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Abstract. We propose a novel routing framework called PWave that supports
multi-source multi-sink anycast routing for wireless sensor networks. A distributed
and scalable potential field estimation algorithm and a probabilistic forwarding
scheme are proposed to ensure low overhead and high resilience to network dy-
namics. Key properties of this framework are proved through theoretical analysis
and verified through simulations.Using network lifetime maximization problem
as one example, we illustrated the power of this framework by showing a 2.7
to 8 times lifetime extension over Directed Diffusion and up to 5 times lifetime
extension over the energy-aware multipath routing.

1 Introduction

Wireless sensor networks (WSNs) are generally deployed to support specific missions
or applications such as habitat monitoring, object tracking. Traffic are generated from
a number of sensing sources and collected by (any one of) a few sinks [1]. Hence data
communications in WSNs exhibit multi-source, a multi-sink anycast pattern, which is
fundamentally different from that in general-purpose communication networks (whether
wired or wireless), where any two nodes may serve as the two ends of an end-to-end
communication. In addition, WSNs often operate in challenging environments and are
subject to frequent disruptions and node failures. These unique settings and constraints
call for a robust routing framework for WSNs that can quickly adapt to changes in traffic
pattern, network conditions and environments.

Existing routing schemes (e.g., [2]) used in WSNs are either variations, or even
direct adoption, of routing algorithms for general-purpose wired networks, or mobile
wireless ad hoc networks (MANETs), which are typically designed using the single
shortest path unicast routing paradigm3. While several multi-path routing schemes (see,
e.g., [3–5]) have been proposed, they tend to be extension of the single shortest-path
routing paradigm with use of additional paths – choice of these alternative paths is often
decided based on somewhat ad hoc mechanisms. More importantly, these techniques

? This work was supported in part by the NSF grant CNS-0435444 and a DoD Army High
Performance Computing Research Center grant.

3 While offering some desirable local properties, the more recent geographic or trajectory-based
routing paradigm is still unicast based, using “shortest distance” paths in an Euclidean or
metric space. In addition, it requires some type of location information, which may not be
easy to obtain.



only support single-sink configuration (i.e., unicast routing) with no direct and easy
extension to support multi-source, multi-sink anycast routing.

In this paper we propose a novel framework – referred to as PWave to support multi-
source, multi-sink anycast routing that is inherent in WSNs. Inspired by the analogy
between WSNs and electric networks, PWave constructs a potential field by assigning a
“potential” (analogous to “voltage” in an electric network) to each node: a source or an
intermediate node routes traffic (proportionally) to neighboring nodes with lower poten-
tials towards the sinks, which have the lowest (zero) potentials. The PWave framework
is designed with strong theoretical underpinnings. First of all, the constructed potential
field realizes scalable, robust, proportional multi-source, multi-sink traffic allocation
that optimizes a customizable quadratic function (based on appropriate definition of
“link costs”). Furthermore, it guarantees that there is no local minima (i.e. packets are
never stuck in a local dead-end) and thus ensures loop-free routing. It adapts to local
changes rapidly, while dampening their global impact. These features enable compact
and efficient protocol design with low execution overhead.

We develop a fully distributed algorithm for constructing the potential field and
implement PWave using probabilistic forwarding to achieve the properties described
above. PWave scales to the density of the network because only one-hop neighborhood
information exchange is needed. In addition this algorithm is resilient to network dy-
namics in that local perturbations only have local effect. These features make PWave
a suitable routing framework for WSNs. In a nutshell, the research contribution of this
paper lies in the proposal of a novel routing framework that supports global optimiza-
tion of custom objectives in a multi-source multi-sink anycast routing settings via fully
localized computations. To the best of our knowledge, this is the first systematic routing
framework for WSN with this capability.

The remainder of this paper is organized as follows. We detail the PWave framework
design in section 2. The potential field estimation algorithm is described in section 3,
followed by the experimental evaluations in section 4. We describe related work in
section 5 and conclude in section 6.

2 The PWave Routing Framework

2.1 System Model and Problem Formulation

In order to formally define the PWave routing framework, we first introduce the sys-
tem model, notations and assumptions. We assume that a WSN can be represented as a
weighted (undirected) graph G = (N, E), where N is the set of nodes and E the edges
(i.e., links) between nodes which are assumed to be symmetric. Asymmetric links are
blacklisted as suggested in literatures. We use Rx,y denote the weight of an edge e con-
necting nodes x and y, which is strictly positive, i.e., Rx,y > 0. This weight represents
some measure of unit cost for transmitting one bit of information between x and y de-
fined in certain manners depending on the applications and routing design objectives.
(We will provide some examples of Rx,y later.) Hence if Ix,y amount of data is trans-
mitted from x to y, the total cost would be Ix,yRx,y . For simplicity, we assume that
data traffic only flow along one direction of an edge. The cost for acknowledgements



is implicitly accounted for in Rx,y . Under this assumption, Ix,y denote the data rate
flowing from x to y, we define Iy,x = −Ix,y . The same relation also holds if Iy,x is the
data rate flowing from y to x.

Let S ⊂ N denote the set of source nodes, and D ⊂ N be the set of sink nodes.
For each s ∈ S, Is denote the data rate that may be generated by source node s. More
generally, to account for potential in-network processing at intermediate nodes in a
WSN that may increase or decrease the data rate flowing through them, for each x ∈
(N − D), we use Ix to denote the (internal) data generation/consumption rate at node
x. Note here Ix > 0 means that data is generated at node x while Ix < 0 means that
data is consumed at node x. For each node x ∈ N, we use Z(x) to denote the set of
its neighboring nodes. Then the flow conservation law requires that for any node x that
is not a sink, the total of data rates flowing into node x is equal to the total of data
flowing out of node x plus or minus the data rate generated or consumed at node x
itself. Namely, ∑

y∈Z(x)
Ix,y = Ix, x ∈ (N− D). (1)

Given the graph G representing a WSN and I := {Ix|x ∈ N}, we refer to the
tuple (G, I) a network configuration NC. Given a NC, routing for a WSN can be
casted as a global multi-source multi-sink anycast flow allocation optimization prob-
lem to determine the flows {Ix,y} along the links under the flow conservation con-
straints (1) and boundary conditions (2) such that certain global objective function
F(G, I, {Ix,y|(x, y) ∈ E}) can be optimized. Single path (or minimum cost) routing
that computes a minimum cost path for each source to one of the sinks is such a flow
allocation scheme that allocates flows based only on the cost of the paths, but not on the
flow rates.

2.2 PWave Routing Framework

Intuitions and Principles From physics, it is well known that if the energy level of a
physical system is minimized, the system would be in most stable state, i.e. the system
will tend to go back to this state after disturbances. A routing framework designed this
way will thus be robust. With this intuition, we design our PWave routing framework
to solve this optimization problem by minimizing a natural quadratic objective function
(4), which is equivalent to the total energy of a corresponding electric network system
(see Fig. 1).

PWave solves the flow allocation optimization by assigning a potential field to the
nodes in a WSN, namely, a function V : N → R+, where R+ denote the set of nonnega-
tive real numbers. The potential function V satisfies the following boundary conditions
at the sink nodes

Vd = 0, d ∈ D (2)

and the flow distribution conditions at non-sink nodes

Ix,y =
(Vx − Vy)

Rx,y
(3)

as well as the flow conservation constraints (1) at the non-sink nodes.



The equation (3) specifies a localized rule on how data are routed at each node x
based on local information, namely, its and its neighbors’ potentials: data only flow
from node x towards one of its nodes y with lower potentials (Vy < Vx) and the amount
of data routed along the edge (x, y) is inversely proportional to R(x, y), or equivalently,
proportional to gx,y := 1/Rx,y , which is referred to as the conductance of edge (x, y).
The boundary conditions (2) ensure that the sink nodes have the lowest possible po-
tential (namely, zero potential) so that data will always flow towards the sinks and are
eventually “absorbed” at the sinks. As will be shown shortly, the potential field defined
above guarantees the existence of a unique flow allocation {Ix,y : (x, y) ∈ E} such that
it minimizes the following global objective function:

E =
1
2

∑
x,y

I2
x,yRx,y =

1
2

∑
x,y

gx,y(Vx − Vy)2. (4)

Moreover, we will see that the potential-based PWave routing framework also al-
lows for a probabilistic routing/forwarding implementation at the packet level. More
specifically, equation (3) allocation can be achieved in practice through forwarding a
packet from node x to one of its lower potential neighbors y with probability given by

px→y =
Ix,y∑

i:i∈Z(x)∧V (i)<V (x)

Ix,i
(5)

where Ix,i is computed from local potential values using eq.(3).
In summary, the potential-based PWave routing framework enables us to achieve

goals at three different levels: i) at the network-wide macroscopic level, it minimizes
a natural global objective function (4); ii) at the intermediate flow level, it provides a
localized rule to determine how data flows are routed; and iii) at microscopic packet
level, it allows for a simple probabilistic packet forwarding mechanism to achieve both
flow-level routing and network-wide design objectives.
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Fig. 1. Analogy between WSNs and Resistive Electric Networks.



Example Applications Before we leave this section, we remark that by choosing dif-
ferent interpretations (and thus different values) for the edge costs Rxy (or equivalently,
the edge conductance, gxy), we can use eq.(4) to optimize different design objectives
in routing for WSNs. For example, if we set Rxy = 1, then data flows are approxi-
mately proportionally distributed and routed based on path hop counts. If we set Rxy

equal to the data loss rate on an edge, then minimizing eq.(4) would yield a flow allo-
cation/routing strategy that attempts to approximately equalize the data losses among
different paths. As another example, if we set Rx,y as a combination of the per unit
power consumed by transmitting one bit of data, denoted as CEi, and the current en-
ergy level, denoted as ENi, as follows:

Ri,j =
1

gi,j
= (

CEi

ENi
+

CEj

ENj
) (6)

the PWave routing framework yields a solution that approximately equalizes the power
consumption among various paths to maximize the network lifetime. See [6] for de-
tailed derivations.

3 Potential Field Estimation

3.1 Principles and Algorithm

The potential field estimation problem is governed by eqs.(1, 3) under boundary condi-
tions specified in eq. (2). The existence and uniqueness of the solution to this problem
are well known from electric network theory [7]. Traditional way of solving this prob-
lem is to rewrite the problem in matrix form and compute the inverse of the matrix. This
is obviously infeasible in WSN environment as centralized data collection and process-
ing are needed. Inspired by the random walk interpretation of electric networks from
[7, 8], we propose an iterative and localized algorithm based on random walk games to
progressively estimate the potential field .
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Consider experiments of random walks in graph G, illustrated in Fig. 2, where every
node is marked with a fixed face value m. Starting from an arbitrary node x, a walker,
initially with 0 money in hand, goes to one of its adjacent nodes with probability px,i

for i ∈ Z(x). This walker keeps going in the same fashion inside the graph until it
reaches one of the sink nodes, i.e. d1 or d2. Every time the walker passes one node i,
it collects a fixed amount of money equal to mi. After a large number of experiments,
central limit theorem guarantees that the expectation of the total money collected by the
walker, f(x), converges [8] to:

f(x) =
∑deg(x)

i=1
px,if(i) + mx (7)

Obviously f(i) = 0, i ∈ D as a walker starting from a sink node immediately stops.
After rewriting eqs. (1, 3) to yield the expression of the voltages, we observe that eq.
(7) is equivalent to eqs. (1, 3) when px,i and mx are designed as follows:

px,i =
gi,x∑deg(x)

k=1 gk,x

(8)

mx =
Ix∑deg(x)

k=1 gk,x

(9)

This mathematical equivalence warrants that the expectation of the total money col-
lected by a walker starting from node x converges to the potential value at node x.
While this analogy provides a distributed way for individual nodes to estimate its po-
tential value, this method is still impractical in a WSN environment because of the need
for extra routing infrastructure support, due to route-back of the final collected amount,
and the huge communication overhead due to required large number of experiments and
long duration for each experiment.

Motivated by the Relaxation Method [9], we address the issues listed above by re-
stricting the random walk game to be within one-hop neighborhood of the starting point
and apply equation (7) iteratively on all nodes until the whole network reaches equilib-
rium state. With this method, only local broadcasting among adjacent nodes is needed.
The overall communication overhead can be reduced through adjusting of accuracy re-
quirement. In addition, the nature of potential field being a smooth harmonic function
ensures localized effect of perturbations , which we prove it in section 3.2, that fur-
ther reduces potential field maintenance overhead. The pseudo code of this algorithm is
presented in Algorithm 1. This pseudo code describes how the entire network reaches
global equilibrium. Each node only needs to periodically execute the steps from line 12
to line 19. Though PotentialFieldConstruct only specifies a uniform absolute tolerance
threshold for all nodes. In practice, non-uniform relative thresholds may be used to bet-
ter reflect estimation accuracies at different potential levels. Our experimental results in
section 4 show that significantly low overhead can be achieved by combining a coarse-
grained estimation of the entire potential field with on-demand localized potential field
refinements.



Algorithm 1 PotentialFieldConstruct (N, I, Sinks, tolerance)
Require: Set of all nodes N, array of packet generation rate I, set of sink nodes Sinks, error

tolerance tolerance
Ensure: The equilibrium potential field

1: Variables: P nodePotentials, x nodeId,
2: for each x ∈ N
3: if x ∈ Sinks
4: then P [x] ← 0
5: else P [x] ← arbitrary non-negative number
6: endif
7: endfor
8: equilibrium ← false
9: while (equilibrium 6= true)

10: equilibrium ← true
11: for each x ∈ N
12: if x /∈ Sinks
13: then newP ← apply eq. (7)
14: else newP ← 0
15: endif
16: if |P [x]− newP | ≥ tolerance
17: then equilibrium ← false
18: endif
19: P [x] ← newP
20: endfor
21: endwhile
22: return P

3.2 Properties

We now summarize the key properties of this algorithm that are of great value in ensur-
ing efficient routing protocol design and executions in WSN. All formal proofs of these
properties are described in [6] and omitted in this paper due to space constraint.

Properties: 1) Convergency:The PotentialFieldConstruct algorithm, when tolerance →
0, converges to the unique solution of the potential field estimation problem with arbi-
trary non-negative initial guess of potential values and in any iteration order. 2) Loop
Free: Forwarding over equilibrium potential field is loop free. 3) No Local Minima:
The equilibrium potential field does not have local minima in that node x has the min-
imum potential value among its neighbor nodes if and only if x is a sink node. 4) Pro-
portional Traffic Allocation:Given two disjoint paths sharing only the starting and
ending nodes, Path1 and Path2, with corresponding effective resistances Re1 and
Re2. If Re1 < Re2, the flow rate allocated on Path1 will be higher than that allocated
on Path2. 5) Rich Links Attract More Traffic:When more parallel links are added
to a path, higher flow rate will be allocated to that path. 6) Perturbation Spatial De-
cay:In a dense network, the absolute potential value changes caused by event at node x
are attenuated to zero over the number of hops from node x.
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Fig. 3. Spatial Decaying of Perturbations for NS1 (a) and NS2 (b); PWave Sensitivity to Accuracy
(c) and Radio Range (d)

Property 1) guarantees the correctness of the algorithm. Property 2) and 3) enable
efficient protocol design in PWave as there is no need for loop-preventing mechanisms
and last resort of flooding for getting packets out of a local dead-end. Property 4) comes
directly from Ohm’s Law and effectively guarantees that capable paths take more traffic.
Property 5) comes from Rayleigh’s Monotonicity Law [7] and warrants that any new
nodes or links always help to take more traffic share. Property 6)is the key property that
ensures the scalability and network dynamics resilience of PWave since it guarantees
that only local areas of the potential field need to be updated in react to local events.

4 Experimental Evaluations

4.1 Experimental Setup and Performance Metrics

We have implemented the PWave routing algorithm and protocol in TinyOS and eval-
uated its performance using TOSSIM [10] simulation environment. Recognizing the
asynchronous nature of PWave protocol and the lack of precise MAC timing and in-
terference models in TOSSIM, we developed our own plug-in modules to count the
protocol iteration steps.

We conducted our experiments with a network setting with grid layout, denoted as
NS1 and a setting with random layout, denoted as NS2. Both layouts contain 400 nodes.



In NS1, the nodes are placed on grid locations of a (200m X 200m) square. In NS2, the
nodes are randomly distributed in a (400m X 400m) square. The regular structure of
NS1 enables better illustration of key concepts, while NS2 simulates a sensor layout
closer to environmental monitoring applications.

We evaluated the performance of PWave in terms of convergence time, communi-
cation overhead, and locality of effects of network changes (spatial effect). The con-
vergence time is measured by the number of iterations of the PWave algorithm until
equilibrium is reached (all changes in potential are below the given threshold). The
overhead is measured by the total number of messages broadcasting needed to reach
equilibrium. The spatial effect of a single network change is measured by the maxi-
mum number of hops from the point of change where there is a node with potential
value affected by the initial network change.

4.2 Evaluation of the PWave Protocol

Here we investigate the dynamic performance of PWave protocol in reacting to network
dynamics. The other aspect of PWave’s performance, the initialization of the potential
field, has lesser impact on the overall performance of PWave since it is a one-time cost
that can be minimized through pre-computed distribution guess and amortized through
long communication session.

We first evaluate the locality of impact following a network event and then the
sensitivity of PWave performance to the estimation accuracy and network density.

Locality of Perturbations (Spatial Effect) Fig. 3(a) shows the spatial decay of a 10%
data rate increase at (50,50) inside network NS1 with source at (90,90), sink at (0,0)
and the radio range of 13m. We observe that this change has an exponentially spatial
decay, essential for the scalability and resilience of PWave. We also observe that the
event perturbation decays faster with larger radius range, which corresponds to higher
network density. Thus better robustness through locality can be achieved with denser
deployment of senor nodes. Fig. 3(b) shows the spatial decay effect for a network event
of 1/3 link cost increase around node x at (193,190) inside NS2 network with source at
(389,379), sink at (32,1) and the radio range of 25m. Observe that PWave still shows ex-
ponential decay while the event in Smallest Cost Field (SCF) propagates with constant
value throughout the network. This result shows the resilience of PWave to network
event. Last, observe that the link const change event is general in that it can include link
outages and new nodes joining the network, and thus the above observations hold for a
wide range of network events.

PWave Sensitivity Using the same setting from which Fig.3(b) was generated, Fig.
3(c) shows the PWave and SCF performance for a range of relative accuracy require-
ments. First observe that SCF is insensitive to the relative accuracy requirement since
SCF has constant event propagation. On the other hand, PWave shows a clear decrease
in convergence time, communication overhead, and reduced spatial effect for higher
levels of error tolerance. In particular, for relative tolerance greater than 0.6%, PWave
incurs lower overhead and faster convergency than SCF, primarily due to the tighter



affected region. From our experiments, this accuracy is sufficient for traffic allocation
purpose. Using the same setting with a fixed relative accuracy of 0.6%, Fig. 3(d) shows
that denser networks (larger radio range) have decreased convergence times, require
smaller refreshing overhead, and have a smaller number of nodes impacted by a net-
work change, in both PWave and SCF. But PWave incurs less overhead and converges
much faster at higher density than SCF. We also observe that SCF’s impacted area (spa-
cial effect) is larger than PWave.

4.3 Network Lifetime Maximization
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In the following we illustrate performance of PWave when applied in the context of
network lifetime maximization (see section 2.2) and compare with other two state-of-
the-art protocols, Directed Diffusion [2] and Energy-aware Routing [4].

Our experiments use the NS1 network setting with four source nodes located closely
at (144,135), (153,135), (153,144) and (144,144). Three sink nodes are located at (27,27),
(144,27) and (27,144). All nodes in network have the same amount of battery energy
level initially except sink nodes and source nodes which are set to have high energy
level to guarantee that source and sink nodes will not run out of battery before inter-
mediate nodes given that the purpose of this experiment is to evaluate the efficiency
of the traffic balancing obtained from PWave and its competitors. To reduce simula-
tion time, the battery energy level of each non-sink, no-source node is set to be able to
handle(either receive or transmit) at most 10,000 packets. The life time of the network
is defined as the duration from the start of experiment until the first node runs out of
energy.

We illustrate in Fig. 4(a) the potential field constructed by PWave under relative
accuracy of 0.6% with 31 iteration rounds and 2314 message overhead, and observe
its properties of monotonicity and lack of local minima. Fig. 4(b) shows that PWave
achieves 2.7 to 8 times longer lifetime compared to the baseline shortest path Directed
Diffusion. and up to 5 times longer lifetime over the energy-aware routing scheme.
PWave achieves the major lifetime extension through better traffic balancing and take
advantage of existence of multiple sinks none of the existing schemes are exploring.
Fig.5 shows the traffic distribution normalized to the total traffic. Observe that less traf-
fic is allocated on nodes that are along longer paths from sources to sinks. For example,
the sink at (27,27) received less traffic than the other two sinks due to its longer distance
from the sources. While all nodes around a sink received traffic allocation, the ones that
face the source nodes received more allocation due to their smaller distance to sources.
This experiment thus verifies that PWave achieve balanced traffic allocations with more
traffic allocated on shorter paths.

5 Related Work

Well-studied network optimization is generally related to our work. The classic work in
this area can be traced back to [11, 9]. All of these work formulated the optimization
problem over traditional unicast/multicast communication pattern with multiple com-
modity flow model. PWave address a single commodity flow between multiple sources
and multiple sinks with anycast communication pattern. The key mathematical differ-
ence between these two settings lies in the end-to-end flow rate constraints. Traditional
mode requires that traffic (one commodity) generated by a source must be equal to the
traffic received by the corresponding destination while PWave only requires the sum
of the traffic generated by all sources is equal to the sum of the traffic received by
all destination nodes. Many multipath routing schemes for WSNs [3–5] are related to
our work. But these schemes are based on heuristic alternative paths selection without
clear global optimization objective. And they did not address the anycast problem. The
traffic-aware routing scheme proposed in [12] is also relevant. [12] builds local poten-
tial field (using a taut elastic membrane analogy), around shortest path as an accessory



to route data around hot spots. This scheme builds on top of link-state routing proto-
col and aims at Internet type networks. It requires substantial message exchanges and
intensive computations, thus not applicable in WSNs.

6 Conclusion and Future Work

In this paper, we presented a novel anycast routing framework that supports global
optimization of custom objectives via a fully distributed, highly scalable and resilient
protocol. Key properties of this framework are proved through theoretical analysis and
verified through simulations. Using network lifetime maximization problem as one ex-
ample, we illustrated the power of this framework by showing a 2.7 to 8 time lifetime
extension over Directed Diffusion and up to 5 times lifetime extension over the energy-
aware multipath routing scheme proposed in [4]. As our immediate future work, we
plan to pursue systematic performance evaluation in real world settings.
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