
 1

Mining Scientific Data: Discovery of Patterns in the Global Climate System *  
 

Vipin Kumar+   Michael Steinbach+   Pang-Ning Tan+  
Steven Klooster+++  Christopher Potter++  Alicia Torregrosa+++ 

 

+ Department of Computer Science and Engineering, Army HPC Research Center 
University of Minnesota 

{  kumar, steinbac, ptan@cs.umn.edu}  
 

                   ++ NASA Ames Research Center                      +++ California State University, Monterey Bay 
             { cpotter@mail.arc.nasa.gov}        { klooster,atorregrosa@gaia.arc.nasa.gov}   

 

                                                                
* This work was partially supported by NASA grant # NCC 2 1231 and by Army High Performance Computing Research Center contract number 

DAAH04-95-C-0008. The content of this work does not necessarily reflect the position or policy of the government and no official endorsement 
should be inferred.  Access to computing facilities was provided by AHPCRC and the Minnesota Supercomputing Institute. 

 

Abstract    
This paper presents preliminary work in 

using data mining techniques to find interesting 
spatio-temporal patterns from Earth Science data. The 
data consists of time series measurements for various 
Earth Science variables (e.g. soil moisture, 
temperature, and precipitation), along with additional 
data from existing ecosystem models (e.g. Net 
Primary Production). The ecological patterns of 
interest include associations, clusters, predictive 
models, and trends.  In this paper, we first discuss 
some of the challenges involved in preprocessing and 
analyzing the data. Earth Science data has strong 
seasonal components that need to be removed prior to 
pattern analysis, as Earth scientists are primarily 
interested in patterns that represent deviations from 
normal seasonal variation such as anomalous climate 
events (e.g., El Nino) or trends (e.g., global warming). 
We compare several alternatives (including singular 
value decomposition (SVD), discrete Fourier 
transform (DFT), “monthly”  Z score, and moving 
average) with respect to their effectiveness in 
removing seasonality. After preprocessing, we apply 
clustering and different kinds of association analysis 
to the data to discover spatio-temporal relationships 
among ecological variables at various parts of the 
Earth. Our current technique for finding associations 
extracts sets of events from the time series data and 
then applies existing algorithms traditionally used for 
market-basket data.  We use K-means clustering to 
divide the land and ocean areas of the earth into 
disjoint regions in an automatic, but meaningful, way 
that enables the direct or indirect discovery of 
interesting patterns.   

 

1. Introduction 
NASA’s Earth observation satellites are 

generating increasingly larger amounts of data. This 
remotely sensed data, combined with additional data 
from ecosystem models, offers an unprecedented 
opportunity for predicting and understanding the 
behavior of the Earth’s ecosystem.  However, due to 
the large amount of data that is available, data mining 
techniques are needed to facilitate the automatic 
extraction and analysis of interesting patterns from 
the Earth Science data.  This data consists of a 
sequence of global snapshots of the Earth (as shown 
in Figure 1), typically available at monthly intervals, 
and includes various atmospheric, land and ocean 
variables such as sea surface temperature (SST), 
pressure, precipitation and Net Primary Production 
(NPP). NPP is the net photosynthetic accumulation of 
carbon by plants. Keeping track of NPP is important 
because it includes the food source of humans and all 
other organisms and thus, sudden changes in the NPP 
of a region can have a direct impact on the regional 
ecology. An ecosystem model for predicting NPP, 
called CASA (the Carnegie Ames Stanford Approach 
[PKB99]), has been used for over a decade to 
produce a detailed view of terrestrial productivity. 
Our goal is to find interesting patterns involving 
events derived from the multi-year output of CASA, 
and other climate variables.   

Mining patterns from Earth Science data is a 
difficult task due to the spatio-temporal nature of the 
data. In this paper, we discuss some of the challenges 
involved in preprocessing and analyzing the data, and 
also consider techniques for handling some of the 
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spatio-temporal issues. First, we examine the problem 
of removing seasonal variation from the time series 
data. This is necessary because patterns derived from 
these variables are often dominated by the seasonal 
cycles present in the data. Earth Scientists are often 
interested in relating ecological events in a specific 
location to anomalous climate conditions that are 
occurring in a different part of the world. For 
example, during El-Nino years (i.e. the warming of 
the ocean surface for specific regions of the Pacific), 
it has been observed that the eastern part of Australia 
experiences severe drought conditions. Such 
anomalous events can become apparent only if the 
seasonal components of the time series are removed. 
Another reason for removing seasonal variations is to 
make the time series stationary, a typical assumption 
of many statistical time series analysis techniques 
(e.g., ARIMA). We also investigated the problem of 
detecting temporal auto-correlation and determining 
the statistical significance of various descriptive 
statistics, but those results are reported in [Tan+01].  

Our goal is to discover spatio-temporal 
relationships among ecological variables observed at 
various parts of the Earth.  This is critical for 
understanding how the different elements of the 
ecosystem interact with each other.  A standard 
approach for finding such patterns is to compute the 
pair-wise correlation between time series of different 
geographical locations and then, finding regions that 
have high correlations (i.e., “similar”  time series). An 
effective way to do this is to use clustering to divide 
areas of the land and ocean into disjoint regions in an 
automatic, but meaningful way.  This enables us to 
more easily identify regions of the earth whose 
constituent points have similar short-term and long-
term climate characteristics. Given relatively uniform 
clusters we can then identify how various ecosystem 
phenomena, such as El Nino, influence the climate 
and NPP of different regions.  

An alternative approach is to convert the 
time series into sequence of events and then apply 
existing data mining techniques to discover interesting 
associations in the event sequences. This approach 

has been studied by the data mining community in the 
context of association rules and sequential pattern 
discovery for market basket analysis [AS94, SA96, 
JKK99]. We describe the various types of spatio-
temporal association that can be extracted from this 
data. 

The rest of the paper is organized as follows: 
Section 2 provides a description of the ecology data, 
while section 3 presents some of the temporal issues 
related to the removal of seasonality. Section 4 
discusses association pattern discovery, while sections 
5 and 6 introduce our clustering approach and show 
the results.  Section 7 concludes with a summary and 
a discussion of future directions.  

2. Ecology Data 
The data for our analysis contains monthly 

measurements of various Earth science and climate 
variables over a period of twelve years, starting in 
January 1982.  These variable values are either 
observations from different sensors, e.g., precipitation 
and sea surface temperature (SST), or the result of 
model predictions, e.g. NPP from the CASA model. 
In addition, Earth Scientists have developed standard 
indices (time series) that capture the behavior of 
various climate variables at a regional and global 
scale. For example, various El Nino related indices, 
such as ANOM1+2 and ANOM3.4, have been 
established to measure sea surface temperature 
anomalies across different regions of the ocean. Some 
well-known climate indices are shown in Table 1.                 

 

Climate Index Description 

SOI  Measures the sea level pressure (SLP) 
anomalies between Darwin and Tahiti 

NAO Normalized SLP differences between 
Ponta Delgada, Azores and 
Stykkisholmur, Iceland 

ANOM3 Sea surface temperature anomalies in 
the region bounded by 90°W-150°W 
and 5°S- 5°N 

ANOM3.4 Sea surface temperature anomalies in 
the region bounded by 120°W-170°W 
and 5°S-5°N 

NP Area-weighted sea level pressure over 
the region 30N-65N, 160E-140W 

Table 1: Description of several well-known climate indices. 

 

Figure 1: A simplified view of the problem domain. 
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3. Dealing with the Seasonality of Data 
Yearly patterns such as spring, summer, fall, 

and winter or rainy season / dry season are important, 
but well known. Thus, Earth scientists are primarily 
interested in patterns that represent deviations from 
the normal seasonal variation.   Examples of such 
patterns are special events (e.g., El Nino), long-term 
cycles (e.g., decadal oscillations), or trends (e.g., 
global warming).  Given this focus on deviations from 
the norm, and the strength of the seasonal patterns in 
the data, it is necessary to remove them so that other, 
more interesting patterns can be detected.  In the 
following we consider several transformations for 
removing seasonal variation: the discrete Fourier 
transform (DFT), the “monthly”  Z score, singular 
value decomposition (SVD), and the moving average.   

We illustrate some of the different 
possibilities and issues via an example centered 
around a typical SST (Sea Surface Temperature) time 
series shown in Figure 2. (This time series was 
derived from data corresponding to a ½° by ½° region 
of the ocean at 71.5° W, 23° S, just off the Eastern 
coast of South America.)  In what follows, we shall 
often “standardize”  a time series by subtracting its 
mean and dividing by its standard deviation.  We do 
this to display multiple time series on a single plot 
without the distorting effects of scale.  Also, because 
our measure of similarity in this domain is Pearson’s 
correlation coefficient, this sort of normalization 
seems very appropriate.  Figure 3 shows the 
standardized version of our sample SST time series, 
which, not surprisingly, looks very similar to the 
original series in Figure 2. 

Filtering based on the DFT (Discrete 
Fourier Transform).  This approach is based on 
standard signal processing techniques. By taking the 
discrete Fourier transform, we can transform the 
original time series from the time domain to the 
frequency domain, where it is more readily apparent 
which frequencies make up the signal.  In particular, 
the power spectrum of a time series can be readily 
calculated from the transformed series, as shown in 
Figure 4. (The constant component has been 
eliminated since otherwise it dominates the plot.)  The 
peaks at 12 and 132 indicate that there is a strong 
yearly component. (The DFT and hence, the power 
spectrum, is symmetrical around N/2, where N is the 
length of the time series, and thus, there is just one 
strong frequency component, not two.) Removing this 
yearly component and then performing the inverse 
Fourier transform yields a new time series which 
should not have any seasonal component.  (We also 
remove the constant component, since we are only 
interested in variations, not absolute levels.)   

 

Monthly Z score.  This transformation takes 
the set of values for a given month, e.g., all Januarys, 
calculates the mean and standard deviation for that set 
of monthly values, and then standardizes each value 
by calculating its Z score, i.e., by subtracting off the 
mean and dividing by the standard deviation.  While 
this approach seems similar to the first approach, it is 
actually quite different since it uses the monthly mean 
and standard deviation instead of the overall mean 
and standard deviation.  Put another way, we express 
each data value in the time series in terms of its 
deviation from the mean value for its corresponding 
month, scaled by the volatility factor for that month. 

Figure 2: Sample SST time series 

Figure 3: Standardized sample SST time series 

Figure 4: Power Spectrum of sample SST time      
series (constant component removed). 
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The month-by-month rescaling used in this 
transformation causes seasonal fluctuations to 
disappear.  Furthermore, scaling by the monthly 
standard deviation makes the changes more 
pronounced for those months in which the volatility is 
low (an issue that will be addressed at the end of this 
section). 

Figure 5 shows the result of applying the 
monthly Z score and DFT filtering to the sample SST 
time series.  These transforms produce almost 
identical results, and in fact, the correlation of the two 
transformed series is 0.98.  While there are points in 
our data set for which the correlation between the 
monthly Z score and DFT filtered series is only 0.5, 
for most of our data this equivalence holds.   

   Singular value decomposition (SVD).  
Another approach used in Earth Science study for 
feature extraction is singular value decomposition. 
Here we investigate the use of this approach for 
removing seasonality. We first compute the singular 
value decomposition of the matrix, M, whose rows 
consist of the collection of time series that are of 
interest, i.e., in this case, the matrix rows consist of 
the sea surface temperature time series for a large 
number of points on the ocean (~150,000 points).  A 
singular value decomposition expresses an m by n 
matrix, M, as the sum of simpler rank 1 matrices as 
follows:  

∑
=

=
n

i
iii vusM

1

��
, where is , a scalar, is 

the ith singular value of M, iu
�

is the ith  left singular 

vector, and iv
�

is the ith  right singular vector.  All 

singular values beyond the first r, where r = rank(M) 
are 0 and all left (right) singular vectors are 
orthogonal to each other and are of unit length. 

Thus, a matrix can be approximated by 
omitting some of the terms of the series that 

correspond to non-zero singular values.  In particular, 
if a characteristic of the data corresponds to a 
particular term (singular value), then this 
characteristic can be removed by eliminating the 
corresponding term.   For example, removing the first 
term, which corresponds to the largest singular value, 
removes a constant component from the data, i.e., 
after removing the first term the maximum mean 
value of any times series from is 0.02.  (Before there 
was a wide distribution of mean values, e.g., many 
time series in the tropics had means in 20’s.) Thus, in 
this case, removing the first term is roughly equivalent 
to normalizing each time series to have a mean value 
of 0.  

The nature of each term can be analyzed by 
looking at the associated right singular vector, which, 
in this case, can be interpreted as a time series. Figure 
6 shows the first five right singular vectors for the 
SST matrix. (Singular values are non-negative and 
ordered by decreasing magnitude.  Since the 
magnitudes of these singular values often decrease 
rapidly, it is often sufficient to consider only the first 
few.) From the first plot we see that the 1st and 2nd 
right singular vectors, correspond, respectively, to a 
constant and a 12-month seasonal component.  Right 
singular vector 4 also corresponds to a 12-month 
seasonal component, although it is not as regular as 
that of vector 2.  Finally, right singular vectors 3 and 
5 seem to correspond to 6-month seasonal cycles.   

Figure 7 shows the sample SST time series 
after the first five singular value components have 
been removed.  For reference it is plotted with the 
series obtained by using the monthly Z score 
transformation.  The two different approaches 

Figure 6: First five right singular values of SST 
data. (In top left plot, second right 
singular vector is green.) 

Figure 5: Results of applying monthly Z score and 
DFT filtering. 
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produce time series that are relatively close (a 
correlation of 0.84).  However, the SVD approach for 
removing seasonality is more computationally 
intensive than the other approaches.  Also, the other 
approaches seem more “direct,”  i.e., they can remove 
seasonality from a single vector, while the SVD 
approach works on a data set as a whole and only 
works because seasonality is such a strong 
characteristic of the entire data set that it manifests 
itself in the first few terms of the singular value 
decomposition.   

Moving average. A 12-month moving 
average is effective at removing seasonality and it 
also smoothes the data. To see why a moving average 
removes certain frequencies, consider that the average 
of a sine or cosine over the extent of its period is 0.  
However, it tends to flatten any deviation from the 
average values by spreading the effects of the 
deviations to its neighboring points in time. For 
comparison, Figure 8 shows the monthly Z score and 
the 12-month moving average transformation of the 
original SST time series.  (The 12-month moving 
average is 11 months shorter; so for plotting 
purposes, this missing portion was set to 0.)  Figure 8 
suggests that if the high frequency fluctuations in the 
original time series are factored out, then the 12-
month moving average of the original time series 
should be quite similar to the monthly Z score time 
series.   

To illustrate this last point further, we apply 
a 12-month moving average to the monthly Z score 
series.  This resulting series, along with the 12-month 
moving average series from Figure 8, are shown in 
Figure 9.  The correlation between the two time series 
is 0.99.  Thus, for our sample times series, using a 12-
month moving average to smooth the time series 
obtained by first applying a monthly Z score results in 
almost exactly the same time series as obtained by just 
applying a 12-month moving average to the sample 

time series.  We have noticed for other time series 
that the correlation between the two approaches is not 
always quite so high, but this phenomenon seems to 
hold, in many cases.  

To fully understand this phenomenon, 
consider a time series x = {  x1, x2, …, x144} . Let p =   
{ p1, p2, …, p132}  be the 12-month moving average 
time series for x and  q = {  q1, q2, …, q132}  be the 12-
month moving average on the Z-score for x. Note that  
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where both x13 and x1 are standardized by the same 
monthly mean ( 1) and monthly standard deviation 
( 1). The above analysis suggests that differences 
between consecutive points in the smoothed Z-score 
are proportional to the 12-month moving average, 
scaled by the monthly standard deviation. Thus, the 
correlation between p and q should be high if the  

Figure 8: Monthly Z score and 12-
month moving average. 

Figure 9: Monthly Z score smoothed by 12-month 
average and 12-month moving average. 

Figure 7: Results of applying monthly Z score 
and SVD filtering. 
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volatility of the monthly standard deviations is low. 
The behavior of the correlation in other cases is still 
under investigation.  

4. Association Analysis  
The definition and formation of events for 

our data mining approach are initially based on the 
domain knowledge of our Earth Science co-
investigators. The input data from which the events 
are formed include NPP, the climate variables and 
climate indices.  For land and ocean variables, we 
define anomalous events by transforming the 
variables into their monthly Z scores (to deseasonalize 
the time series) and then imposing upper and lower 
thresholds (e.g. ±2 standard deviations) for these 
values.  For climate indices, we define events based 
on the 5th and 95th percentiles of their 43-year time 
series data (from 1958 to 2000).   

Ecologists are interested in a variety of 
spatio-temporal association patterns involving 
sequences of events abstracted from the measurement 
values of ecological variables at various spatial 
locations. The spatio-temporal nature of the Earth 
science data sets gives rise to four types of association 
patterns:  

 
• Intra-zone non-sequential patterns – 

relationships among events in the same grid cell 
or zone, ignoring the temporal aspects of the 
data.  

• Inter-zone non-sequential pattern – 
relationships among events happening in different 
grid cells or zones, ignoring temporal aspects of 
the data.  

• Intra-zone sequential pattern – temporal 
relationships among events occurring within the 
same grid cell or zone.  

• Inter-zone sequential pattern  – temporal 
relationships among events occurring at different 
spatial locations.  

 
One way to generate association patterns 

from the Earth Science data is to transform the spatio-
temporal dataset into a set of market-basket type 
transactions. The main advantage of doing this is that 
we can use many of the existing algorithms to 
discover the association patterns that exist in the data. 

For brevity, we will only discuss the results of mining 
intra-zone association patterns, i.e., strong 
associations among events that are occurring at the 
same spatial location, irrespective of their time of 
occurrences.  

Spatio-temporal events can be transformed 
into a transaction format as shown in Table 2. This 
representation allows us to apply any existing 
association rule algorithm, such as Apriori [AS94] or 
FP-tree [HPY00], to extract the intra-zone non-
sequential patterns.  An association rule is an 
implication expression of the form A 

�
 B, where A 

and B are sets of events. 
The interestingness of an association rule  

A �  B can be evaluated objectively, using various 
objective measures such as confidence, correlation, 
lift and interest, or subjectively, with the help of 
domain experts. Our work uses both objective and 
subjective interestingness criteria, to filter out patterns 
that occur infrequently or are statistically 
insignificant, and to find novel or unexpected 
patterns. Visualization is an important tool to assist 
the domain experts in evaluating the subjective 
interestingness of these patterns. For example, Figure 
10 shows the regions that are covered by one of the 
highly correlated pattern, FPAR-Hi �  NPP-Hi. 
FPAR (Fractional Intercepted Photosynthetically 
Active Radiation) is an attribute derived from NDVI 
(the Normalized Difference Vegetation Index), a 
greenness index based on satellite measurements. 
Anomalously high FPAR means that the vegetation 
has generated more “ light-harvesting”  photosynthetic 
capability than average, which allows for higher than 
normal NPP. This pattern occurs at least once in 
52.2% of all the land data points. However only 5.0% 
of all the land data points have support counts greater 
than 4 for this pattern. The region where the pattern 
has high support is shown in Figure 10. Regions that 
show this pattern correspond mainly to shrublands 
(Figure 11), a type of vegetation, which is able to 
more quickly take advantage of periodically high 
precipitation (and possibly solar radiation) than 
forests. This led the domain experts of our team to 
believe that the FPAR-Hi events could be related to 
unusual precipitation conditions, but more study is 
needed to verify this hypothesis.   

 

(Grid cell, time) NPP-Lo NPP-Hi FPAR-Lo FPAR-Hi Temp-Lo Temp-Hi Prec-Lo Prec-Hi 
((1,1), t1) 1 0 0 0 0 0 0 0 
((1,2), t1) 0 0 0 1 1 0 1 0 
… … … … … … … … … 
((1,1), t2) 0 1 1 0 0 0 1 0 
((1,2), t2) 1 0 1 0 0 0 0 0 

Table 2: Transforming the spatio-temporal data into traditional, market-basket transactions. 



 7

5. A K-means Based Clustering 
Approach 

Clustering, often better known as spatial 
zone formation in this context, segments oceans and 
land into smaller pieces that are relatively 
homogeneous in some sense. While these zones can 
be specified directly by researchers, clustering 
provides a general data mining approach for 
automatically creating zones.  Thus, our basic 
approach is to treat the zone creation problem as a 
cluster analysis problem [DJ88, KR90].  Cluster 
analysis groups objects (grid cells) so that the objects 
in a group are similar to one another and  different 
from the objects in other groups.  The clusters 

produced may be nested (hierarchical) or un-nested 
(partitional), overlapping or non-overlapping.   

For our initial clustering approach, we chose 
the widely used K-means clustering algorithm [DJ88], 
which is simple and efficient.  As our results will 
show, it was effective for our use of clustering during 
exploratory data analysis.    

The K-means algorithm discovers K (non-
overlapping) clusters by finding K centroids 
(“central”  points) and then assigning each point to the 
cluster associated with its nearest centroid.   (Note 
that a cluster centroid is typically the mean or median 
of the points in its cluster and “nearness”  is defined 
by a distance or similarity function.)  Ideally the 
centroids are chosen to minimize the total “error,”  
where the error for each point is given by a function 
that measures the discrepancy between a point and its 
cluster centroid, e.g., the squared distance.  Note that 
a measure of cluster “goodness”  is the error 
contributed by that cluster.  For squared error and 
Euclidean distance, it can be shown [And73] that a 
gradient descent approach to minimizing the squared 
error yields the following basic K-means algorithm.  
(Note that the previous discussion still holds if we use 
similarities instead of distances, but our optimization 
problem becomes a maximization problem.) 

    Basic K-means Algorithm for finding K 
clusters. 

 

1. Select K points as the initial centroids. 

2. Assign all points to the closest centroid. 

3. Recompute the centroid of each cluster. 

4. Repeat steps 2 and 3 until the centroids don’t 
change (or change very little). 

K-means has a number of variations, depending 
on the method for selecting the initial centroids, the 
choice for the measure of similarity, and the way that 
the centroid is computed.  For this work, we followed 
the common practice of using the mean as the 
centroid and selecting the initial centroids randomly.  
For our similarity measure, we chose Pearson’s 
correlation coefficient, which is defined as follows: 
The correlation coefficient r of two data vectors, x 
and y is given by 

 

∑ ∑

∑

−−

−−
=

i i
ii

i
ii

yyxx

yyxx
r

22 )()(

))((
, where xi (yi) is the 

value of the ith attribute of x (y), and x  ( y ) is the 

average value of all attributes of x (y). Correlation has 
a value between –1 (perfect negative linear 

Figure 10: Regions that show the intra-zone non-
sequential association rule { FPAR-Hi}  �

{ NPP-Hi} . The red region 
corresponds to areas that have high 
support for the rule. 

Figure 11: Shrubland regions.   
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correlation) and 1 (perfect positive linear correlation), 
with a value of 0 indicating no linear correlation.    

Since we are using correlation instead of 
Euclidean distance, there is a question of whether K-
means will still “work.”  However, if the data is 
standardized by subtracting off the mean and dividing 
by the standard deviation, then a bit of algebraic 
manipulation will show that the correlation and the 
Euclidean distance are monotonically related, as 
shown in following equation  

n

yxd
yxr

2

),(
1),(

**2
** −= , where x* 

and y* are the standardized vectors of dimension n, 
and r and d are the correlation and Euclidean distance 
functions, respectively.  Thus, the traditional K-means 
algorithm will “work”  when used with correlation. 
Furthermore, the measure of cluster goodness that 
corresponds (at least monotonically) to the traditional 
squared distance is the sum of the similarity of each 
point in a cluster to the cluster centroid.   

We make a brief comment about our reasons 
for using correlation.  First, correlation is insensitive 
to changes in scale, and since we want to compare 
time series of different variable types, e.g., NPP and 
SST, we need this property. Also, correlation has 
been well studied by statisticians and thus, confidence 
intervals and tests for non-zero correlation are readily 
available.  Finally, correlation is widely used as a 
measure of similarity between time series.  

6. Results 
In this section we show the use of clustering 

for detecting different sorts of ecosystem patterns.  
To do this we employ two kinds of diagrams.  The 
first diagram shows which points on the globe belong 
to specific clusters by associating each cluster with a 
particular color.  The second type of diagram plots the 
cluster centroids.  Since the cluster centroids are time 
series, this type of a plot can show various types of 
temporal patterns. For example, for a cluster 
consisting of land points, each of which is 
characterized by a series of monthly NPP values, the 
centroid of a cluster provides a “summary”  
description of NPP for the points in that cluster. 

Finding Seasonal Patterns and 
Anomalous Regions. Figure 12 shows the result of 
finding two clusters for NPP and (separately) finding 
two clusters for SST.  (Note that the seasonal 
component has not been removed from this data.) The 
four clusters approximate the northern and southern 
hemispheres, for land and ocean.  The plots of the 
land and sea centroids show strong yearly cycles.  
Interestingly, while the northern and southern 
hemisphere land clusters are mostly contiguous, some 

areas in the northern hemisphere, e.g., part of 
southern California, correspond to the “southern 
hemisphere”  cluster and vice-versa.  These regions 
correspond to climates, e.g., a Mediterranean climate, 
whose plant growth patterns are reversed from those 
typically observed in the hemisphere in which they 
reside.   The existence of these anomalous climate 
regions is well known, but clustering allows them to 
be easily detected. 

 
Identifying Connections between Land 

and Ocean Clusters.  Another use of clustering is to 
investigate the relationship of various land and sea 
areas.  In particular, by finding land and sea clusters 
that are highly correlated, we can identify potential 
teleconnection patterns, i.e., recurring and persistent 
climate patterns that span vast geographical areas.  
This works as follows.  A large number of clusters are 
found for the land (NPP) and the sea (SST), say 100 
for each.  Then the correlations between various sea 
and land centroids are calculated, and the land and sea 
clusters with the highest correlations are plotted.  
Figure 13 shows such a diagram for sea cluster 39 
(which is a region of ocean near the Philipines) and 
land cluster 87 (which consists of parts of Eastern 
Brazil, Southern Africa, and a bit of Australia). The 
NPP centroid of land cluster 87 is correlated with the 
SST centroid of sea cluster 39 at a level of 0.47.  (For 
this analysis we removed seasonal variation by using 
the monthly Z score.)  Figure 14 shows a plot of the 
centroid of sea cluster 39 (black) versus the cluster 
centroid of land clusters 87 (red).  To better display 
the overall relationships between the centroids, Figure 

Figure 12.   Two Ocean (SST) and Land 
(NPP) Clusters. 
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15 shows the same centroids after they have been 
smoothed using a 12-month moving average.  

Although this approach has the potential to 
detect new, previously unknown relationships, the 
teleconnection shown here is known to Earth 
scientists.  In particular,  sea cluster 39 is highly 
correlated (0.66), with SOI, which is a climate index  
related to El Niño, and it is known that parts of 
Southern Africa and Australia experience droughts 
related to El Nino.  

Finally note that our work on clustering is 
described in more detail in [Ste+01]. 
 

7. Conclusions 
We have explored several techniques for 
deseasonalizing Earth Science time-series data, and 
our results show that several of these techniques are 
effective. However, there are still issues related to 
autocorrelation and its effect on the significance of 
the correlation between two time series.  Although 
removing seasonality and binning reduce the level of 
autocorrelation significantly [Tan+01], additional 
investigation is needed to explore different binning 
techniques and to quantify the effects of any 
remaining autocorrelation on the significance of 
observed correlations.  Finally, trends (the long-term 
change in the mean value of the time series) are 
another important source of variation in time series 
data and we plan to include trend detection in our 
future work. 

Our initial approach for finding intra-zone, 
non-sequential association patterns transformed the 
data so that standard techniques could be applied. 
These techniques have uncovered some interesting 
ecosystem patterns for Earth scientists to investigate.  
However, for inter-zone patterns, these approaches 
lead to dense transaction matrices, and consequently, 
require significant computational time. Also, the 
standard measures of “what is interesting”  do not 
consistently identify interesting associations in this 
domain.  For future work, we will investigate other 
methods for determining which patterns are 
interesting.  

Our clustering results indicate that clustering 
can play a useful role in the discovery of interesting 
ecosystem patterns. The patterns revealed by the 
clusters and their associated (centroids) time series 
are sometimes well known, e.g., the yearly seasonal 
variation of Figure 12.  However, we have also started 
to investigate how clustering might be used to 
discover previously unknown relationships between 
regions of the land and sea.  In particular, we have 
looked at which regions of the land are most highly 
correlated to the centroids of ocean regions. So far 

the ecologists on our team have found the results 
interesting and have recognized some familiar 
patterns. One challenge is to find techniques to 
automatically select interesting patterns and eliminate 
spurious ones. 

Figure 13: One Sea Cluster and Highly 
Correlated Land Cluster. 

Figure 14:  Comparison of Cluster Centroids. 

Figure 15: Comparison of Smoothed Cluster 
 Centroids. 
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In clustering, there are a number of 
opportunities for future research.  For instance, we 
could try other similarity measures, e.g., Euclidean 
distance or the cosine measure.  We could also try the 
other clustering approaches, e.g., bisecting K-means 
[SKK00].  Along somewhat different lines, we may 
want to look at clusters that vary over time or we may 
want to try to define clusters in terms of events.  
(However, for some transformations of the data, e.g., 
the monthly Z score, we are in some sense already 
looking at events, i.e., deviations from the norm.)  
Also, our current clustering approach only looks at 
the time series for one variable for each point.  This is 
a potential limitation in terms of the goodness of the 
clusters and their suitability for predicting the 
behavior of one region (cluster) based on the time 
varying behavior of another region.   

Other limitations in our current work, both in 
clustering and in association analysis, result from the 
fact that often, only extreme events are correlated.  
For example, the El Nino indices have values for each 
month of each year, but the effects of El Nino on 
other regions often occur only when the index has an 
extreme value, i.e., when an El Nino effect is actually 
occurring. Although there may be a number of 
possible ways to address these problems and make the 
analysis more effective, it seems likely that some 
patterns will best be detected by other data mining 
techniques that are naturally more event-based, e.g., 
association rules or co-location rules [SH01].   
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