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Abstract- Dynamic scheduling management in wireless sensor

networks is one of the most challenging problems in long lifetime
monitoring applications. In this paper, we propose and evaluate
a novel data correlation-based stochastic scheduling algorithm,
called Cscan. Our system architecture integrates an empirical data
prediction model with a stochastic scheduler to adjust a sensor

node's operational mode. We demonstrate that substantial energy

savings can be achieved while assuring that the data quality meets
specified system requirements. We have evaluated our model using
a light intensity measurement experiment on a Micaz testbed,
which indicates that our approach works well in an actual wireless
sensor network environment. We have also investigated the system
performance using Wisconsin-Minnesota historical soil temperature
data. The simulation results demonstrate that the system error

meets specified error tolerance limits and up to a 70 percent savings
in energy can be achieved in comparison to fixed probability sensing
schemes.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have been used in many

application domains [1], [2], [3], [4]. Due to the limited power

supply and difficulties in harvesting ambient energy, low power

energy management is a critical research issue. Energy con-

sumption for the sensing operation dominates the lifetime of a

sensor network. Therefore, it is important to design protocols
which minimize the amount of sensing required by the sensor

nodes. In the past few years, many solutions have been proposed
for energy conservation by applying different power switching
strategies (e.g. [5]) in which hardware components such as CPU
and memory can operate with different power modes. Other
semantic-based efforts, such as TAG [6], focus on reducing the
sensing and communication load. Even though those methods
show some interesting results, there is a need for improvement
in several directions. Moreover, most real-time power control
protocols have no robust error control guarantee mechanism.

In this paper, we propose a systematic dynamic sensing
scheduling algorithm, called Cscan, specifically for long lifetime
applications such as military surveillance or habitat monitor-
ing. The key idea of our framework is to activate a sensor

during cycles in which there is a high probability that the
model's prediction would exceed a specified error tolerance.
Our approach builds on the observation that data sensed and
collected by sensor networks over time may exhibit similar data
patterns and the data disseminated over time could be well
correlated. The key techniques used in our approach are: 1) the
construction of a data prediction model, i.e. an empirical model
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which captures the prominent features of the data collected over
time, and 2) an error-sensitive stochastic scheduling algorithm.
This methodology allows sensor nodes to remain predominantly
inactive, while achieving a high data integrity. As we will present
in this paper, our contributions can be summarized as follows:

* We present a new energy-efficient scheduling algorithm that
includes a very accurate but hardware-friendly prediction
model to capture recent data trends.

. We introduce the concept of error implication, which ex-
ploits data correlations among multiple sensing cycles over
a given time period.

. We provide an extensive experimental study of our frame-
work using real data sets from different domains and com-
pare our results against the most commonly accepted data
aggregation approach. We also implement our algorithm
into the sensor network we built for a light intensity
monitoring application. Our experiments demonstrate that
our algorithm can save up to 70 percent of the energy while
still meeting the error rate requirement.

II. OVERVIEW AND OBJECTIVES

The strategies exploited in our Cscan framework are specifi-
cally developed for long-term environmental monitoring applica-
tions in which energy conservation and data accuracy are of most
interest. The system should try to avoid any unnecessary sensing
and data acquisition while assuring acceptable data quality, as
defined by the application. The system performance is quantified
by defining three criteria: the miss ratio, which denotes the
fraction of scheduling cycles that the system fails to present
acceptable prediction data, the energy consumption and the data
sample error rate.
To successfully achieve our energy and error control objec-

tives, a data management scheme is investigated and integrated
into the system. The architectural framework is shown in Fig-
ure 1. Those functional blocks will support the following key
features:

A. Prediction model construction

We seek to identify correlated sensor data patterns in a sensing
period in order to predict sensing data over time. The sensors'
sampling data are fed into the model constructor during the
initialization training stage and an empirical prediction model is
created. After that, model constructors keep updating the model
whenever new sensing data becomes available.

B. Duty-cycle optimization

This is an approach to manage the power consumption and
the prediction error rate in a given cycle.
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Fig. 2. Construction of the empirical prediction model.

Fig. 1. The architecture of Cscan.

C. Error estimator

The error estimator will serve to ensure that the operation of
a sensor is such that the data quality requirement is not violated.
We must create a balance between energy savings and the rate
of prediction errors.

III. DATA PREDICTION ALGORITHM

A sensor can lower its operating duty cycle, meaning it can

switch into a sleep state to conserve energy. This operation
is based on the fact that the sensor's readings may form a

recognizable pattern during certain periods, especially in the case

of environmental monitoring applications. Those patterns can

be well approximated and used for predicting future readings
if the specific application is well understood. The system will
start building the prediction model in the initialization phase.
Then, we separate the sensor's operation into a data resampling
phase and a prediction phase. In the data resampling phase, we

use the latest sampling data to update the model built during the
training cycle. In the prediction phase, the node will switch off to
conserve energy and the predicted sensing results are generated
by the predictor which has been updated in the resampling phase.

1) Empirical Model Construction: An empirical model is
used to find strong correlations in the data and to arrange them
in a certain way so that future data can be extracted from the
empirical or historical data. Depending on the duration of the
system and the data accuracy requirements of an application, the
empirical models can be constructed in different ways. Here we

introduce an hourly-based empirical model, as shown in Figure 2
During a data training cycle, initial sensing differences between
two adjacent hours are calculated and updated throughout the
training cycle. A weighted moving average method is used to
smooth the data. For example, if the sensed temperature data at
AM and 2 AM are 20 degrees F and 22 degrees F respectively,

then the difference between AM and 2 AM is 2 degrees F. At
the end of the training cycle, a model is constructed such that
the sensing data difference between any two adjacent hour times
can be estimated at the sensor node.

2) Prediction Model Update: Once the sensor is in the re-

sampling phase, the system will not only get precise readings
but can also refresh the empirical model parameters. The system
compares the prediction values produced by the empirical model
with the real sensing data. If the difference is below the specified
error tolerance level, the system is regarded as good ("hit") and
the prediction model can be used. This can be expressed in the
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following equation:

ABSj'( Vr (1)

V§ is the value output from the estimator, Vr is the true sensed
data and et is the error tolerance level that can be accepted, as

specified by the user.

A system corrective action will be taken to update the empiri-
cal model by refreshing the original model with the latest results
for Vr(k) and Vr(k- 1).
Compared to a regression model, the advantage of using an

empirical model in this application domain is that it simplifies
the processing requirements while providing a reliable reference
for prediction. As a result, the hardware cost can be minimized.
Moreover, data resampling helps to update the predictor's model
parameters when the sensor nodes are in a dormant state.

IV. SCHEDULING ALGORITHM

In this section, we present our scheduling algorithm that
includes the underlying data prediction model and the data
quality requirements to control the sensing/resampling of the
sensors. We seek to minimize the sensor energy consumption
according to different system operation modes while satisfying
the data quality constraint.

A. Our problem formulation

In order to conserve their limited power supply, the sensors

do not continuously sense data but rather operate only during
certain cycles as long as acceptable data quality can be met. The
scheduling can be adjusted based on the algorithm that we will
elaborate later. We assume that the baseline sensor operation
sequence consists of N data cycles, which include k cycles
used for training. In each cycle i, the probability that the sensor

will be active is defined as pi. We further assume the average

energy consumption for sensing (the energy cost of a node to
sense, process and communicate) is Ea, the defined prediction
error tolerance is et and the potential error at each cycle due to
inactive sensor status is ei. Therefore, the goal of our design is to
minimize the energy consumption during each baseline period:

N-k

E = k Ea tu + Ea tu Pi
i=l

under the constraint that

N

E (1- pi) ei
i=l

N

N

E (1- pi) ei
i=k+l

<Ne

(2)

(3)
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where t,, is the unit cycle length and et is the error tolerance set
by the design requirements. The constraint will enforce that the
potential statistical error caused by the prediction will be less
than the error tolerance. The range of possible values of pi will
be bounded to satisfy the constraint equation.

B. Adaptive scheduling algorithm

The minimization of energy consumption deals with several
key issues, e.g. the length of the training cycle and the prediction
model used. The goal of the scheduling algorithm is to find the
appropriate pi for a given error range ei obtained from past
data values. To solve for pi at a specific ei requires a joint
distribution of a process for ei at a specific time instance or
period. This would require a heavy computational capability
and storage burden on the limited resources of the sensor node.
Obtaining a solution for pi will be extremely difficult to calculate
during transitions. Instead, we introduce a simpler method for
computation that allows the sensor to choose the value within a
range. We first determine the boundary for pi, and the scheduling
algorithm will choose one value within the boundary according
to a node's operational status. It should be clear that the higher
the value of pi, the larger the expected energy consumption. The
lower the value of pi, the higher the chance that the error due to
prediction will be greater than the tolerance. Therefore, analysis
of the boundary of pi will be investigated to optimize this trade-
off.

C. Determining the Sensing Probability Boundary
We use a bottom-up approach to set a boundary the for

sensing probability. That is, we will not violate the constraint
equation during each cycle instance so that the sum of all cycle
error products (1- pi) * ei will not violate the constraint. As
noted, this decision sets a stricter requirement than the constraint
equation over all sampling instances. Therefore, our probability
constraint problem can be simplified into choosing the pi at each
scheduling cycle to satisfy the constraint on (1- pi) * ei, which
can be solved as

f 0 < ej < et
lb (4)

I -e et < ej < I

The plb is the lower bound of pi which guarantees the
satisfaction of the system data quality requirement at each
sensing cycle instance. Only values higher than this will assure
that the constraint requirement won't be violated under any
circumstances. We should also be careful in the selection of Pi,
as higher Pi implies more energy consumption by the sensor
node.

D. The Selection of Sensing Probability

adaptive sensing to adjust both of them. The sensors keep a
record of past sensing data, comparing the authentic recorded
data with the outputs from the prediction models constructed.
The error rate will then be fed back to the sensor operation
platform where processing of two error categories will take
place. A probability estimation algorithm (Algorithm 1) is called
during the initialization and update procedures of the sensing
operation to select the probability value. The algorithm takes the
error tolerance et, initialized intrinsic error Ti and the implied
error eim as inputs. The input variables will be used to choose
the corresponding probability from the available rate ranges as
described in Algorithm 1.

Algorithm 1 Probability Determination Algorithm
Require: et,Ti,eim

1: Determine the boundary of pi from section IV-C
2: if eio < eim then
3: ej = eim
4: else
5: ej = Ti
6: end if
7: Achieve the value of pi from the constraint equation
8: return pi

In this algorithm, we choose the higher error estimation
between the intrinsic error Ti and implied error eim. A high
error rate indicates environmental instability or a poor prediction
model outcome while a low value signals a potential to cut down
the resampling rate for energy conservation purposes. However,
since Ti and eim will change over time, a mechanism is necessary
to estimate them in an adaptive manner.

1) Update intrinsic error Ti: The intrinsic error Ti represents
the information about the prediction instability of data at cycle i.
A high value indicates a greater chance that the prediction model
will fail in estimating the real value. We update Ti whenever the
sensor node switches on at that cycle by using a moving average:

Tt = a eCS + (1- a) Ti (5)

where e5 is the error between the predicted value and the actual
recorded data when the sensor switches on. In our experiments,
we choose a to be 0.5. As we can see, if the prediction model
outputs a lower error data value in comparison to the real value,
the new Ti will become smaller.

2) Achieving the implied error em.: The implied error eim
is obtained from the correlation coefficient between the current
cycle and the latest cycle in which the sensor node switched on.
It can be expected that if the two cycles have a strong correlation,
the error in one cycle can be well estimated from the correlated
cycle. Otherwise, two cycles having low correlation will have
n high note,ntin] error miqmntch Therefore- the. en-or nlntform

In this section, we focus on choosing the appropriate value of t " . .
Lill-,

F

pi whic reqiresus t deermie theffctieeroretimaionmust take this into account when determining whether the sensor
Pi which requires us to determine the effective error estimation nd ed osic n ae norosrain h mle
ei at cycle i. To accurately evaluate the ei, we included two .

B

error can be well estimated as:
categories of errors that we believe make up the major contri-
bution to the possible errors in prediction. The first category eim A- ej (6)
is the system intrinsic error, T, that takes into account all the
system white noise and environmental instability within the where A is a constant, ei is the latest measured error when the
system. The other category is the implied error, etm, which sensor node switched on at cycle j and Cij is the correlation
is a function of the data correlations. Our technique relies on coefficient between the current cycle i and cycle j. The procedure
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for constructing the correlation coefficient table eim is illustrated
in Figure 3.

It should be noted that that for simplification purposes, we

assume that correlation among cycles remain relatively stable
throughout each operation.

V. EVALUATION

A. System Implementation

The architecture has been implemented on our newly con-

structed test-bed, shown in Figure 4, with more than 100 sensor

nodes which provides a realistic controllable environment for
design verification and performance evaluation. The design has
been implemented on a Berkeley TinyOS/Micaz platform. Sensor
nodes are placed randomly over the board, giving us a better
reflection of the sensing algorithm. Both random and controlled
scanning light patterns are created to emulate the light intensity
change in environment and then projected onto the test-bed with
three projectors switching on simultaneously. The sensed data is
recorded and processed according to our sensing algorithm. The
evaluation results (e.g. error rate, energy conservation vs. error

tolerance) allow further analysis to optimize the overall system.

B. System Evaluation

Fig. 6. The measured energy consumption of Cscan vs. other strategies.

parameter settings, such as the length of the training cycle.
Figure 5 shows the resulting dynamic energy consumption. As
seen in the figure, Cscan does not conserve energy in the
initialization period during which the prediction model and inter-
cycle correlations are built. After that, however, the energy

consumption is reduced, as desired. We can also observe in the
figure that the energy conservation in certain cycles remains at
a flat level, corresponding to those times in which the sensor

node is in its prediction mode. The energy consumption as

a function of error tolerance is shown in Figure 6. Three
sets of results representing different experimental scenarios are

presented. The first scenario is one in which a sensor randomly
switches on/off with probability 50 percent. The second scenario
is where the sensor has a 90 percent probability of being active
in every cycle. In the third scenario, sensors operate according
to the Cscan scheduling algorithm. We can see that energy

conservation reaches above 70 percent when the error tolerance
et is relatively high. Cscan's energy conservation is less than
that in the random case when et is low, implying that the sensors

have a higher chance of switching on if the environment is not
stable. The error performance results are presented in Figure 7.
These results also show that Cscan can control the error rate
according to system requirements and that the Cscan algorithm
can be practically and effectively implemented.

In order to test the performance of the proposed Cscan C. Emulation Setting

algorithm, especially for error control in terms of energy conser- To evaluate the performance of the Cscan sensing strategies
vation, we have conducted a series of experiments to track the in a real application, a simulation program with historical soil
sensor status on our test-bed. Different light intensity patterns temperature data was developed. The data was collected from
are projected onto the test-bed to emulate various environment the Wisconsin-Minnesota Cooperative Extension Agricultural
conditions. The sensor nodes detect the light intensity and Weather Page where soil temperature is monitored regularly.
dynamically process those values using Cscan. A period of 1000 The soil temperature is sampled twice per hour, 24 hours per

cycles (corresponding to 1000 sample points) was selected for day. This full record of soil temperature data over the past 10
each run. Each run was repeated multiple times with different years allows us to extensively test the efficiency of our strategy.
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By doing so, we can reduce the randomness and investigate the Fig. 10. The influence of error tolerance on the prediction miss ratio.

impact of different configurations on the performance of energy
conservation anderror control.

rate for many long-term monitoring applications. The results
D. Performance Analysis verify that the dynamic strategy in Cscarn can effectively meet

In this section, we evaluate the error rates as a function of some the data quality requirements of an application. The energy
key design parameters, including the effect of error tolerance consumption for different scenarios in Figure 9 are also provided
and the length of the training period. A study of the effects of to demonstrate the effectiveness of Cscarn as compared to
these parameters can provide insights into methods for improving other approaches.. It can be seen that Cscarn achieves a better
system performance. We begin the evaluation by measuring the error/energy margin when the error tolerance is between 20 and
error rate of the Cscarn system. Then, we compare the energy 50 percent. Intuitively, the higher the error tolerance, the more

conservation for different parameter values. Finally, we study the energy consumption can be reduced. We also investigated the
the miss ratio (defined as sensor prediction results which violate effectiveness of our prediction model through the measurement
the error tolerance requirement) performance for our adaptive of the miss ratio, as shown in Figure 10. The prediction miss
scheduling algorithm, ratio for Cscarn increases as error tolerance increases. This is not

1) Impact ofError Tolerance. During this evaluation, the level surprising because a high error tolerance implies that the sensor

of error tolerance varies from 10 percent to 90 percent while the won't be able to anticipate an abrupt change in the environment.
length of the training period was kept constant at 12 percent of However, the highest miss ratio measured is only about 25
the total number of simulation cycles. The total number of cycles percent, which suggests that our prediction model provides a

is approximately 9000, which corresponds to more than one year reasonably high prediction accuracy.
of data. This data set is large enough to significantly reduce 2) Impact of training period length. In this experiment, we

unsystematic errors caused by limited sample size. Figure 8 evaluated the influence of different lengths of the training period
shows the estimated error rate as a function of error tolerance on the error rate and energy conservation. When a sensor node
under different scenarios. We measure the average prediction begins sensing, an initialization period is required to build both
error of the estimator in scenarios 1 and 2, as described earlier, the correlation table and the prediction model. The accuracy of
It turns out that the prediction error in scenario 1 is about 40 the prediction model will depend on the sample size of the data
percent for most of the error tolerance levels, which means that fed to the model constructor. As we can see in Figure 11, the
little improvement in energy consumption is achieved in this error rates decrease as the length of training period becomes
case. Also, the error rate is low for scenario 2, as expected. longer. This becomes more evident when the error tolerance et
As suggested trom the simulation results, the prediction error is larger. 'This can be explained by the tact that the scheduling
for the Cscant algorithm increases in proportion to the increase algorithm has more flexibility to adjust the duty cycle as the error
of error tolerance. Most importantly, the prediction error from tolerance becomes larger. Notice that the energy consumption
Cscan met the requirements in almost all cases. For example, also increases with increases in the length of the training period.
Cscan's data error rate is only 20 percent when the system error According to our experiments, the energy consumption increased
tolerance is 50 percent. This will likely be an acceptable error from 27 percent to 38 percent as the length of training period
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Fig. 11. The influence of training period length on the prediction error rate.

was increased from 2.3 percent to 12 percent of the total number
of simulation cycles. As a result, the system exhibits a trade-off
between data accuracy and energy conservation.

VI. RELATED WORK

In recent years there has been increasing interest in studying
approaches for energy-efficient operation of wireless sensor

platforms. These studies include data aggregation techniques
to reduce the communication overhead [5], [7], [8]. To more
aggressively keep sensor nodes in a dormant state, data pre-
diction has also been investigated. Both numerical approaches
and empirical models have been implemented [9], [10]. Using
a Dual Kalman Filter, Jain et al. [11] proposed a prediction
model to minimize resource usage under a precision require-
ment. However, the prediction model that was used requires
sophisticated computation that results in hardware complexity
and increased power consumption at the cluster head. In [10],
empirical analysis results revealed the relationship between the
configuration parameters and the quality of the search. In ref-
erences [12], [13], data correlations with spatial coherence and
routing efficiency were investigated. Research on dynamic sens-

ing schedulings to balance accuracy and energy saving were also
conducted [14], [15], [16]. In eSense [17], a stochastic sensing
algorithm used probability bounds for the miss ratio constraint.
However, their approach is not sensitive to the degree of data
error. In contrast, our approach employs an empirical prediction
model to predict sensing data that does not require complicated
hardware. Furthermore, we also use data cycle correlations in
error estimation to determine the sensing probability, which
allows us to achieve significantly higher energy conservation for
a given error tolerance.

VII. CONCLUSIONS

In this paper, we have presented a stochastic sensing algorithm
to reduce energy consumption. Our approach does not require
powerful computational ability at the sensor nodes to construct an
accurate data prediction model. Observed correlations between
different data cycles has been used to estimate the prediction
error, thus allowing the scheduler to adjust its operation accord-
ingly. The measurement and simulation results show that system
prediction error remains within the specified error tolerance while
saving up to 70 percent of the required energy. For our future
work, we would like to evaluate the energy performance of
individual sensor network components so that the algorithm can
be further optimized.
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