** *** *** ***
S7 629 172.16.114.148 *** *** *** tcp *** ***
S8 153 *** *** *** 23 tcp *** ***
S9 1 172.16.114.50 23 207.230.54.203 1028 tcp [1,1] [41,88]

S10 5 *** 0 197.218.177.69 0 icmp [1,1] [28,28]

Table 9. A size 10 summary obtained for DARPA dataset
using BUS algorithm. Information Loss=18601.7

ipsweepattack, which is essentially a single external ma-
chine scanning a lot of internal machines on different ports,
is summarized inS6. S5 summarizes the connections which
correspond to internal machines which replied to this scan-
ner. The real advantage of this scheme can be seen if we
observe summaryS9 which is essentially a single transac-
tion. In the data, this is the only connection between these
two machines and corresponds to therootkit attack. The
BUS algorithm preserves this outlier even for such a small
summary because there is no other pattern which covers it
without losing too much information. Similarly,S10 rep-
resents 5 transactions which areicmp replies to an external
scanner by 5 internal machines. Note that these replies were
not merged with the summaryS5 but were represented as
such. Thus, we see that summaries generated by BUS algo-
rithm represent the frequent as well as infrequent patterns
in the data.

7 Concluding Remarks and Future Work

The two schemes presented for summarizing transaction
datasets with categorical attributes demonstrated their effec-
tiveness in the context of network traffic analysis. A variant
of our proposed two-step approach is used routinely at the
University of Minnesota as a part of the MINDS system to
summarize several thousand anomalous netflows into just a
few dozen summaries. This enables the analyst to visualize
the suspicious traffic in a concise manner and often leads to
the identification of attacks and other undesirable behavior
that cannot be captured using widely used intrusion detec-
tion tools such as SNORT.

Future work involves using clusters along with frequent
itemsets as candidates for the BUS algorithm. Another
possibility is to incorporate the knowledge of the anomaly
scores of the network connections to be summarized, as
well as normal behavior to generate summaries which cap-
ture the anomalous behavior of the highly ranked transac-
tions in a ranked dataset.
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